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Abstract. There are several papers which discuss the Bayesian analysis of the mixture models
under type I singly censored samples. This paper considers a new methodology for Bayesian
analysis of mixture models under doubly censored samples. We have discussed the Bayesian
estimation of parameters of the two-component mixture of Rayleigh distribution under square
root gamma, Maxwell and half normal priors using two loss functions. Further, we analyzed
some simulated and real data sets in order to investigate the performance of the estimators for
the parameters of the proposed mixture model.
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1 Introduction

In survival analysis, data are subject to censoring. The most common type of censoring is right censoring,
in which the survival time is larger than the observed right censoring time. In some cases, however, data are
subject to left, as well as, right censoring. When left censoring occurs, the only information available to an
analyst is that the survival time is less than or equal to the observed left censoring time. A more complex
censoring scheme is found when both initial and final times are interval-censored. This situation is referred
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as double censoring, or the data with both right and left censored observations are known as doubly censored
data.

Analysis of doubly censored data for simple (single) distribution has been studied by many authors.
Fernandez [1] investigated maximum likelihood prediction based on type II doubly censored exponential
data. Fernandez [2] has discussed Bayesian estimation based on trimmed samples from Pareto populations.
Khan et al. [3] studied predictive inference from a two-parameter Rayleigh life model given a doubly censored
sample. Kim and Song [4] have discussed Bayesian estimation of the parameters of the generalized exponential
distribution from doubly censored samples. Khan et al. [5] studied sensitivity analysis of predictive modeling
for responses from the three-parameter Weibull model with a follow-up doubly censored sample of cancer
patients. Pak et al. [6] has proposed the estimation of Rayleigh scale parameter under doubly type-II
censoring from imprecise data.

In statistics, a mixture distribution is signified as a convex fusion of other probability distributions. It
can be used to model a statistical population with subpopulations, where constituent of mixture probability
densities are the densities of the subpopulations. Mixture distribution may appropriately be used for certain
data set where the subsets of the whole data set possess different properties that can best be modeled
separately. They can be more mathematically manageable, because the individual mixture components are
dealt with more ease than the overall mixture density. The families of mixture distributions have a wider
range of applications in different fields such as fisheries, agriculture, botany, economics, medicine, psychology,
electrophoresis, finance, communication theory, geology and zoology.

Soliman [7] derived estimators for the finite mixture of Rayleigh model based on progressively censored
data. Sultan et al. [8] have discussed some properties of the mixture of two inverse Weibull distributions.
Saleem and Aslam [9] presented a comparison of the Maximum Likelihood (ML) estimates with the Bayes
estimates assuming the Uniform and the Jeffreys priors for the parameters of the Rayleigh mixture. Kundu
and Howalder [10] considered the Bayesian inference and prediction of the inverse Weibull distribution for
type-II censored data. Saleem et al. [11] considered the Bayesian analysis of the mixture of Power function
distribution using the complete and the censored sample. Shi and Yan [12] studied the case of the two
parameter exponential distribution under type I censoring to get empirical Bayes estimates. Eluebaly and
Bougila [13] have presented a Bayesian approach to analyze finite generalized Gaussian mixture models
which incorporate several standard mixtures, widely used in signal and image processing applications, such
as Laplace and Gaussian. Sultan and Al.-Moisheer [14] developed approximate Bayes estimation of the
parameters and reliability function of mixture of two inverse Weibull distributions under Type-II censoring.

The article is outlined as follows. In the section 2, we define the mixture model, sampling and likelihood
function of Rayleigh model and the posterior distributions are derived under different priors. Expressions
for the Bayes estimators and corresponding posterior risks are derived in the section 3. The elicitation of
hyperparameters via prior predictive approach is discussed in the section 4. Simulation study and comparison
of the estimates are given in the section 5. Real data sets to illustrate the methodology of the proposed
mixture model are discussed in the section 6. Some concluding remarks are given in the section 7.

1 The Proposed Mixture Model And The Likelihood Function

The probability density function (pdf) of the Rayleigh distribution with rate parameter λi is:

fi (xij) = 2xijλ
2
i exp

(−x2
ijλ

2
i

)
, 0 < xij < ∞ λ2

i > 0, i = 1, 2, and j = 1, 2, ..., ni. ( 1. 1 )

The cumulative distribution function (CDF) of the distribution is:

F (xij) = 1− exp
(−x2

ijλ
2
i

)
, 0 < xij < ∞ λ2

i > 0, i = 1, 2, and j = 1, 2, ..., ni. ( 1. 2 )

A density function for mixture of two components densities with mixing weights (p1, 1− p1) is:

f (x) = p1f1 (x) + (1− p1) f2 (x) , 0 < p1 < 1. ( 1. 3 )

The cumulative distribution function for the mixture model is:

F (x) = p1F1 (x) + (1− p1)F2 (x) . ( 1. 4 )
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Consider a random sample of size n from Rayleigh distribution, and let xr, xr+1, ..., xs be the ordered ob-
servations that can only be observed. The remaining r − 1 smallest observations and the n − s largest
observations have been assumed to be censored. Now based on causes of failure, the failed items are as-
sumed to come either from subpopulation 1 or from subpopulation 2; so the x1r1 , ..., x1s1 and x2r2 , ..., x2s2

failed items come from first and second subpopulations respectively. The rest of the observations which
are less than xr and greater than xs have been assumed to be censored from each component. Where
xs = max (x1,s1 , x2,s2) and xr = min (x1,r1 , x2,r2). Therefore, m1 = s1 − r1 + 1 and m2 = s2 − r2 + 1
number of failed items can be observed from first and second subpopulations respectively. The remaining
n−(s− r + 2) items are assumed to be censored observations, and s−r+2 are the uncensored items. Where
r = r1 + r2 , s = s1 + s2 and m = m1 + m2. Then the likelihood function for the Type II doubly censored
sample x = {(x1r1 , ..., x1s1) , (x2r2 , ..., x2s2)} , assuming the causes of the failure of the left censored items are
identified, can be written as:

L (λ1, λ2, p1|x) ∝ ps1
1 (1− p1)

s2 {F1 (xr1 , λ1)}r1−1 {F (xr2 , λ2)}r2−1 {1− F2 (xs, λ1, λ2)}n−s

{
s1
i=r1

f1

(
x1(i), λ1

)} {
s2
i=r2

f2

(
x2(i), λ2

)}
( 1. 5 )

L (λ1, λ2, p1|x) ∝
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1 (1− p1)

s2+k3

λ2m1
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( 1. 6 )

where Ω (x1j) =
∑s1

i=r1
x2

1(i)+(n− s− k3) x2
s+kx2

(r1)
, Ω(x2j) =

∑s2
i=r2

x2
2(i)+(k3)x2

s+kx2
(r2)

, m1 = s1−r1+1,
and m2 = s2 − r2 + 1.

2 Bayes Estimation

For the Bayesian estimation, let us assume that the parameters λi and p1 for i = 1, 2, are independent
random variables. Further, we considered the different priors for the Bayes estimation of the parameters.

2.1 Bayesian estimation using square root gamma prior

The prior for the rate parameters λi (for i = 1, 2) is assumed to be the square root gamma distribution,
with the hyperparameters αi and βi and is given by

fλi (λi) =
2βαi

i

Γ (αi)
λ2αi−1

i exp
(−λ2

i βi

)
, αi, βi > 0. ( 2. 7 )

The prior for p1 is assumed to be the beta distribution, whose density is given by

fp1 (p1) =
Γ (c4 + d4)
Γ (c4) Γ (d4)

pc4−1
1 (1− p1)

d4−1
, c4, d4 > 0. ( 2. 8 )

From equations (2.7)− (2.8), we proposed the following joint prior density of the vector Θ = (λ1, λ2, p1) :

g (Θ) ∝ λ2αi−1
i exp

(−λ2
i βi

)
pc4−1
1 (1− p1)

d4−1
, 0 < p1 < 1, αi, βi > 0, c4, d4 > 0. ( 2. 9 )

From (2.9) and (1.6), the joint posterior density for the vector Θ given the data becomes:

π (Θ|x) ∝
r1−1∑

k1=0

r2−1∑

k2=0

n−s∑

k3=0

2
i=1 (−1)k1+k2 r1 − 1k1r2 − 1k2n− sk3p

n−s−k3+s1+c4−1
1 (1− p1)

s2+k3+d4−1

λ
2(αi+mi)−1
i exp

{−λ2
i (βi + Ω (xij))

}
( 2. 10 )

Marginal distributions of λi and p1 for i = 1, 2, can be obtained by integrating the nuisance parameters.
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2.2 Bayesian Estimation using Maxwell prior

The prior for the rate parameters λi (for i = 1, 2) is assumed to be the Maxwell prior, with the hyperpara-
meters wi, and is given by

fλi
(λi) =

√
2
π

λ2
i

w3
i

exp
(−λ2

i

2w2
i

)
, wi > 0. ( 2. 11 )

The prior for p1 is assumed to be the beta distribution, whose density is given by

fp1 (p1) =
Γ (c5 + d5)
Γ (c5) Γ (d5)

pc5−1
1 (1− p1)

d5−1
, c5, d5 > 0. ( 2. 12 )

From equations (2.11)− (2.12), we propose the following joint prior density of the vector Θ = (λ1, λ2, p1) :

g (Θ) ∝ λ2
i exp

(−λ2
i

2w2
i

)
pc5−1
1 (1− p1)

d5−1
, 0 < p1 < 1, wi > 0, c5, d5 > 0. ( 2. 13 )

By multiplying Equation (2.13) with Equation (1.6), the joint posterior density for the vector Θ given the
data becomes:
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( 2. 14 )

2.3 Bayesian Estimation using half normal prior

The prior for the rate parameters λi (for i = 1, 2) is assumed to be the half normal prior, with the
hyperparameter gi and is given by

fλi (λi) =

√
2
π

1
gi

exp
(−λ2

i

2g2
i

)
, gi > 0. ( 2. 15 )

The prior for p1 is assumed to be the beta distribution, whose density is given by

fp1 (p1) =
Γ (c6 + d6)
Γ (c6) Γ (d6)

pc6−1
1 (1− p1)

d6−1
, c6, d6 > 0. ( 2. 16 )

From equations (2.15)−(2.16), we propose the following joint prior density of the vector Θ = (λ1, λ2, p1) :

g (Θ) ∝ exp
(−λ2

i

2g2
i

)
pc6−1
1 (1− p1)

d6−1
, 0 < p1 < 1, gi > 0, c6, d6 > 0. ( 2. 17 )

By multiplying Equation (2.17) with Equation (1.6), the joint posterior density for the vector Θ given
the data becomes

π (Θ|x) ∝
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2
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( 2. 18 )

Marginal distributions of λi and p1 for i = 1, 2, can be obtained by integrating the nuisance parameters.
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3 Bayes Estimation of the Vector of Parameters Θ

The Bayesian point estimation is connected to a loss function in general, signifying the loss induced when
the estimate θ̂ differ from true parameter θ. Since there is no specific rule that helps us to identify the
appropriate loss function to be used, squared error loss is used in this article as it serve as standard loss. It
is well known that under the squared error loss function, the Bayes estimator of a function of the parameters
is the posterior mean of the function and risk is the posterior variance. The most popular loss function,

squared error loss function (SELF), is defined as l
(
θ̂, θ

)
=

(
θ − θ̂

)2

. It was originally used in estimation
problems when the unbiased estimator of θ was being considered. Another reason for its popularity is due
to its relationship to least squares theory. The use of SELF makes the calculations simpler. K-Loss function

(KLF) which is particularized as l
(
θ̂, θ

)
=

(
θ − θ̂

)2

/θ̂θ is proposed by Wasan [15] is well fitted for a measure

of inaccuracy for an estimator of a scale parameter of a distribution defined on R+ = (0,∞) .Under K-Loss
function the Bayes estimates and posterior risks are defined as θ̂ =

√
E (θ|x) /E (θ−1|x),and ρ

(
θ̂
)

=

2
{
E (θ|x) /E

(
θ−1

∣∣x)− 1
}

.
In this section, the respective marginal distribution of each parameter has been used to derive the Bayes

estimators and posterior risks for λ1, λ2 and p1 under squared error loss function (SELF) assuming square
root gamma prior are given as:

Let
∑

Ki =
r1−1∑

k1=0

r2−1∑

k2=0

n−s∑

k3=0

(−1)k1+k2 r1 − 1k1r2 − 1k2n− sk3, A = n− s− k3 + s1 + c4, B = s2 + k3 + d4.

Then the Bayes estimators of λ1, λ2 and p1 are:

λ̂1(SELF ) = S−1

{∑
Ki

B (A, B) Γ (α1 + m1 + 1/2) Γ (α2 + m2)

2 {β1 + Ω (x1j)}(α1+m1+1/2) 2 {β2 + Ω(x2j)}(α2+m2)

}
.
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{∑
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2 {β1 + Ω (x1j)}(α1+m1+1/2) 2 {β2 + Ω(x2j)}(α2+m2)

}
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}
.

The Posterior risks of λ1, λ2 and p1 are:

ρ
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)
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}
−
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ρ
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)
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}
−
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ρ
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2 {β1 + Ω(x1j)}(α1+m1) 2 {β2 + Ω(x2j)}(α2+m2)

}
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where S−1 is formulized as

S−1 =
r1−1∑

k1=0

r2−1∑

k2=0

n−s∑

k3=0

(−1)k1+k2 r1 − 1k1r2 − 1k2n− sk3B (n− s− k3 + s1 + c4, s2 + k3 + d4)

Γ (α1 + m1) Γ (α2 + m2)

2 {β1 + Ω (x1j)}(α1+m1) 2 {β2 + Ω (x2j)}(α2+m2)
.

Similarly, expressions for Bayes estimators and their posterior risks under the rest of the priors using KLF
can be obtained with little modifications.
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4 Elicitation

In Bayesian analysis the elicitation of opinion is a crucial step. It helps to make it easy for us to understand
what the experts believe in, and what their opinions are. In statistical inference, the characteristics of a
certain predictive distribution proposed by an expert determine the hyperparameters of a prior distribution.
In this article, we focused on a method of elicitation based on prior predictive distribution. The elicitation
of hyperparameter from the prior p (λ) is a difficult task. The prior predictive distribution is used for the
elicitation of the hyperparameters which is compared with the experts’ judgment about this distribution and
then the hyperparameters are chosen in such a way so as to make the judgment agree closely as possible
with the given distribution. Readers desiring more detail may refer to: Grimshaw et al. [16], O’Hagan
et al. [17], Jenkinson [18] and Leon et al. [19]. According to Aslam [20], the method of elicitation is
to compare the prior predictive distribution with experts’ assessment about this distribution and then to
choose the hyperparameters that make the assessment agree closely with the member of the family. The
prior predictive distributions under all the priors are derived using the following formula:

p (y) =Θ p (y|Θ) p (Θ) dΘ.

4.1 Elicitation under square root gamma

The prior predictive distribution using square root gamma prior is:

p (y) = 2 (β1)
α1 yα1c4

(c4 + d4) (y2 + β1)
(α1+1)

+ 2 (β2)
α2 yα2d4

(c4 + d4) (y2 + β2)
(α2+1)

, y > 0. ( 4. 19 )

For the elicitation of the six hyperparameters, six different intervals are considered. From Equation (19),
the experts’ probabilities/assessments are supposed to be 0.10 for each case. The six integrals for equation
(19) are considered with the following limits of the values of random variable Y : (0, 10), (10, 20), (20, 30),
(30, 40), (40, 50) and (50, 60)respectively. For the elicitation of hyperparameters, α1, α2, β1, β2, c4, and d4.
these six integrals are solved simultaneously through computer program developed in SAS package using the
command of PROC SYSLIN. Thus the values of hyperparameters obtained by applying this methodology
are: 2.32587, 1.17440, 0.023281, 0.0558, 0.040125 and 0.6508.

4.2 Elicitation under Maxwell prior

The prior predictive distribution using Maxwell prior is:

p (y) =
(

1
2w2

1

)3/2 3yc5

(c5 + d5)
(
y2 + 1

2w2
1

)(5/2)
+

(
1

2w2
2

)3/2 3yd5

(c5 + d5)
(
y2 + 1

2w2
2

)(5/2)
, y > 0. ( 4. 20 )

Now, we have to elicit four hyperparameters, so we have to consider the four integrals. The expert prob-
abilities are assumed to 0.15 for each integral with the following limits of the values of random variable
Y : (0, 15), (15, 30), (30, 45) and (45, 60). Using the similar kind of program, as discussed above, we have
the following values of hyperparameters w1 = 3.14798, w2 = 4.52436, c5 = 0.6235, and d5 = 0.9325.

4.3 Elicitation under half normal prior

he prior predictive distribution using half normal prior is:

p (y) =
yc6

√
2g1 (c6 + d6)

(
y2 + 1

2g2
1

)(3/2)
+

yd6

√
2g2 (c6 + d6)

(
y2 + 1

2g2
2

)(3/2)
, y > 0. ( 4. 21 )

Again, we have to elicit four hyperparameters, so we have to consider the four integrals. The expert
probabilities are assumed to 0.15 for each integral with the following limits of the values of random variable
Y : (0, 15), (15, 30), (30, 45) and (45, 60). Using the similar kind of program, as discussed above, we attained
the following values of hyperparameters g1 = 3.92568, g2 = 3.56890, c6 = 0.98256, and d6 = 0.3256.
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5 Simulation Study and Comparisons

A simulation study is carried out in order to obtain and investigate the performance of Bayes estimators under
tenfold choice of the parameters, different sample sizes, and the different values of the mixing proportion. We
take random samples of sizes n = 20, 40, and 80 from the two component mixture of Rayleigh distributions
with tenfold choice of parameters (λ1, λ2) ∈ {(0.1, 0.12) , (1, 1.2) , (10, 12) , (0.1, 12) , (10, 0.12)} , To generate
a mixture data we make use of probabilistic mixing with probabilities p1and (1 − p1). A uniform number
is generated n times and if u < p1 the observation is taken randomly from (the Rayleigh distribution with
parameter ) otherwise from (from the Rayleigh distribution with parameter ). The choice of the censoring
time is made in such a way that the censoring rate in the resultant sample is approximately 20%. To
implement censored samplings, the (x1r1 , ..., x1s1) and (x2r2 , ..., x2s2) failed items come from first and second
subpopulations respectively. The rest of the observations which are less than xr and greater than xs have
been assumed to be censored from each component. Where xs = max (x1,s1 , x2,s2) and xr = min (x1,r1 , x2,r2).
The simulated data sets have been obtained using following steps:

Step 1 : Draw samples of size n from the mixture model.
Step 2 : Generate a uniform random no. u for each observation.
Step 3 : If u < p1 , then take the observation from first subpopulation otherwise from the second

subpopulation.
Step 4 : Determine the test termination points on left and right, that is, determine the values of xr and

xs.
Step 5 : The observations which are less than xr and greater than xs have been considered to be censored

from each component.
Step 6 : Use the remaining observations from each component for the analysis.
To avoid an extreme sample, we simulate 10, 000 data sets each of size n. The Bayes estimates and

posterior risks (in parenthesis) are computed using Mathematica 8.0. The average of these estimates and
corresponding risks are reported in Tables 1 − 18. The abbreviations used in the tables are: B.Es: Bayes
estimators; P.Rs: Posterior risks; SRGP: Square root gamma prior; MP: Maxwell prior; HNP: Half normal
prior.

Table 1: B.Es and P.Rs under SRGP.
(λ1, λ2, p1) = (0.1, 0.12, 0.45) (λ1, λ2, p1) = (0.1, 0.12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 0.120706 0.132832 0.464593 0.112661 0.144087 0.63509

(0.000497) (0.000563) (0.013072) (0.000313) (0.000910) (0.012135)
40 0.111567 1.25739 0.460969 0.101895 0.138704 0.624409

(0.000267) (0.000292) (0.007267) (0.000138) (0.000465) (0.006512)
80 0.10510 0.125075 0.460047 0.090782 0.133123 0.605373

(0.000135) (0.000171) (0.004025) (0.000055) (0.000217) (0.003267)
k-loss function

20 0.11909 0.12714 0.44605 0.10786 0.14139 0.627623
(0.067778) (0.064218) (0.150025) (0.047157) (0.093525) (0.068832)

40 0.10436 0.123017 0.44663 0.101514 0.132128 0.61704
(0.039444) (0.036847) (0.073654) (0.026479) (0.053417) (0.034743)

80 0.09609 0.12139 0.45725 0.09693 0.130471 0.610776
(0.02017) (0.019164) (0.035277) (0.015321) (0.032079) (0.017124)
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Table 2: B.Es and P.Rs under SRGP.
(λ1, λ2, p1) = (1, 1.2, 0.45) (λ1, λ2, p1) = (1, 1.2, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 1.15428 1.33157 0.468062 1.10334 1.45572 0.636734

(0.046817) (0.056282) (0.013109) (0.030669) (0.091339) (0.012070)
40 1.08208 1.28959 0.464498 1.00912 1.39332 0.625084

(0.024728) (0.029089) (0.007205) (0.014183) (0.047100) (0.006495)
80 1.00965 1.24678 0.460567 0.951208 1.39106 0.620353

(0.011394) (0.014543) (0.003786) (0.006421) (0.024736) (0.003334)
k-loss function

20 1.13857 1.31824 0.452844 1.08006 1.36529 0.62433
(0.067054) (0.065609) (0.144884) (0.047371) (0.092071) (0.070195)

40 1.09099 1.24577 0.45189 1.00903 1.328802 0.61398
(0.039933) (0.036265) (0.076001) (0.025546) (0.050858) (0.033716)

80 1.06134 1.23182 0.45044 1.00147 1.24980 0.605815
(0.022527) (0.019924) (0.039414) (0.014568) (0.026828) (0.018213)

Table 3: B.Es and P.Rs under SRGP.
(λ1, λ2, p1) = (0.1, 0.12, 0.45) (λ1, λ2, p1) = (0.1, 0.12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 10.41330 9.06778 0.4462268 10.24480 8.50795 0.608873

(3.290550) (2.193840) (0.013211) (2.419790) (2.693530) (0.012913)
40 10.26100 10.34920 0.449363 10.02120 9.66687 0.60719

(1.988450) (1.746410) (0.007349) (1.390050) (2.227730) (0.007061)
80 9.52746 11.33630 0.463751 9.877580 11.21010 0.603190

(1.05752) (1.319780) (0.003947) (0.726008) (1.819510) (0.003641)
k-loss function

20 10.42290 8.94662 0.42824 10.16083 8.40797 0.59731
(0.062339) (0.054246) (0.160945) (0.046858) (0.077781) (0.081019)

40 10.34801 10.25652 0.441125 10.09712 9.54778 0.611588
(0.037338) (0.032344) (0.080060) (0.027719) (0.048165) (0.040346)

80 10.07110 11.56313 0.45093 9.54455 11.51973 0.610531
(0.020534) (0.018385) (0.039732) (0.013685) (0.028994) (0.017381)

Table 4: B.Es and P.Rs under SRGP.
(λ1, λ2, p1) = (0.1, 12, 0.45) (λ1, λ2, p1) = (0.1, 12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 0.10377 9.98217 0.509886 0.103314 9.43784 0.66224

(0.000275) (2.26845) (0.012077) (0.000207) (2.77973) (0.010810)
40 0.0984041 11.5072 0.505165 0.097614 11.1057 0.66043

(0.000135) (1.58232) (0.006461) (0.000099) (2.05988) (0.005763)
80 0.0909124 12.4429 0.502642 0.090735 11.96180 0.656484

(0.000061) (0.949157) (0.003347) (0.000045) (1.23449) (0.002981)
k-loss function

20 0.10552 9.86413 0.49660 0.102636 9.21708 0.653142
(0.051517) (0.047385) (0.108431) (0.039356) (0.066197) (0.056105)

40 0.09818 11.3872 0.49377 0.097629 10.90890 0.64976
(0.028245) (0.024333) (0.054859) (0.02109) (0.034369) (0.027924)

80 0.09167 12.1267 0.45921 0.096647 12.66150 0.63179
(0.014836) (0.012331) (0.027599) (0.010936) (0.017516) (0.013926)
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Table 5: B.Es and P.Rs under SRGP.
(λ1, λ2, p1) = (10, 0.12, 0.45) (λ1, λ2, p1) = (10, 0.12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 11.2501 0.119784 0.408332 11.2244 0.123373 0.560671

(3.14529) (0.000333) (0.011676) (2.41444) (0.000493) (0.011905)
40 11.2342 0.11980 0.419038 11.0642 0.116013 0.58528

(1.74962) (0.000152) (0.006198) (1.27824) (0.000228) (0.006374)
80 11.0286 0.119832 0.439410 0.7419 0.112827 0.59652

(0.892522) (0.000078) (0.003197) (0.625749) (0.000110) (0.003304)
k-loss function

20 11.93501 0.12524 0.392169 11.01450 0.12275 0.54879
(0.051517) (0.047391) (0.168089) (0.039356) (0.066257) (0.087515)

40 11.25863 0.123957 0.397631 10.92320 0.116409 0.552175
(0.028246) (0.024332) (0.085606) (0.021096) (0.034372) (0.044088)

80 10.97556 0.121662 0.42899 10.83856 0.119932 0.586638
(0.014838) (0.012332) (0.043218) (0.010942) (0.017517) (0.022132)

Table 6: B.Es and P.Rs under MP.
(λ1, λ2, p1) = (0.1, 0.12, 0.45) (λ1, λ2, p1) = (0.1, 0.12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 0.113966 0.139049 0.481209 0.104844 0.152321 0.643315

(0.000400) (0.000585) (0.012546) (0.000279) (0.000894) (0.011279)
40 0.099319 0.133566 0.480382 0.101979 0.142803 0.640778

(0.000199) (0.000297) (0.006939) (0.000122) (0.000460) (0.006283)
80 0.097455 0.131050 0.477876 0.090527 0.138028 0.635618

(0.000099) (0.000154) (0.003703) (0.000053) (0.000210) (0.003181)
k-loss function

20 0.114641 0.137384 0.464293 0.10578 0.149191 0.633306
(0.062409) (0.060515) (0.130816) (0.040851) (0.084289) (0.0632242)

40 0.105818 0.127759 0.463465 0.097698 0.139323 0.631429
(0.038223) (0.035059) (0.070529) (0.025689) (0.047663) (0.032065)

80 0.099601 0.123343 0.457442 0.097092 0.134879 0.621645
(0.022422) (0.020955) (0.036285) (0.012866) (0.026283) (0.015780)

Table 7: B.Es and P.Rs under MP.
(λ1, λ2, p1) = (1, 1.2, 0.45) (λ1, λ2, p1) = (1.2, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 1.12023 1.38720 0.482344 1.05022 1.45773 0.640831

(0.046314) (0.057887) (0.012579) (0.028276) (0.084368) (0.011435)
40 1.04842 1.29744 0.473538 0.994683 1.448260 0.631640

(0.023762) (0.028962) (0.007055) (0.013322) (0.046732) (0.006207)
80 1.02093 1.23058 0.467743 0.920867 1.35693 0.621143

(0.011733) (0.014295) (0.003755) (0.005678) (0.021973) (0.003241)
k-loss function

20 1.03792 1.43180 0.475992 1.02462 1.48727 0.635992
(0.069236) (0.061310) (0.12391) (0.048256) (0.084806) (0.062309)

40 1.02197 1.295520 0.464927 0.98544 1.41889 0.63347
(0.040629) (0.034276) (0.070164) (0.025728) (0.047455) (0.032091)

80 0.0919916 1.28041 0.450126 0.99331 1.35388 0.615295
(0.015209) (0.012235) (0.027052) (0.012429) (0.024408) (0.015480)
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Table 8: B.Es and P.Rs under MP.
(λ1, λ2, p1) = (10, 12, 0.45) (λ1, λ2, p1) = (10, 12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 8.33679 11.73370 0.488803 8.70392 11.45390 0.641304

(2.06278) (3.683220) (0.012593) (1.676340) (4.78946) (0.011518)
40 8.9368 11.79210 0.476869 8.96134 12.99770 0.634746

(1.39434) (2.13679) (0.007029) (0.942712) (3.21575) (0.006244)
80 9.54378 12.57510 0.474653 9.47886 12.85280 0.620224

(0.869606) (1.39548) (0.003762) (0.563675) (1.978860) (0.003281)
k-loss function

20 8.12639 11.55610 0.475007 8.39057 11.14625 0.632324
(0.060951) (0.055257) (0.124962) (0.045291) (0.077415) (0.064082)

40 8.65511 11.90350 0.473682 8.96032 11.76524 0.613973
(0.034259) (0.031770) (0.066413) (0.024691) (0.045818) (0.032918)

80 9.81083 12.35396 0.467550 9.52009 12.38625 0.604746
(0.018226) (0.018009) (0.033605) (0.012878) (0.026114) (0.016327)

Table 9: B.Es and P.Rs under MP.
(λ1, λ2, p1) = (0.10, 12, 0.45) (λ1, λ2, p1) = (0.10, 12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 0.104237 12.80440 0.516808 0.099400 11.91620 0.662751

(0.000299) (3.307201) (0.011585) (0.000205) (4.291850) (0.010368)
40 0.093458 12.61541 0.508961 0.095131 12.86970 0.660457

(0.000128) (1.878070) (0.006318) (0.000098) (2.72645) (0.005635)
80 0.093040 12.59690 0.504634 0.099615 12.78067 0.65870

(0.000065) (0.992395) (0.003309) (0.000048) (1.612500) (0.002946)
k-loss function

20 0.099271 11.92880 0.504302 0.101388 11.85390 0.654071
(0.056305) (0.045977) (0.100419) (0.042091) (0.063488) (0.053432)

40 0.09396 12.9666 0.502381 0.095064 12.72910 0.63098
(0.029627) (0.023955) (0.052733) (0.021857) (0.033628) (0.027724)

80 0.091209 12.29546 0.501256 0.093928 12.31176 0.62133
(0.015210) (0.012235) (0.027052) (0.011143) (0.017323) (0.013755)

Table 10: B.Es and P.Rs under MP.
(λ1, λ2, p1) = (10, 0.12, 0.45) (λ1, λ2, p1) = (10, 0.12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 9.14349 0.120925 0.419513 9.60061 0.124249 0.56546

(2.251210) (0.000331) (0.011297) (1.880070) (0.000485) (0.011399)
40 9.23950 0.11989 0.42516 9.82321 0.120417 0.56834

(1.520270) (0.000157) (0.006093) (1.119880) (0.000215) (0.006227)
80 10.48410 0.118993 0.439733 10.76850 0.119417 0.58529

(0.828461) (0.000072) (0.003169) (0.640213) (0.000103) (0.003264)
k-loss function

20 9.09923 0.123842 0.40440 9.36116 0.121491 0.554234
(0.056305) (0.045980) (0.152289) (0.042091) (0.063497) (0.081808)

40 9.98107 0.122645 0.421879 10.43161 0.12135 0.554956
(0.029628) (0.023954) (0.081346) (0.02186) (0.033619) (0.042589)

80 10.51401 0.123335 0.439321 10.17339 0.120943 0.555275
(0.015211) (0.012233) (0.042109) (0.011144) (0.017329) (0.021762)
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Table 11: B.Es and P.Rs under HNP.
(λ1, λ2, p1) = (0.1, 0.12, 0.45) (λ1, λ2, p1) = (0.1, 0.12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 0.105918 0.137145 0.509557 0.098450 0.14013 0.668245

(0.000459) (0.000602) (0.012672) (0.000284) (0.000899) (0.011127)
40 0.100613 0.12871 0.488336 0.098591 0.138617 0.664190

(0.000229) (0.000288) (0.007064) (0.000125) (0.000463) (0.006120)
80 0.099884 0.12823 0.477906 0.099875 0.13183 0.65722

(0.000122) (0.000153) (0.003767) (0.000066) (0.000223) (0.000330)
k-loss function

20 0.103914 0.132883 0.492997 0.098706 0.143959 0.661045
(0.079860) (0.065613) (0.117630) (0.053801) (0.096716) (0.056740)

40 0.100417 0.126631 0.479637 0.096926 0.137768 0.656704
(0.042904) (0.036344) (0.066377) (0.026903) (0.050705) (0.030449)

80 0.090126 0.120206 0.479205 0.095139 0.129998 0.65398
(0.020845) (0.019280) (0.034129) (0.013585) (0.027754) (0.015298)

Table 12: B.Es and P.Rs under HNP.
(λ1, λ2, p1) = (1, 1.2, 0.45) (λ1, λ2, p1) = (1, 1.2, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 1.057620 1.284300 0.504983 1.026430 1.38323 0.66699

(0.047775) (0.053174) (0.012746) (0.029657) (0.086231) (0.011204)
40 1.002990 1.26675 0.489816 1.00297 1.37417 0.65957

(0.021704) (0.02980) (0.007035) (0.014489) (0.046812) (0.006215)
80 0.986514 1.25707 0.479164 0.973682 1.33346 0.65331

(0.010515) (0.014785) (0.003809) (0.006896) (0.021813) (0.003328)
k-loss function

20 1.03329 1.27340 0.492286 0.97426 1.43169 0.66226
(0.079696) (0.066334) (0.118614) (0.052452) (0.095498) (0.05629)

40 0.99149 1.27047 0.481961 0.95028 1.34313 0.65690
(0.042656) (0.037025) (0.065629) (0.027101) (0.051853) (0.030575)

80 0.94038 1.19721 0.475805 0.95276 1.29623 0.63943
(0.022797) (0.020553) (0.035469) (0.014515) (0.028519) (0.015539)

Table 13: B.Es and P.Rs under HNP.
(λ1, λ2, p1) = (10, 12, 0.45) (λ1, λ2, p1) = (10, 12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 8.57913 9.88622 0.500944 8.89466 9.35271 0.655973

(2.610720) (2.823820) (0.012932) (2.008291) (3.59721) (0.011749)
40 9.06921 10.74931 0.481933 9.24511 10.50582 0.648517

(1.610440) (1.926290) (0.007203) (1.196021) (2.687681) (0.006553)
80 9.705820 11.53641 0.47178 9.83573 11.64982 0.634880

(1.001070) (1.250031) (0.003893) (0.619937) (1.821741) (0.003427)
k-loss function

20 8.32958 9.85215 0.48777 8.86194 8.99842 0.64393
(0.071460) (0.059791) (0.122091) (0.052413) (0.087606) (0.063768)

40 9.15985 10.75050 0.473142 9.28602 10.45031 0.624652
(0.038853) (0.033029) (0.068366) (0.027532) (0.049513) (0.033815)

80 9.35556 11.71821 0.46751 9.92177 12.23450 0.621553
(0.021005) (0.018572) (0.036733) (0.013671) (0.027962) (0.015927)
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Table 14: B.Es and P.Rs under HNP.
(λ1, λ2, p1) = (0.1, 12, 0.45) (λ1, λ2, p1) = (0.1, 12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 0.096121 10.68431 0.540793 0.097722 9.85081 0.688516

(0.000286) (2.774320) (0.0116544) (0.000215) (3.31084) (0.010065)
40 0.097104 11.90812 0.501625 0.098664 11.33812 0.67825

(0.000129) (1.751123) (0.006348) (0.000098) (2.25579) (0.005516)
80 0.098902 12.36352 0.491149 (0.953057) 12.61030 0.662638

(0.000061) (0.953057) (0.003318) (0.000047) (1.407890) (0.002924)
k-loss function

20 0.0955526 10.53412 0.528768 0.092928 9.77241 0.680402
(0.063445) (0.050620) (0.092002) (0.045959) (0.072687) (0.047985)

40 0.092924 11.79810 0.515174 0.092224 11.37572 0.673924
(0.031492) (0.025159) (0.050402) (0.022856) (0.036040) (0.025758)

80 0.092974 12.53970 0.507803 0.092562 12.56853 0.670402
(0.015686) (0.012541) (0.026438) (0.011396) (0.017941) (0.013366)

Table 15: B.Es and P.Rs under HNP.
(λ1, λ2, p1) = (10, 0.12, 0.45) (λ1, λ2, p1) = (10, 0.12, 0.60)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 9.528260 0.11130 0.442311 9.80686 0.11439 0.590134

(2.745210) (0.000306) (0.011576) (2.13478) (0.000467) (0.011352)
40 9.83054 0.114079 0.447209 9.99308 0.115369 0.59738

(1.64125) (0.000153) (0.006185) (1.249880) (0.000224) (0.006221)
80 10.62651 0.119944 0.448934 10.63520 0.117354 0.59898

(0.880273) (0.000075) (0.003196) (0.639962) (0.000102) (0.003264)
k-loss function

20 9.23926 0.11498 0.42763 9.66601 0.112524 0.57932
(0.063445) (0.050625) (0.139727) (0.045959) (0.072722) (0.074658)

40 10.4172 0.11583 0.42932 10.48332 0.117519 0.568093
(0.031494) (0.025158) (0.077796) (0.022856) (0.036041) (0.040621)

80 10.26580 0.119616 0.439939 10.12635 0.118492 0.562004
(0.015690) (0.012545) (0.041166) (0.011396) (0.017940) (0.02123)

Table 16: B.Es and P.Rs under SRGP.
(λ1, λ2, p1) = (0.1, 0.12, 0.10) (λ1, λ2, p1) = (0.1, 0.12, 0.90)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 0.123120 0.130175 0.110617 0.113788 0.145528 0.952635

(0.000537) (0.000540) (0.003112) (0.000304) (0.000983) (0.018203)
40 0.113798 1.232242 0.109755 0.102914 0.140091 0.936614

(0.000288) (0.000280) (0.001730) (0.000134) (0.000502) (0.009768)
80 0.107202 0.122574 0.109535 0.091690 0.134454 0.908060

(0.000146) (0.000164) (0.000958) (0.000053) (0.000234) (0.004901)
k-loss function

20 0.121472 0.124597 0.106202 0.108939 0.142804 0.941435
(0.073200) (0.061649) (0.035720) (0.045742) (0.101007) (0.103248)

40 0.106447 0.120557 0.106340 0.102529 0.133449 0.925560
(0.042600) (0.035373) (0.017537) (0.025685) (0.057690) (0.052115)

80 0.098012 0.118962 0.108869 0.097899 0.131776 0.916164
(0.021784) (0.018397) (0.008399) (0.014861) (0.034645) (0.025686)



Bayesian Inference of Mixture of two Rayleigh Distributions: A New Look 61

Table 17: B.Es and P.Rs under MP.
(λ1, λ2, p1) = (0.1, 0.12, 0.1) (λ1, λ2, p1) = (0.1, 0.12, 0.90)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 0.116245 0.136268 0.114574 0.105892 0.153844 0.964973

(0.000432) (0.000562) (0.002987) (0.000271) (0.000966) (0.016919)
40 0.101305 0.130895 0.114377 0.102999 0.144231 0.961167

(0.000215) (0.000285) (0.001652) (0.000118) (0.000497) (0.009425)
80 0.099404 0.128429 0.113780 0.091432 0.139408 0.953427

(0.000107) (0.000148) (0.000882) (0.000051) (0.000227) (0.004772)
k-loss function

20 0.116934 0.134636 0.110546 0.106838 0.150683 0.949959
(0.067402) (0.058094) (0.031147) (0.039625) (0.091032) (0.094836)

40 0.107934 0.125204 0.110349 0.098675 0.140716 0.947144
(0.041281) (0.033657) (0.016793) (0.024918) (0.051476) (0.048098)

80 0.101593 0.120876 0.108915 0.098063 0.136228 0.932468
(0.024216) (0.020117) (0.008639) (0.012480) (0.028386) (0.023670)

Table 18: B.Es and P.Rs under HNP.
(λ1, λ2, p1) = (0.1, 0.12, 0.10) (λ1, λ2, p1) = (0.1, 0.12, , 0.9)

n λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

squared error loss function
20 0.108036 0.134402 0.121323 0.099435 0.141531 1.002368

(0.000496) (0.000578) (0.003017) (0.000275) (0.000971) (0.016691)
40 0.102625 0.126136 0.116270 0.099577 0.140003 0.996285

(0.000247) (0.000276) (0.001682) (0.000121) (0.000500) (0.009180)
80 0.101882 0.125665 0.113787 0.100874 0.133148 0.985830

(0.000132) (0.000147) (0.000897) (0.000064) (0.000241) (0.000495)
k-loss function

20 0.105992 0.130225 0.117380 0.099693 0.145399 0.991568
(0.086249) (0.062988) (0.028007) (0.052187) (0.104453) (0.085110)

40 0.102425 0.124098 0.114199 0.097895 0.139146 0.985056
(0.046336) (0.034890) (0.015804) (0.026096) (0.054761) (0.045674)

80 0.091929 0.117802 0.114096 0.096090 0.131298 0.980970
(0.022513) (0.018509) (0.008126) (0.013177) (0.029974) (0.022947)

Numerical results of the simulation study presented in Tables 1− 18 reveal interesting properties of the
proposed Bayes estimators. The estimated values of the parameters converge to the true values, and amounts
of posterior risks tend to decrease for lager choice of sample size. Another interesting point concerning the
posterior risks of the estimates of (λ1, λ2) is that increasing (decreasing) the proportion of the component
in mixture reduces (increases) the amount of the posterior risk for the estimates of λ1.In addition, when
p1 = 0.45 and values of λi are relatively smaller i.e. for (λ1, λ2) = (0.1, 0.12) and (1, 1.2) , the Bayes estimates
assuming Maxwell prior are more precise than the rest of the informative priors, as the averaged posterior
risks of the mixture components are smaller as compared to those under other priors. On the other hand,
for quite larger values of parameters, i.e. for (λ1, λ2) = (10, 12) , the estimates under Maxwell prior are
again observed to be more efficient than those under square root gamma and half normal priors, but degree
of over/under estimation is higher under Maxwell prior. Moreover, in case where we take the significantly
different values of the parameters, i.e. for (λ1, λ2) = (0.1, 12) ,the estimates under square root gamma (with
few exceptions) perform better than those under Maxwell and half normal priors. When p1 = 0.6, the
estimates under Maxwell prior using both loss functions are found to be the most efficient for relatively
closer values of the parameters with few exceptions. And when the values of the parameters representing
both components are assumed to be quite different, the square root gamma prior performs better than other
priors. So, we can conclude that for the relatively closer choice of the parametric values, the estimates under
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Maxwell prior are the best under both loss functions with few exceptions. Similarly, for highly variant choice
of the parametric values for the two components of the mixture, the performance of square root gamma prior
seems to better than other priors.

The Bayes estimates of the lifetime parameters are over/under-estimated but the size of over/under-
estimation is greater under squared error loss function. On the other hand, estimates of the mixing proportion
parameter have mixed behavior sometimes over-estimated and sometimes under-estimated but the Bayes
estimates under half normal prior are much closer to the true parametric value.

In comparison of loss functions it has been assessed that the magnitudes of posterior risks under squared
error loss function are smaller than those under k-loss function for smaller choice of true parametric values.
However, for larger values of the true parametric values, the k-loss function produces the better results. It
should also be mentioned here that the squared error loss function produces better convergence than k-loss
function. It may also be mentioned here that because of space restriction, results for all the variations in
the parameters are not shown here. Only selected results are included.

6 Real Data Analysis

In this section, we have analyzed real data sets to illustrate the methodology discussed in the previous
sections. In order to show the usefulness of the proposed mixture model, we applied the findings of the
paper to the survival times (in years) of a group of patients given chemotherapy treatment; the data has
been reported by Bekker et. al. [21]. We have used the Kolmogorov-Smirnov and chi square tests to
see whether the data follow the Rayleigh distribution. These tests say that the data follow the Rayleigh
distribution at 5% level of significance with p-values 0.2170 and 0.2681 respectively. The data consisting of
46 survival times (in years) for 46 patients are:

Table 19: Survival times (in years) of patients given chemotherapy treatment
0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529,
0.534, 0.540, 0.570, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589,
2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033

Now we consider the case when the data are doubly type II censored. Data are randomly grouped into
two sets using probabilistic mixing for p1 = 0.60.

Table 20: Doubly censored mixture real life data regarding survival times of patients given chemotherapy
treatment

Population-I Population-II
0.197, 0.534, 0.115, 0.296, 0.121, 0.466, 0.529, 1.447, 0.863, 0.260, 1.099, 0.501, 0.458, 0.641, 0.334,
0.132, 0.395, 0.696, 2.825, 3.658, 3.978, 3.743, 2.343, 2.178, 0.570, 0.164, 0.203, 0.282, 0.047, 1.271,
0.540, 4.003,1.553, 1.485, 2.83, 2.416 1.589, 1.326, 0.841, 2.444

The following characteristics are extracted from censored data for the analysis of mixture model:
p1 = 0.6
n = 40, r = 5, r1 = 2, r2 = 3, n − r = 9, s = 36, s1 = 22, s2 = 14, n1 = 24, n2 = 16, xr1 = 0.121,

xs1 = 3.978, xr2 = 0.203, xs2 = 2.444, s1
i=r1

x2
1(i) = 84.6037 and s2

i=r2
x2

2(i) = 15.2833.
The similar methodology has been employed when p1 = 0.45.
n = 40, r = 5, r1 = 2, r2 = 3, n − r = 9, s = 36, s1 = 16, s2 = 20, n1 = 18, n2 = 22, xr1 = 0.121,

xs1 = 3.658, xr2 = 0.164, xs2 = 3.978, s1
i=r1

x2
1(i) = 48.704 and s2

i=r2
x2

2(i) = 37.1999.
Bayes estimates are obtained assuming informative priors under squared error loss function, and k-loss

function.
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Table 21: B.Es and P.Rs under squared error loss function, and k-loss function for real data set.
Priors squared error loss function k-loss function
p1 = 0.6 λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

Square root prior 0.392190 0.980312 0.665364 0.389475 0.843369 0.660755
(0.001681) (0.016213) (0.005625) (0.022397) (0.035861) (0.027171)

Maxwell Prior 0.39643 0.996689 0.664565 0.394281 0.988384 0.660083
(0.001680) (0.016199) (0.005436) (0.02186) (0.033752) (0.024248)

Half Normal Prior 0.387845 0.962886 0.678225 0.385647 0.954269 0.673898
(0.001683) (0.016202) (0.005553) (0.022862) (0.036283) (0.025765)

p1 = 0.45 λ̂1 λ̂2 p̂1 λ̂1 λ̂2 p̂1

Square root prior 0.405184 0.74061 0.502853 0.401992 0.734712 0.49585
(0.002667) (0.008064) (0.006596) (0.031881) (0.032240) (0.056882)

Maxwell Prior 0.39419 0.749978 0.507659 0.391150 0.74476 0.500983
(0.002400) (0.007449) (0.006380) (0.031212) (0.028121) (0.053662)

Half Normal Prior 0.382825 0.731263 0.52014 0.379689 0.725883 0.513596
(0.002599) (0.007484) (0.006417) (0.033171) (0.029756) (0.051374)

The findings from the analysis are in close accordance with those of simulation study, suggesting the
preference of Maxwell prior along with squared error loss function.

7 Conclusions

In this article, the Bayesian inference of the mixture of Rayleigh model under doubly type II censoring has
been considered assuming informative priors. The simulation study has displayed some interesting properties
of the Bayes estimates. It is noted in each case the posterior risks of estimates of lifetime parameters
are reduced as the sample size increases. The results indicated that for the relatively closer choice of the
parametric values, the estimates under Maxwell prior are the best for almost all cases. On the other hand, for
significantly different choice of the parametric values for the two components of the mixture, the performance
of square root gamma prior seems to better than other priors. The performance of the squared error loss
function is better than k-loss function for smaller choice of true parametric values. However, for larger values
of the true parametric values, the k-loss function produces the better results. It should also be mentioned
here that the squared error loss function produces better convergence than k-loss function for almost all the
cases. The real life example further strengthened the findings from the simulation study. The study can
further be extended by considering some other censoring techniques, and using some more flexible probability
distribution.
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