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Abstract. In the current work, a mathematical model which de-
scribes the steady flow of a third grade fluid in a porous half space
is investigated numerically. An approximate expression for solution
of the governing non-linear two point boundary value problem on
semi-infinite domain is developed as a combination of rational Bern-
stein functions. A spectral collocation method based on the rational
Bernstein functions is introduced and implemented to find numeri-
cal solution of the governing problem. The efficiency and accuracy
of the proposed numerical technique is illustrated through the figures
and tables. The effects of variations of various embedded parameters
on the fluid velocity profile have been investigated graphically.
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1. INTRODUCTION

In recent years, many researchers have been focusing on studying and analyzing
the non-Newtonian fluids models due to their widely applications for describing sev-
eral phenomena in the natural sciences and engineering. Various practical fluid flows
such as, salt solutions and molten polymers, certain crude oils, greases, paint and in-
dustrial wastes have been categorized as non-Newtonian fluids. Many mathematical
models have recently been introduced and developed to describe and simulate several
types of non-Newtonian fluid flows. In the current study, we focus on a special and
interesting mathematical model which describes the steady flow of a non-Newtonian
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fluid in a porous medium. The proposed model has been introduced by Hayat et
al. [14, 15], they have generalized the mathematical model of a second grade non-
Newtonian fluid in porous medium

(5p)x = −µϕ

k
(1 +

α1

µ

∂

∂t
)u,

to the following modified Darcy’s Law for a third grade fluid

(5p)x = −ϕ

k
[µu + α1

∂u

∂t
+ 2β3(

∂u

∂y
)2u]. (1. 1)

In the above equationsu, µ and p respectively denote the fluid velocity, dynamic
viscosity and the pressure,α1, β3 are material constants andk andϕ, respectively
represent the permeability and porosity of the porous half space which occupies the
regiony > 0. Also they defined non dimensional fluid velocityf and the coordinate
z

z =
V0

ν
y, f(z) =

u

V0
, (1. 2)

whereV0 = u(0), ν = µ
ρ represents the kinematic viscosity andρ denotes the fluid

density. Using the presented suitable similarity transformations, the steady state flow
of a third grade fluid in a porous half space has been transformed to the following
nonlinear boundary value problem(see [14] for more details)

d2f

dz2
+ b1(

df

dz
)2

d2f

dz2
− b2f(

df

dz
)2 − cf = 0, (1. 3)

f(0) = 1, f(z) → 0 as z →∞, (1. 4)

where parameters are as follow:

b1 =
6β3V

4
0

µν2
, b2 =

2β3ϕV 4
0

µν
, c =

ϕν2

kV 2
0

.

It is clear the parameters are not independent, since

b2 =
b1c

3
.

Now our interest is to solve the nonlinear boundary problem ( 1. 3 ) with bound-
ary conditions ( 1. 4 ). In [14] authors have been employed the Homotopy analysis
method (HAM) for solving the governing problem. Faiz Ahmad [1] estimated a sim-
ple analytical solution for the problem. Very recently various semi-analytical and
numerical techniques such as, Hankel-padè method [2, 3], spectral method based on
the Modified Generalized Laguerre [19], rational Legendre Tau method [6] and radial
basis collocation method [16, 23] have been formulated and used to solve the problem
( 1. 3 )-( 1. 4 ).
As was observed, non-Newtonian fluid mathematical models can be reduced to a non-
linear ordinary differential equation on a semi-infinite domain by using proper simi-
larity transforms. Clearly finding the analytical solutions of these types of problems
are very interesting and important for researchers. However, obtaining analytical so-
lutions for such problems is not often an easy task. So, several numerical techniques
have been recently introduced and developed to deal with these types of problems.
Specially, spectral methods are very efficient and powerful numerical techniques for
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solving differential equations in bounded domains or with complex boundary con-
ditions. In recent years, several types of spectral methods have been developed and
successfully applied to deal with differential problems in unbounded domains. The
commonly used techniques are spectral methods based on the orthogonal polyno-
mial on unbounded domains such as Laguerre or Hermite polynomials [12, 11]. An-
other of most widely used spectral methods with domain truncation strategy. These
techniques truncate unbounded domains to bounded intervals and employ classical
orthogonal function to solve the problem supplemented with artificial boundary con-
ditions [8]. Moreover, there is an very effective class of spectral methods for solving
such problems based on the rational approximations. In [9], a new system of or-
thogonal functions, rational Chebyshev functions, has been defined which forms an
orthogonal basis system on the semi-infinite domain. Also in [13], authors introduced
rational Legendre basis functions and used them for solving differential equations on
the half line. Newly, this class of numerical methods has been developed and widely
employed to deal with many types of Newtonian and non-Newtonian fluids problems
[20, 25, 5, 28, 21, 4].
Bernstein polynomials enjoy considerable popularity in many scientific branches be-
cause of their many useful properties [17]. Specially, the Bernstein functions are very
powerful tools in computer-aided design applications [26]. Recently, some spectral
methods based on the Bernstein polynomials have been introduced and employed to
solve some types of boundary value problems [7, 27]. In [24] authors have been for-
mulated a spectral method based on the Bernstein polynomials to approximate the
fractional heat and wave-like equations. Numerical techniques based on the Bern-
stein polynomials are interesting alternatives for dealing with differential and integral
equations due to their simple implementation. Because Bernstein polynomials are
not orthogonal, some of orthogonal basis transformations could be used when it is
necessary [10, 22]. In the current work rational Bernstein basis functions would be
introduced and then a collocation method based on the new basis functions is formu-
lated and employed to solve the steady flow problem of a third grade fluid in a porous
half space.
This paper is arranged as follows: In Section2 we describe relation between Legendre
and Bernstein polynomials. In section3, we present rational Legendre and introduce a
new basis functions called rational Bernstein function. A collocation technique based
on the rational Bernstein functions would be formulated and used for approximating
the steady flow problem of a third grade fluid in a porous half space in section4.
In Section5 we investigate behavior of the governing model via tables and figures.
Finally, concluding remarks will be reported in Section6.

2. LEGENDRE ANDBERNSTEIN BASIS FUNCTIONS

In this section some preliminary definitions of the Bernstein and Legendre func-
tions which are required for establishing our main results, are reviewed. Moreover
some results which describe the transformations between these two basis functions
are explained.
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2.1. Bernstein functions. The classical Bernstein polynomials of degreen on the
interval[0, 1] are defined as

χr,n(t) =
(

n
r

)
tr(1− t)n−r, r = 0, 1, . . . , n, t ∈ [0, 1]. (2. 5)

The set of Bernstein polynomials,{χ0, n(t) , χ1, n(t) , · · · , χn, n(t)} forms a com-
plete basis for space of polynomials over the interval[0, 1]. The Bernstein polyno-
mials satisfy the symmetry,χr,n(t) = χn−r,n(1 − t), non-negativity,χr,n(t) ≥ 0
and partitions of unity,

∑n
r=0 χr,n(t) = 1, properties for allt ∈ [0, 1]. Moreover,

the Bernstein functions can be extended over an arbitrary interval[α, β] by mapping
original domain into[0, 1] usingt = x−α

β−α , so relation ( 2. 5 ) is converted to:

χr,n(x) =
(

n
r

)
(x− α)r(β − x)n−r

(β − α)n
, r = 0, 1, . . . , n, x ∈ [α, β]. (2. 6)

For any real-valued continuous functionf(x) on the interval[α, β], then− th Bern-
stein polynomial forf(x) is defined by:

Bn(f ; x) =
n∑

i=0

f(α +
(β − α)i

n
)χr,n(x), x ∈ [α, β]. (2. 7)

Theorem 1. Let f ∈ Ck[α, β], for some positive integerk, thenB
(k)
n (f ;x) tends to

f (k)(x) uniformly asn →∞.
Proof. See [18].

2.2. Legendre functions. The classical Legendre polynomials are orthogonal basis
functions with respect to the weighting functionw(x) = 1 on the interval[−1, 1].
Moreover, the set of shifted Legendre functions on[0, 1] are generated by the follow-
ing recurrence relation:

L0(t) = 1,

L1(t) = 2t− 1,

Ln+1(t) =
2n + 1
n + 1

(2t− 1)Ln(t)− nLn−1(t), n = 2, 3, . . . .

The shifted Legendre functions{Ln(t)} satisfy the following orthogonality property:
∫ 1

0

Ln(t)Lm(t)dt =
{

1
2n+1 n = m

0 n 6= m

Every functionf(t) ∈ L2([0, 1]) can be approximated by using a linear combination
of the shifted Legendre functions{Ln(t)}n≥0 as follow:

f(t) =
∞∑

n=0

lnLn(t),

where the Legendre coefficients{ln} can be easily computed by using:

ln = (2n + 1)
∫ 1

0

Ln(t)f(t)dt, n = 0, 1, 2, . . . .
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2.3. Transformation between Legendre and Bernstein functions.Here, the rela-
tionship of transformations between the Legendre and Bernstein basis function will
be reviewed. For this purpose, letPn(t) be a polynomial of degreen over interval
[0, 1], thenPn(t) can be expanded as:

Pn(t) =
n∑

i=0

µiLi(t) =
n∑

r=0

γrχr,n(t)

where{Li(t)}n
i=0 and{χr,n(t)}n

r=0 are the shifted Legendre basis functions on[0, 1]
and the classical Bernstein functions, respectively. The transformation of the classical
Bernstein basis functions into the shifted Legendre polynomial basis of degreek can
be given as follow:
Theorem 2. The shifted Legendre polynomialLk(t) over interval[0, 1] can be ex-
pressed in the Bernstein basis functionsχr,k(t) of degreek as

Lk(t) =
k∑

r=0

(−1)r+k

(
k
r

)
χr,n(t), (2. 8)

Proof: See [10].

3. BERNSTEIN FUNCTIONS ON UNBOUNDED INTERVALS

As observed in the previous section the well-known Bernstein polynomials are
defined only on the bounded interval, so the classical Bernstein functions should be
extended to approximate the function with unbounded domain. In this section the
well-known Bernstein polynomials would be extended and a new set of basis func-
tions, called rational Bernstein functions, would be introduced. For this purpose,
firstly the rational Legendre functions and their properties are briefly reviewed. Then
by using the relationship of transformations between the Legendre and Bernstein basis
functions, rational Bernstein functions are defined.

3.1. Rational Legendre functions. The well-known rational Legendre polynomials
on [0,∞), denoted byRl,n(x), are defined as follows [8, 9]:

Rl,0(x) = 1, Rl,1(x) =
x− L

x + L
,

Rl,n+1(x) = (
2n + 1
n + 1

)(
x− L

x + L
)Rl,n(x)− (

n

n + 1
)Rl,n−1(x), n ≥ 1, (3. 9)

whereL is a constant parameter. Letw(x) = 2L
(x+L)2 denotes a non-negative, inte-

grable, real-valued function over the intervalΛ = [0,∞]. We define

L2
w(Λ) = {ν : Λ → R| ν is measurable and‖ ν ‖w< ∞},

where

‖ ν ‖w= (
∫ ∞

0

| ν(x) |2 w(x)dx)1/2

is a norm induced by the following inner product:

(u, ν)w =
∫ ∞

0

u(x)ν(x)w(x)dx. (3. 10)
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Thus{Rl,n(x)}n≥0 denotes a system which is mutually orthogonal the inner products
defined in relation ( 3. 10 ), i.e.,

(Rl,n, Rl,m)w =
2

2n + 1
δn,m,

whereδn,m is the Kronecker delta function. This system is complete inL2
w(Λ). For

any functionu ∈ L2
w(Λ) the following expansion holds

u(x) =
+∞∑

k=0

akRl,k,

with

ak =
(u,Rl,k)w

‖ Rl,k ‖w
.

Theak are the discrete expansion coefficients associated with the family{Rl,k}.
3.2. Rational Bernstein basis functions.In the current section, firstly, we introduce
rational Bernstein functions on the semi-infinite interval[0,∞) by using a suitable
algebraic map on the classical Bernstein polynomials. Then based on the relationship
of transformations between the Legendre and Bernstein functions, we show that a set
of rational Bernstein functions forms a basis functions.
So, for z ∈ [0,∞), t ∈ [0, 1] and every fixed positive constantL, the following
algebraic relation:

t =
z

z + L
, (3. 11)

maps the semi-infinite interval[0,∞) into [0, 1]. Now by substituting the above al-
gebraic map into the relation ( 2. 5 ), the rational Bernstein functions,Rχr,n(z), are
defined as follow:

Rχr,n(z) =
(

n
r

)
(

z

z + L
)r(1− z

z + L
)n−r

=
(

n
r

)
zrLn−r

(z + L)n
, r = 0, 1, . . . , n, z ∈ [0,∞). (3. 12)

The behavior of these new rational functions forn = 3 andL = 1 are plotted in figure
1.

The constant parameterL sets the length scale of the mapping. Boyd in [8] offered
guidelines for optimizing the map parameterL whereL > 0 for some orthogonal
rational functions. Numerical results depend smoothly on constant parameterL, and
therefore are not very sensitive toL, so the error varies very slowly withL around
the minimum. A little trial and error is usually sufficient to find a value that is nearly
optimum. In general, there is no way to avoid a small amount of trial and error in
choosing L when solving problems on an unbounded domain. Experience and the
asymptotic approximations of Boyd can help, but some experimentation is always
necessary as explained in his paper [9].
Clearly by substituting the mapping operator in the Theorem 2, one can find a sim-
ilar transformations between the rational Legendre basis functions and new rational
Bernstein functions on semi-infinite domain[0,∞). So clearly it can be concluded
that the new rational Bernstein functions form basis functions.
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In the next section an efficient numerical technique based on the the new rational
functions is formulated and employed to investigated the behaviour of a third grade
steady fluid flow in a porous half space.

3.3. Formulation of rational Bernstein collocation method for solving the prob-
lem. In this section a rational Bernstein collocation method is formulated and used to
solve the governing two point boundary problem ( 1. 3 ) on the semi-infinite domain
[0,∞) with boundary conditions ( 1. 4 ). For this purpose, the solution of the problem
( 1. 3 ) is approximated on thespan{Bχ0,n(z), Bχ1,n(z), . . . , Bχn,n(z)} as follow:

fn(z) =
n∑

r=0

λrBχr,n(z), (3. 13)

where{λr}n
r=0 is a set of unknown coefficients should be determined. Substituting

the proposed solution ( 3. 13 ) in governing problem ( 1. 3 ), the following residual
function is obtained:

Res(z) =
d2fn

dz2
+ b1(

dfn

dz
)2

d2fn

dz2
− b2fn(

dfn

dz
)2 − cfn. (3. 14)

Now based on the collocation method, the unknown coefficients in relation ( 3. 13 )
can be calculated by taking the residual function equal to zero at proper collocation
points and enforcing the boundary conditions ( 1. 4 ). In our implementation the
following shifted Chebyshev-Gauss-Radau points,{ςr}n

r=0 are used as the collocation
nodes:

ςr =
Lxr + L

2(1− xr)
, r = 0, . . . , n, (3. 15)

where{xr}n
r=0 are standard Chebyshev-Gauss-Radau points,

xr = − cos(
2rπ

2n + 1
), r = 0, . . . , n

So we obtain the following nonlinear system of algebraic equations withn + 1 equa-
tions andn + 1 unknown coefficients{λr}n

r=0:

Res(ςr) = 0, r = 1, 2, . . . , n− 1,

fn(0) = 1, fn(ςn) = 0. (3. 16)

The above nonlinear system of algebraic equations can be solved by Newton method
for the unknown coefficients.

4. NUMERICAL RESULTS AND DISCUSSION

In this section, the proposed numerical technique is used to investigate the behav-
iour of a third grade steady fluid flow in a porous half space. In table 1 the computed
results for non-dimensional parameterf

′
(0) are reported. Moreover to confirm the

performance of the proposed technique, our results are compared with other available
results. The results are obtained by lettingn = 20 andL = 5. The presented re-
sults as Table 1 show a good agreement between our approximate solutions and other
numerical results. To investigate the convergence of the method, the obtained results
for the norm-2 of the residual function,‖Res(z)‖2 = (

∫∞
0
|Res(z)|2dz)

1
2 , and also

f
′
(0) by letting b1 = 0.6, b2 = 0.1, c = 0.5, L = 5 and for various values ofn
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FIGURE 1. Graph of rational Bernstein functions forn = 3 and
L = 1.

TABLE 1. Approximate results forf
′
(0) for various values ofb1

andc, (b2 = b1c
3 ) .

b1 c Rational Bernstein Shooting method [6] Rational Legendre
collocation method Tau method [6]

0.3 0.5 −0.69127903 −0.691280 −0.691493
0.6 −0.67830161 −0.678301 −0.678511
0.9 −0.66732656 −0.667327 −0.667528
0.6 0.3 −0.53330129 −0.533303 −0.533545

0.6 −0.73800751 −0.738008 −0.738116
0.9 −0.88746735 −0.887467 −0.887350
1.2 −1.00865268 −1.008653 −1.008516

are reported in table 2. The results show that accuracy of the method increases by
increasing the number of collocation nodes,n and also the the unknown valuef

′
(0)

is approximated with high accuracy. In figure 2 the effect of model parameterb1 on
profile off(z), for fixed valuec = 1.5 is illustrated. The results show that increasing
or decreasing the value ofb2 has no sensible effect on profiles off(z). Moreover the
effect of c on profile off(z), for fixed valueb1 = 0.5 is demonstrated in figure 3.
From figure 3 it is evident that for fixed value ofb1, the profiles off(z) decrease by
increasing the values ofc.

5. CONCLUSION

In this study the Bernstein polynomials has been extended on semi-infinite inter-
val and rational Bernstein functions have been introduced. An efficient numerical
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FIGURE 2. Profiles off(z) for various values ofb1 andc = 1.5.

FIGURE 3. Profiles off(z) for various values ofc andb1 = 0.5.

technique, rational Bernstein collocation method, is formulated and employed to in-
vestigate the behaviour of the third grade steady fluid flow in a porous half space. The
convergence and accuracy of the method is demonstrated through some numerical
results. The effect of the model parametersb1, b2 andc on the solution profile has
been investigated. The presented results through the figures and tables confirm the
performance and accuracy of the proposed method.
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TABLE 2. Numerical results for norm-2 of the residual function
andf

′
(0) by letting b1 = 0.6, b2 = 0.1, c = 0.5, L = 5 and

several values ofn.

n ‖Res(z‖2) f
′
(0)

4 5.712× 10−2 −0.68343944
8 7.869× 10−3 −0.67807809
12 2.156× 10−3 −0.67827420
16 2.380× 10−5 −0.67830334
20 1.548× 10−7 −0.67830161
[2] − −0.67830162
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