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Abstract. To find the minima of an energy functional, is a well known
problem in physics and engineering. Sobolev gradients have proven to
be affective to find the critical points of a functional. Here, we introduce
a similar approach to find the solution of nonlinear Klein Gordon equa-
tion (NKGE) in a finite-element setting. The results are compared using
Euclidean, weighted and unweighted Sobolev gradients. We also com-
pare the results with Newton’s method for a test problem and show that
the presented method is better than Newton’s method in this case.
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1. INTRODUCTION

In recent years, the most of the universe problems can be described by nonlinear evo-
lution equations. These equations play a vital role in different fields, such as solid state
physics, plasma physics, fluid mechanics, optical fibers, geochemistry and chemical kine-
matics. These problems are difficult to solve both analytically and numerically. Recently,
various numerical algorithms have been developed for approximation of solutions of non-
linear problems. One of the example is the Sobolev gradient method. Sobolev gradients
have been utilized to solve linear and nonlinear singular differential equations [12]. In
some cases, better results can be obtained by choosing appropriate weights in the con-
struction of the Sobolev space in which steepest descent occurs. Newton’s method fails to
converge in few cases for which the Sobolev gradient method converges. The Sobolev gra-
dient approach has been successfully used for the solution of NKGE in a Finite-difference
setting [18]. The purpose of this paper is to give a related approach in a finite-element
setting for higher dimensional NKGE.
Sobolev gradient methods [15] have been used in finite-difference [12] and finite-element
settings [2] for the solution of partial differential equations (PDEs). Successful applica-
tions of the Sobolev gradient method can be seen in materials science [24, 25, 19, 26, 3],
physics [8, 9, 10, 5, 14, 13], geometric modelling [22], image processing [20, 21] and
Differential Algebraic Equations (DAEs)[16]. A detailed discussion of Sobolev gradient
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methods can be found in [15]. This reference contains existence and sufficient conditions
for convergence of the solution. The reader can refer to [23] for further applications and
open problems in this field.
Computational work was done on an Intel(R) 3 GHz Core(TM)2 Duo machine with1 GB
RAM. We used the open sources FreeFem++ [7] software for the solution of PDEs. All
the graphs are drawn using gnuplot software.

2. SOBOLEV GRADIENT APPROACH

The concept of Sobolev gradient and steepest descent is discussed in this section. A de-
tailed description of Sobolev gradients can be found in [15]. The gradient∇F of a real
valuedC1 functionF onRn wheren is a positive integer, is given by

lim
t→0

1
t
(F(x + th)−F(x)) = F ′(x)h =< h,∇F(x) >Rn , x, h ∈ Rn. (2. 1)

Let < ., . >S be an inner product onRn different from the standard inner product<
., . >Rn . Then there is a function∇sF : Rn → Rn such that

F ′(x)h =< h,∇SF(x) >S x, h ∈ Rn. (2. 2)

The linear functionalF ′(x) can be represented using any inner product onRn. Let∇SF
be the gradient ofF with respect to the inner product< ., . >S . Considering the linear
transformationA : Rn → Rn, these two inner products can be related as follows:

< x, y >S=< x, Ay >Rn

for x, y ∈ Rn and a reflection leads to

(∇SF)(x) = A−1∇F(x), x ∈ Rn. (2. 3)

For everyx ∈ Rn, there is an inner product< ., . >x on Rn. For x ∈ Rn, we define
∇xF : Rn → Rn as follows:

F ′(x)h =< h,∇xF(x) >x for x, h ∈ Rn. (2. 4)

There is a variety of gradients forF depending upon the choice of metric and these gra-
dients have quite different numerical properties. Such a gradient of a functional which is
defined in a finite or an infinite dimensional Sobolev space, is called a Sobolev gradient.
Sobolev spaces are discussed in detail in [1]. Steepest descent can be categorized into two
types: discrete steepest descent and continuous steepest descent.

Let ∇SF be the gradient of a real-valuedC1 functionF on a Hilbert spaceH with
respect to the inner product< ., . >S defined onH. Discrete steepest descent can be
regarded as a process of constructing a sequence{xk} such thatx0 is given and

xk = xk−1 − δk(∇F)(xk−1), k = 1, 2, .... (2. 5)

whereδk is chosen for eachk so that it minimizes, if possible,

F(xk−1 − δk(∇F)(xk−1)). (2. 6)
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Continuous steepest descent is a process of constructing a functionz : [0,∞) → H such
that

dz

dt
= −∇F(z(t)), z(0) = zinitial. (2. 7)

z(t) → z∞ under suitable conditions onF , whereF (z∞) is the minimum value ofF .
The limiting case of discrete steepest descent can be treated as continuous steepest descent
and, therefore, we can consider ( 2. 5 ) as a numerical scheme for approximating solutions
to ( 2. 7 ). Continuous steepest descent gives a theoretical starting point to prove the
convergence of discrete steepest descent.
According to ( 2. 5 ), we findu = limk→∞ xk such that

F(u) = 0 or (∇SF)(u) = 0 (2. 8)

and for ( 2. 7 ), we findu = limt→∞ zt such that ( 2. 8 ) holds.
We constructF by a variational principle to solve a partial differential equation (PDE),
and we have a functionu that satisfies the differential equation if and only ifu is a critical
point ofF . In these situations, we use steepest descent minimization process to find a zero
of the gradient ofF . In our case

F(u) =
∫

Ω

δ2
t γ

uk+1

k + 1
+ (1 + βδ2

t )
u2

2
− 2f1u + f2u (2. 9)

− δ2
t h(x, t)u− δ2

t

α

2
|∇u|2

Note that other functionals are also possible and one of the prime example in this direction
is the least square formulation. Such functions are given in [19, 13]. In this paper, we only
show results from whichF comes by a variational principle as the result in this setting
are optimal [19]. The existence and convergence ofz(t) → z(∞) for different linear and
nonlinear forms ofF is discussed in [15].
We used only discrete Sobolev spaces in this paper and finite dimensional versions of
functionalsF are considered for numerical computation.

3. THE NONLINEAR KLEIN-GORDON EQUATION

Consider the problem

∂2u

∂t2
+ α∇2u + βu + γuk = f(x, t), x ∈ Ω = [a, b], 0 < t ≤ T (3. 10)

with initial conditions
{

u(x, y, 0) = h1(x), x ∈ Ω
ut(x, y, 0) = h2(x), x ∈ Ω,

and Dirichlet boundary conditions

u(x, y, t) = g(x, y, t), x ∈ ∂Ω, 0 < t ≤ T,

whereα, β, γ andδt are real constants, andf, h1, h2, g are known functions whileu
is unknown. Also we have quadratic nonlinearity fork = 2 and cubic nonlinearity for
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k = 3.

This equation describes the motion of scalar spinless particles. It has some useful appli-
cations in plasma physics, combined with Zakharov equation representing the interaction
of the ion acoustic wave and Langmuir wave in a plasma [17], in astrophysics interacting
with Maxwell equation describing a minimally coupled charged boson field to a pherically
symmetric space time [4]. Mathematician did a series study for the solution of NKGE. J.
Ginibre et al. [6] studied the Cauchy problem for a class of NKGE by a contraction method
and find the existence and uniqueness of strongly continuous global solutions. Different
numerical algorithms were developed for the solution of NKGE in last 50 years. Strauss
et al. [27] proposed a finite difference scheme for the one dimensional NKGE. Numerical
treatment for damped NKGE, based on finite element approach is studied in [11, 28].

The aim of the present paper is to extend the Sobolev gradient method to find the so-
lution of NKGE. The method is very simple to apply and can be extended to other kind
of nonlinear evolution equations from mathematical physics. An associated functional is
formed onΩ subject to Dirichlet type of boundary conditions. The functional is given by
( 2. 9 ). In this equationu is the desired solution at timet + δt andf1, f2 are solutions at
time t andt − δt. From now to onwards we denote the functional defined by ( 2. 9 ) with
G(u).

3.1. Gradients and minimization. In steepest descent, the process of minimization speeds
up if we choose a suitable Sobolev space in which the gradient is defined. Mahavier in-
troduced the concept of weighted Sobolev gradients. Following his idea, we define a new
inner product suitable for the functional ( 2. 9 ). A Sobolev spaceH1(Ω) is defined as
follows:

H1(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω), 0 ≤ α ≤ 1} (3. 11)

whereL2 is the Euclidean space (the vector spaceRM equipped with inner product
< u, v >=

∑
i

u(i)v(i)). Also Dα is the weak derivative ofu of orderα andH1(Ω) is a

Hilbert space with norm defined by

‖ u ‖2H1=
∫

Ω

| ∇u |2 + | u |2 . (3. 12)

Keeping in mind Mahavier’s idea of weighted gradients, we define a norm which takes
care ofw = αδt that is affecting the derivative term in ( 2. 9 ). Define a weighted Sobolev
spaceH1,w(Ω) whose norm is

‖ u ‖2H1,w=
∫

Ω

| w∇u |2 + | u |2 . (3. 13)

It can be easily verified, that the weighted Sobolev space with the norm defined by ( 3.
13 ) is a Hilbert space. Now we define a perturbation subspaceL2

0(Ω) of functions in order
to incorporate the Dirichlet boundary conditions as follows:

L2
0(Ω) = {v ∈ L2(Ω) : v = 0 on Γ}, (3. 14)

whereΓ denotes the boundary of the domainΩ. Perturbation subspaces related toH1 and
H1,w areH1

0 = L2
0

⋂
H1 andH1,w

0 = L2
0

⋂
H1,w respectively.
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The idea is to find a functionu that minimizes the energy functional ( 2. 9 ), the gradient
∇G(u) of a functionalG(u) associated with the original problem and to find the zero of the
gradient. We need to define the Fréchet derivative for this purpose. The Fréchet derivative
of G(u) is a bounded linear functionalG′(u) defined as follows:

G′(u)h = lim
θ→0

G(u + θh)−G(u)
θ

for h ∈ H1
0 (Ω). (3. 15)

Using ( 3. 15 ), we get

G′(u)h = lim
θ→0

∫

Ω

δ2
t γ

(u + θh)k+1

k + 1
+ (1 + βδ2

t )
(u + θh)2

2
(3. 16)

−2f1(u + θh) + f2(u + θh) − δ2
t h(x, t)(u + θh)

−δ2
t

α

2
|∇(u + θh)|2 − δ2

t γ
uk+1

k + 1
− (1 + βδ2

t )
u2

2

+2f1u− f2u + δ2
t h(x, t)u + δ2

t

α

2
|∇u|2.

Simplifying the above expression gives

G′(u)h =
∫

Ω

δ2
t γuk + (1 + βδ2

t )u− 2f1 + f2 − δ2
t h(x, t) (3. 17)

+
∫

Ω

αδ2
t∇u.∇h.

Let∇G(u),∇Gs(u) and∇Gw(u) denote the gradients inL2, H1 andH1,w respectively.
Then by using (2) we can write

Ǵ(u)h =< ∇G(u), h >L2=< ∇Gs(u), h >H1=< ∇Gw(u), h >H1,w . (3. 18)

Thus the gradient inL2 is

∇G(u) = δ2
t γuk + (1 + βδ2

t )u− 2f1 + f2 − δ2
t h(x, t)− αδ2

t∇2u.

As Dirichlet boundary conditions are being used in our problem. At the boundaries of the
system,u has fixed values and we desire gradients that zero at the boundary ofΩ. Thus
we shall not use∇G(u). Insteadπ∇G(u) will be used whereπ is a projection which sets
boundary points zero. We use Freefem++[7] which is a freely available software partic-
ularly designed for the solution of partial differential equations using the finite element
method. The software facilitates setting the gradient to zero at the boundary. Therefore, in
order to findπ∇G(u), we solve

π(
∫

Ω

δ2
t γuk + (1 + βδ2

t )u− 2f1 + f2 − δ2
t h(x, t) +

∫

Ω

αδ2
t∇u.∇h) =

π

∫

Ω

∇G(u)h +
∫

Ω

∇∇G(u) · ∇h. (3. 19)

Foru in L2(Ω), we find∇G(u) ∈ L2
0 such that

< ∇G(u), h >L2=< A(u)− f, h >L2 , ∀h ∈ L2
0(Ω) (3. 20)
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< A(u), h >L2=
∫

Ω

δ2
t γuk + (1 + βδ2

t )u− 2f1 + f2 (3. 21)

− δ2
t h(x, t) +

∫

Ω

αδ2
t∇u.∇h.

Steepest descent using this gradient is inefficient, as the CFL condition applies. We need
to find gradients inH1 andH1,w. By using ( 3. 12 ) and ( 3. 18 ) we can relate theL2

gradient and unweighted Sobolev gradient in the weak from as

< (1−∇2)∇sG(u), h >L2=< A(u)− f, h >L2 . (3. 22)

similarly using ( 3. 13 ) and ( 3. 18 ) one can relate the weighted Sobolev gradient with the
L2 gradient

< (1− w2∇2)∇wG(u), h >L2=< A(u)− f, h >L2 . (3. 23)

For numerical implementation of the method, we find gradients in unweighted and weighted
Sobolev spaces. In order to find gradients we need to solve the following equations.

π(
∫

Ω

δ2
t γuk + (1 + βδ2

t )u− 2f1 + f2 − δ2
t h(x, t) +

∫

Ω

αδ2
t∇u.∇h) =

π

∫

Ω

∇sG(u)h +
∫

Ω

∇s∇G(u) · ∇h. (3. 24)

π(
∫

Ω

δ2
t γuk + (1 + βδ2

t )u− 2f1 + f2 − δ2
t h(x, t) +

∫

Ω

αδ2
t∇u.∇h) =

π

∫

Ω

∇wG(u)h +
∫

Ω

∇w∇G(u) · ∇h. (3. 25)

So the algorithm is as follow

• Find∇sG(u) or∇wG(u) by solving ( 3. 24 ) or ( 3. 25 )
• Updateu by u− λ∇sG(u) or u− λ∇wG(u) , whereλ is step size towards mini-

mum
• Repeat till convergence.

Note that, in case of weighted Sobolev gradients, by increasing resolution of the system
one does not need to reduce the value ofλ therefore the number of minimization steps to
reach convergence remains reasonable.

4. NUMERICAL RESULTS

In first case,we letΩ be a square centered at the origin of each side length10. The initial
condition wasu = sin x cos 2y and the Dirichlet condition was thatu = −1 andu = 1 on
opposite sides. We letα = 0.1, β = γ = 1 andf(x, t) = 0. The system evolved over
three time steps withδt = 0.5 . For each time stepδt the functional defined by ( 2. 9 ) for
cubic nonlinearity(k = 3) was minimized using gradients inL2, H1 andH1,w space until
the infinity norm of the gradient vector became less than some fixed number.
For solving problem numerically using FreeFem++, a grid is formed by specifying the
number of nodes on each border. FreeFem++ then creates a mesh and solves the system
such as ( 3. 25 ) which determine theH1 andH1,w gradients. We did numerical experi-
ments withM = 8, 16, 32 and64 nodes on each border. The number of steps taken for
convergence by each method, the step-size and the CPU time were recorded in Table (1).
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TABLE 1. Numerical results of steepest descent inL2, H1, H1,w using
δt=0.5,α = 0.1 for three time steps in the two-dimensional case.

λ iterations CPUs M Triangles
L2 H1 H1,w L2 H1 H1,w L2 H1 H1,w - -
0.066 3.6 0.8 140 52 10 6.0 3.0 0.5 30 1800
0.024 3.6 0.8 387 55 10 39 7.0 1.4 50 5000
0.001 3.6 0.8 932 57 10 172 14 2.6 70 9800
0.0076 3.6 0.8 1228 58 10 351 27 4.1 90 16200
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FIGURE 1. Graph of first8 iterations verses infinity norm of the gradient
vector with gradients inL2,H1, H1,w.

From the Table (1), we see that as the mesh becomes finer with increasingM , more
minimization steps are required for convergence of Euclidean gradient. But the best results
are using weighted Sobolev gradient. By decreasing the value ofα the weighted gradient
becomes more and more efficient over the traditional Sobolev gradient.

Figure (1) shows the results of using steepest descent with the Euclidean, weighted
and unweighted Sobolev gradients to solve equation ( 2. 9 ) in two dimensional case,
with an initial iterate ofu = sin x cos 2y. It shows the comparison between weighted
and unweighted gradients, for first eight iterations verses the infinity norm of the gradient
vector. From the graph we see that convergence is slow with the unweighted gradient.
For the three-dimensional case, we letΩ be a cube centered at the origin of each side length
10. The initial state wasu = 1.0. We setu = 1 on the top and bottom faces andu = −1
on the left, right, front and back faces of the cube. We letα = 0.1 and time stepδt = 0.5.
The system evolved over three time steps. For each time stepδt the functional defined by
( 2. 9 ) was minimized using gradients inH1 andH1,w until the norm of gradient vector
becomes smaller than some set positive number. Once again, the finite-element software
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TABLE 2. Numerical results of steepest descent inL2, H1, H1,w using
δt=0.5,α = 0.1 for three time steps in the three-dimensional case.

λ iterations CPUs M Triangles
L2 H1 H1,w L2 H1 H1,w L2 H1 H1,w - -
0.9 1.9 0.9 18 46 18 0.3 1.36 0.3 5 50
0.7 1.9 0.9 25 93 18 2 10.44 2 10 200
0.4 1.9 0.9 43 112 22 12 38.6 7 15 450
0.2 1.9 0.9 92 130 22 55 106 18 20 800
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FIGURE 2. Graph of first8 iterations verses infinity norm of the gradient
vector with gradients inL2, H1, H1,w.

FreeFem++ [7] was used for this problem. We did numerical experiments withM = 5, 10,
15 and20 nodes on each axis. The total number of minimization steps, the largest value of
λ that can be used and the CPU time can be seen in Table (2).
Note that as the mesh becomes finer with increasingM , the weighted Sobolev gradient
becomes more and more efficient than the results fromL2 andH1 gradients. In the case
of the weighted Sobolev gradient, the required number of iterations to treach convergence
remains reasonable. By reducing the value ofα, the performance of weighted gradient is
much better than the other gradients.
In Figure (2) results of using steepest descent for the first eight iterations verses infinity
norm of the gradient vector inL2, H1, H1,w in three dimensional case, with an initial
iterate ofu = 1 is shown. It is clear from the graph that convergence is fastest with the
H1,w gradient.
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TABLE 3. Comparison of Newton’s method and steepest descent in
H1,w for different values ofα.

α = 0.1 α = 0.01 α = 0.001 –
Newton H1,w Newton H1,w Newton H1,w Error
31 11 39 10 47 10 10−5

31 16 39 17 NC 17 10−8

33 24 NC 27 NC 26 10−11

5. COMPARISON WITH NEWTON’ S METHOD

In this section, we show the comparison between the weighted Sobolev gradient method
and Newton’s method. In many circumstances, Newton’s method and its different forms
are considered optimal. But the convergence depends on a nice initial guess. In our nu-
merical experiments, we also choose a good initial guess so that we could compare the two
methods in a fair manner. Consider the variational form of nonlinear problem as given by

< G(u), h > =
∫

Ω

δ2
t γ

uk+1

k + 1
h + (1 + βδ2

t )
u2

2
h− 2f1uh + f2uh (5. 26)

− δ2
t h(x, t)uh− δ2

t

α

2
|∇u|2h

We need to find the Gateaux derivative such that

< F ′(un)cn, v > = < F (u), v >, ∀v ∈ H1
0 (Ω). (5. 27)

We use some appropriate linear solver in order to solve equation ( 5. 27 ). Thus, Newton’s
iteration scheme is

un+1 = un − cn. (5. 28)

We work out the example in two dimensional case, for this we letΩ be a square centered
at the origin of each side length10. The initial state wasu = 0.0. We setu = 0.1 on the
vertical edges andu = −0.1 on the horizontal edges of the square. We letδt = 0.5. The
system was evolved over2 time steps until the infinity norm of the gradient is less than the
set tolerance. Results were obtained on30× 30 grid points. Table (3) shows the results for
various values ofα. The term NC in the table denotes no convergence.

Results show that the performance of Newton’s method is better than the weighted gra-
dient but Newton’s method does not converge in case of strict stopping criterion. In terms
of minimization steps, the results between two methods are comparable at start but New-
ton’s method fails to damp out low frequency error modes i.e; for strict stopping criterion.
Whereas the weighted gradient requires more iterations but it keeps on converging even for
very tight stopping criteria. When the value ofα is decreased, the weighted Sobolev gra-
dient manages to converge whereas Newton’s method becomes more and more inefficient.

6. SUMMARY AND CONCLUSIONS

We have presented minimization schemes in this paper for the energy functional of the
NKGE based on the weighted Sobolev gradient method [15]. The descent inH1 out-
performs descent inL2, but the best results are by considering the descent inH1,w. The
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performance of Sobolev gradient method compared to the Euclidean gradient becomes bet-
ter as numerical grid spacing is made finer. In this paper the numerical work provides a
systematic way for choosing the underlying space and shows that the appropriate choice of
weight functions plays a key role in developing efficient code.
Newton’s method converges only when the initial guess is taken sufficiently close to a local
minimum. At each step, Newton’s method requires evaluation of the inverse of the Hessian
matrix, which becomes very expensive sometimes or it may or may not be positive definite.
It was shown in [20] that for some problems Newton’s method fails to converge near the
singularity but the Sobolev gradient method does converge. [19, 13] shows a failure of
the Newton’s method in case when when we increase the number of nodes and have a big
jump discontinuity whereas this does not happen in case of the weighted Sobolev gradient
method. Therefore, the Sobolev gradient method can be efficiently utilized to solve a big
range of problems by using appropriate weight functions.

Satisfactory agreement occurs between the new numerical scheme and other solutions.
Moreover, steepest descent converges even for a bad initial guess or for jump discontinu-
ities in the initial guess. This research can be further advanced by the the comparison of
the performance of weighted gradient with some nonlinear FAS multigrid method in finite
element setting.
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