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Abstract. In this paper, we present wide-ranging families of subdivi-
sion schemes for fitting data to subdivision models. These schemes are
constructed by fitting multivariate polynomial functions of any degree to
different types of data by least squares techniques. Moreover, we also
present the closed analytic expressions of the families of schemes for fit-
ting data in 2 and 3 dimensional spaces. The schemes for fitting 3D data
are non-tensor product schemes. Furthermore, it is straightforward by
using our framework to construct schemes for fitting data in higher di-
mensional spaces. The performance of such schemes is demonstrated on
examples of curves and surfaces.

AMS (MOS) Subject Classification Codes:65D10; 65D17; 68W25; 93E24
Key Words: Subdivision schemes; Approximation; Least squares; Non-tensor product

schemes; Approximating schemes.

1. INTRODUCTION

One of the most significant topics in the physical sciences is fitting data to subdivision
models. The subdivision method is computational methods of linear and nonlinear fitting
of smooth curves and surfaces to data. In addition, subdivision methods for fitting different
types of data are still a current research topic in computer science. Subdivision scheme is
an algorithm to generate smooth curve and surface as a sequence of successively refine
polygonal mesh. This algorithm has sparse system of matrices [9] therefore problems can
be handle easily.
A univariatea-ary subdivision schemeS which maps the coarse polygonfk={fk

i }i∈Z to
refine polygonfk+1={fk+1

i }i∈Z at next refinement level is defined by

fk+1
ai+µ =

∑

j∈Z
γaj+µfk

i−j , µ = 0, 1, ..., a− 1,
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where{..., γi−1, γi, γi+1, ...} is called the mask anda is the arity (number of points in-
serted between two consecutive points) of scheme. The above rule can also be expressed
asfk+1 = Sfk. A necessary condition for the uniform convergence [3] ofa-ary subdivi-
sion scheme is ∑

j∈Z
γaj+µ = 1, µ = 0, 1, ..., a− 1.

Schemes are different due to their mask (i.e. the values ofγaj+µ), complexity (i.e. varia-
tion of j) and arity (i.e. the value ofa: a = 2, 3, .., stands for binary, ternary and so on).
The concept of computation of the mask by polynomial interpolation has been initiated by
Deslauriers and Dubuc [5] in 1989. They have presented even-pointa-ary schemes. After
that different approaches were introduced to compute mask. Very recently, Dyn et al. [7]
have presented univariate binary subdivision schemes whose mask is computed based on
least squares minimization. But they have only presented closed analytic expressions of
the univariate binary schemes. A recent paper [8] computes refined values by locall1 opti-
mization rather than by local least squares. They also presented closed analytic expressions
of the univariate and bivariate binary schemes. These schemes are locally supported. Lo-
cally supported approximate identities on the unit ball have also been discussed by Akram
et al. [1]. Recently, in 2015, Aslam [2] discussed the continuity of the schemes.
In this paper, we present closed analytic expressions of the families of2n- and(2n + 1)-
point a-ary approximating schemes for fitting 2D data. Moreover, we also present closed
analytic expressions of the families of4n2- and(2n+1)2-point non-tensor product binary
approximating schemes for fitting 3D data. These schemes are constructed by fitting uni-
variate and bivariate polynomial functions of degree three to different types of data by least
squares techniques. It is unambiguous to find schemes for fitting higher dimensional data
by using our framework.

2. UNIVARIATE CASE: FAMILY OF a-ARY SCHEMES

We first consider the univariate polynomial function of degree 3 to determine the best
function to fit the data based on least squares then we construct2n- and(2n + 1)-point
a-ary schemes. A polynomial function of degree 3 is

f(xr) = η0f0(xr) + η1f1(xr) + η2f2(xr) + η3f3(xr), (2. 1)

where the monomials are defined as

f0(xr) = 1, f1(xr) = xr, f2(xr) = x2
r, f3(xr) = x3

r.

The polynomial function ( 2. 1 ) with respect to the observations(xr = r, fr) for r =
−n + 1, . . . n, andn > 3 can be written as

fr = f(r) = η0 + η1r + η2r
2 + η3r

3. (2. 2)

Now determine the values of unknown parametersη’s in ( 2. 2 ) to make the sum of
squares of residuals as minimum. A residual has been defined as the difference between
the observed value and the corresponding value of the function, that is

R =
n∑

r=−n+1

[fr − η0 − η1r − η2r
2 − η3r

3]2. (2. 3)

Differentiating R with respect toη’s, setting each of the four equations to0 and after
solving the equations, we get the values ofη0, η1, η2 andη3. By substitutingr = 2q+1

2a in (
2. 2 ) and then putting the values ofη’s in ( 2. 2 ), by changing notations, we get2n-point
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a-ary approximating iterative scheme based on fitting polynomial function of degree 3 with
monomial basis:

fk+1
ai+q = 1

φn

n∑
r=−n+1

pr,nfk
r , q = 0, 1, ..., a− 1, (2. 4)

whereφn = 8n
(
n2 − 1

) (
4n2 − 1

) (
4n2 − 9

)
a3,

pr,n = 280
{(

3n2 − 3
)
a3 + ω

(−6n2 + 11
)
a2 − 15ω2a + 10ω3

}
r3 +

{(−240n4−
480n2 + 720

)
a3 + 600ω

(
3n2 − 5

)
a2 + 360ω2

(
2n2 + 13

)
a− 4200ω3

}
r2

+
{(−360n4 + 960n2 − 600

)
a3 + 200ω

(
6n4 − 18n2 + 11

)
a2 + 600ω2a(

3n2 − 5
)− 280ω3

(
6n2 − 11

)}
r + 24

{(
6n4 − 5n2 − 6

)
a3 − 5ω

(
3n2−

5) a2 − 10ω2
(
n2 + 3

)
a + 35ω3

} (
n2 − 1

)

andω = q + 1
2 .

2.1. Alternatives and variants. Thus far in this brief, we have focused our concentration
to introduce scheme based on fitting of a polynomial function of degree 3 to2n obser-
vations in two-dimensional space by least squares procedure. A further alternative can be
obtain by fitting polynomial function of degree 3 to2n+1 observations. For example, for a
slight variation on the scheme ( 2. 4 ), we suggest the replacement ofr = 2q+1

2a by r = q
2a ,

q = ±1,±3,±5, ...,±(a − 1) and again byr = q
2a , q = 0,±1,±3,±5, ...,±(a − 1)

respectively in ( 2. 2 ), summation fromr = −n + 1...n by r = −n...n in ( 2. 3 )
and adopting the same procedure as above, we get following(2n + 1)-point evena-ary
approximating subdivision scheme

fk+1
ai+j = 1

ψn

n∑
r=−n

br,nfk
r , j = 0, 1, ..., (a− 1) (2. 5)

and(2n + 1)-pointodda-ary approximating subdivision scheme

fk+1
ai+j = 1

ψn

n∑
r=−n

br,nfk
r , j = 0, 1, ..., (a− 1), (2. 6)

whereψn = 8n (n + 2) (2n + 3)
(
n2 − 1

) (
4n2 − 1

)
a3 and

br,n = −35q
(
12a2n2 + 12a2n− 4a2 − 5q2

)
r3 + 30a (n− 1) (n + 2)

(
4a2n2+

4a2n− 3q2
)
r2 + 5q

(
60a2n4 + 120a2n3 − 21q2n2 − 21nq2 − 60a2n+

7q2 + 20a2
)
r + 6na (n + 2)

(
n2 − 1

) (
12a2n2 + 12a2n− 4a2 − 5q2

)
.

A further generalization to yield schemes of the least squares procedure can be made by
fitting polynomial function of degree less or greater than three. It is to be noted that the
existing even-point approximating schemes are special cases of the scheme ( 2. 4 ) e.g. for
a = 2 andn = 2, in ( 2. 4 ), we get 4-point binary approximating scheme of Dyn et al. [6].

It is amazing and astonishing that by changing monomial basis with Gram’s, Laguerre,
Legendre, Chebyshev and Hermite polynomials respectivley in ( 2. 1 ) and by adopting the
same procedure, we get exactly the same schemes defined in ( 2. 4 )-( 2. 6 ).

2.2. Basic limit functions. Since for eachq = 0, 1, ..., a− 1,
n∑

r=−n+1

(
1

φn

)
pr,n = 1 and

for eachq = 0, ±1, ±3, ±5, ...,±(a − 1),
n∑

r=−n

(
1

ψn

)
br,n = 1 so the basic conditions

for the schemes, defined in ( 2. 4 )-( 2. 6 ), to be convergent are satisfied. Since every
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(a) Binary (b) Ternary (c) Quaternary

FIGURE 1. (a)-(c) show the basic limit functions of proposed 4-point
binary, ternary and quaternary subdivision schemes.

convergent subdivision scheme S is associated with a basic limit function (BLF), defined
as φS = S∞f0

i wheref0
i be the initial data such thatf0

i = 1, for i = 0 otherwise
f0

i = 0, then it is necessary to compute the support width of2n- and(2n + 1)-pointa-ary
approximating schemes. Generally the support of the scheme is also the support of its basic
limit function and vice versa. The following prepositions can be easily proved by using the
approach of Beccari et al. [4].

Theorem 2.3.The BLFϕa
2n of2n-pointa-ary schemes have the support widthκ = 2an−1

a−1 ,

n ≥ 2 which implies that it vanishes outside the interval
[
− 2an−1

2(a−1) ,
2an−1
2(a−1)

]
.

Theorem 2.4. The BLFϕa
2n+1 of (2n + 1)-point a-ary schemes have the support width

κ = (2n+1)a−1
a−1 , which implies that it vanishes outside the interval

[
− (2n+1)a−1

2(a−1) ,

(2n+1)a−1
2(a−1)

]
.

It is observed from above prepositions that arity and support width are inversely propor-
tional to each other. The BLF of proposed 4-point binary, ternary and quaternary schemes
are depicted in Figure 1(a), 1(b) and 1(c) respectively.

2.5. Comparison and performance. The performance of different arity schemes is shown
in Figures 2 and 3. Figure 2(a)-(c) show the results of binary, ternary and quaternary
schemes at first iteration. This figure also show the functioning and operational behav-
iour of these schemes. Figure 2(d)-(f) show the limit curves shaped by binary, ternary and
quaternary subdivision schemes respectively. The comparison of proposed schemes with
the local least squares approach and B-spline scheme is shown in Figure 3. In this figure
profile of car is produced by three different approaches. From this figure, we see that cubic
polynomial generated by ordinary least squares is not fit for modeling car profile. It just
shows the overall trend of the data/polygon. The proposed 4-point binary scheme gen-
erated by least squares based cubic polynomial is more consistent with the data/polygon
comparative to B-spline.

3. BIVARIATE CASE: NON-TENSOR PRODUCT SCHEMES

In this section, we generalize our representation of previous section to the 3-dimensional
case that is to construct a4n2-point non-tensor product binary scheme based on least
squares by fitting bivariate cubic polynomial function to data, we generalize the symmetric
grid procedure i.e.xr = r, ys = s, −n + 1 6 r, s 6 n, n > 1. So a general bivariate
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(a) Binary (1st level) (b) Binary (3rd level)

(c) Ternary (1st level) (d) Ternary (3rd level)

(e) Quaternary (1st level) (f) Quaternary (3rd level)

FIGURE 2. (a), (c) and (e) show the behavior at first level/iteration
while (b), (d) and (f) show the limit curves after third iteration of pro-
posed 4-point binary, ternary and quaternary subdivision schemes re-
spectively.

polynomial function of degree three with respect to the observations(xr = r, ys = s, fr,s)
can be written as

fr,s = f(r, s) = β1 + β2r + β3s + β4r
2 + β5rs + β6s

2 + β7r
3 + β8r

2s

+β9rs
2 + β10s

3.

Since the method of least squares calls for the selection of polynomial that minimizesR,
the sum of the squares of differences between observed valuefr,s and the corresponding



130 Ghulam Mustafa and Mehwish Bari

(a) Ordinary least squares

(b) B-spline

(c) 4-point binary scheme

FIGURE 3. Dots show the initial polygon whereas (a) shows the least
squares approach, (b) shows the behavior of B-spline and (c) shows the
performance of proposed 4-point binary scheme.

exact valuef(r, s). So by differentiating

R =
n∑

r=−n+1

n∑
s=−n+1

[fr,s − (β1 + β2r + β3s + β4r
2 + β5rs + β6s

2 + β7r
3

+β8r
2s + β9rs

2 + β10s
3)]2,

with respect toβ1, β2,. . . , β10 and then setting them to 0, we get the ten normal equations.
Solution of these equations gives the values of unknowns. By substituting these values
in general bivariate polynomial function of degree three with variablesx andy and then
simplifying it, we get

f(x, y) =
1
λ

[
n∑

r=−n+1

{
n∑

s=−n+1

(
β1 + β2x + β3y + β4x

2 + β5xy + β6y
2 + β7x

3+

β8x
2y + β9xy2 + β10y

3
)
fr,s

}]
, (3. 7)

where

β1 = 9450r3 + (1890s− 19845) r2 +
(
1890s2 − 3024s− 10773

)
r + 9450s3−

19845s2 − 10773s + 35154,
β2 = −13650r3 + (1890s + 14805) r2 − (

3780s2 − 378s− 31731
)
r + 1890s2−

3024s− 10773,
β4 = −15750r3 − (1890s− 29295) r2 + (1890s + 14805) r + 1890s− 19845,
β5 = (−3780s + 1890) r2 − (

3780s2 − 10584s− 378
)
r + 1890s2 + 378s− 3024,

β7 = 1050 (2r − 1)
(
5r2 − 5r − 9

)
,

β8 = 1890 (2s− 1)
(
r2 − r − 1

)
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and

λ = 4 (n− 1) (2n + 3) (2n− 3) (n + 1) n2 (2n− 1)2 (2n + 1)2 . (3. 8)

By replacingr by s ands by r, we can getβ3 from β2, β6 from β4, β9 from β8 andβ10

from β7.
Now by evaluating polynomial ( 3. 7 ) at particular points( 1

4 , 1
4 ), ( 3

4 , 1
4 ), ( 1

4 , 3
4 ), ( 3

4 , 3
4 ),

and then by changing notations we get4n2-point non-tensor product binary approximating
scheme with four rules:f( 1

4 , 1
4 ) = fk

2i,2j , f( 3
4 , 1

4 ) = fk
2i+1,2j , f( 1

4 , 3
4 ) = fk

2i,2j+1 and
f(3

4 , 3
4 ) = fk

2i+1,2j+1. As an example forn = 2, we get 16-point non-tensor product
binary scheme. The performance of this scheme is shown in Figure 4(a)-4(e).

3.1. Alternatives and variants. A further slight variant of4n2-point scheme can be made
based on fitting of bivariate polynomial function of degree three to(2n+1)2 observations,
i.e. (xr = r, ys = s, fr,s) for −n 6 r, s 6 n, n > 1, by least squares procedure. By
adopting the similar approach, we get

f (x, y) =
1
$

[
n∑

r=−n

{
n∑

s=−n

(
β1 + β2x + β3y + β4x

2 + β5xy + β6y
2 + β7x

3+

β8x
2y + β9xy2 + β10y

3
)
fr,s

}]
(3. 9)

where

β1 = (n− 1) (n + 2) n2 (n + 1)2
(
14n2 + 14n− 15r2 − 15s2 − 3

)
,

β2 = 5rn (n + 1)
{
18n4 + 36n3 − (9s2 + 21r2 + 3)n2 − (21r2 + 9s2 + 21)n

+7r2 + 18s2 + 5
}

,
β4 = −15n (n− 1) (n + 1) (n + 2)

(
n2 + n− 3r2

)
,

β5 = 9rs (n− 1) (n + 2) (2n− 1) (2n + 3) ,
β7 = −35rn (n + 1)

(
3n2 + 3n− 5r2 − 1

)
,

β8 = −45s (n− 1) (n + 2)
(
n2 + n− 3r2

)

and

$ = (n− 1) (n + 2) (2n− 1) (2n + 3) n2 (n + 1)2 (2n + 1)2 .

By replacingr by s ands by r, we can getβ3 from β2, β6 from β4, β9 from β8 andβ10

from β7.
Now by evaluating polynomial ( 3. 9 ) at particular points( 1

4 , 1
4 ), ( 3

4 , 1
4 ), ( 1

4 , 3
4 ), ( 3

4 , 3
4 ),

and then by changing notations we get(2n+1)2-point non-tensor product binary approxi-
mating scheme. For example forn = 2, we get 25-point non-tensor product binary scheme.
The presentation of this scheme is depicted in Figure 5.

3.2. Multivariate case: volumetric schemes.A further generalization can be made based
on fitting of a multivariate polynomial function of arbitrary degree to the observations.
For example, one can get volumetric subdivision scheme for solid modelling by fitting
trivariate polynomial functionf(x, y, z) to the observations(xr = r, ys = s, zt = t), for
−n + 1 6 r, s, t 6 n or−n 6 r, s, t 6 n, t > 1 by least squares method.
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(a) Initial mesh (b) First level

(c) Second level (d) Third level

(e) Limit surface

FIGURE 4. (a) Shows the initial mesh whereas (b)-(d) show the results
after first, second and third subdivision levels (e) shows limit surface
produced by 16-point non-tensor product binary scheme.
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(a) Initial mesh (b) First level

(c) Second level (d) Third level

(e) Limit surface

FIGURE 5. (a) Shows the initial mesh whereas (b)-(d) show the results
after first, second and third subdivision levels (e) shows limit surface
produced by 25-point non-tensor product binary scheme.
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3.3. Conclusion. The closed analytic expressions of the families ofa-ary schemes for
curve fitting have been presented. Moreover, the non-tensor product version of binary
schemes with closed analytic form has been also introduced. Our proposed framework is
easy to get variants and generalizations of these schemes by fitting univariate, bivariate
and multivariate polynomial functions of any degree. The visual performances of these
schemes have been checked by numerical examples.
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