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Abstract. In this paper we apply an efficient approaches based on Bern-
stein polynomials to solve one-dimensional partial differential equations
(PDEs) subject to the given nonlocal conditions. The main idea is based
on collocation and transforming the considered PDEs into their associated
algebraic equations. Numerical results are presented through the illustra-
tive graphs which demonstrate good accuracy.
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1. INTRODUCTION

The development of numerical techniques for solving parabolic partial differential
equations in physics subject to non-classical conditions is a subject of considerable interest.
Numerical solutions of such PDEs together with traditional conditions were studied deeply
by researchers in literature. However, these PDEs subject to nonclassical conditions were
investigated by mathematicians, but improvements of the existing methods should be done
to get more accurate solutions. There are many papers that deal with nonclassical condi-
tions e.g.[4, 5, 6, 14, 8, 12]. Dehghan in [7], applied some numerical schemes to approxi-
mate. The usual numerical methods for PDEs subject to these nonclassical conditions are
finite difference methods (FDMs), Galerkin techniques [3], collocation approaches [11],
and Tau schemes [15]. Moreover, one can point out to the new methods such as Bernstein
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Tau technique [16], Sinc collocation method [1]. This work is aimed at applying a very
efficient method (Bernstein spectral method), for solving the following non-local boundary
value problem:

ut(x, t)− uxx(x, t) = g(x, t), a < x < b, 0 < t ≤ T, (1. 1)

with initial condition

u(x, 0) = f(x), a ≤ x ≤ b, (1. 2)

and the non-classical conditions:

λ0u(0, t) =
∫ 1

0

p0(x)u(x, t)dx + q0(t), 0 < t ≤ T, (1. 3)

λ1u(1, t) =
∫ 1

0

p1(x)u(x, t)dx + q1(t), 0 < t ≤ T, (1. 4)

wherex andt are the spatial and time coordinates respectively,u(x, t) is unknown function
to be determined,λ0 andλ1 are given constants andg(x, t), f(x), p0(x), p1(x)
, q0(x) andq1(x) are suitably prescribed functions. The organization of this article is as
follows: In Section 2, we describe Bernstein basis functions and its properties. In Section
3, the use of these basis is discussed for solving nonlocal parabolic equations. In Section
4 the proposed method is applied to several examples. The conclusions are discussed in
Section 5.

2. THE PROPERTIES OFBERNSTEIN POLYNOMIALS

The polynomials determined in the Bernstein basis enjoy considerable popularity
in many different applications. For example in computer-aided design(CAD) applications
[13, 9]. Bernstein polynomials (B-polynomials), have advantage of the continuity and
unity partition properties of the basis set of B-polynomials over an interval [0,R]. The B-
polynomial bases vanish except the first polynomial at x = 0, which is equal to 1 and the
last polynomial at x = R, which is also equal to 1 over the interval [0,R]. Therefore, a
greater flexibilty can be achieved using the imposed boundary conditions at both ends of
the interval. In this section some definitions and formulas for Bernstein polynomials are
summarized as following:

Bk,n(t) =
(

n
k

)
tk(1− t)n−k, 0 ≤ t ≤ 1, (2. 5)

where (
n
k

)
=

n!
k!(n− k)!

. (2. 6)

By using the binomial expansion

(1− t)n−k =
n−k∑

i=0

(−1)iti
(

n− k
i

)
, (2. 7)

we have:

Bk,n =
n−k∑

i=0

(−1)iti
(

n− k
i

)(
n
k

)
tk+i. (2. 8)
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So, there aren + 1 n-th degree B-polynomials. A polynomialh(x) of degreem can be
expressed as

h(x) =
n∑

i=0

diBi,n(x) = dT φ(x), (2. 9)

where the Bernstein coefficient vectord and the Bernstein vectorφ(x) are given by

dT = [d0, d1, ..., dn], (2. 10)

and
φT (x) = [B0,n(x), B1,n(x), ..., Bn,n(x)]. (2. 11)

Lemma 1: Let φ(x) be Bernstein polynomial then

dφ(x)
dx

= Dbφ(x), (2. 12)

whereDb is the(n + 1)× (n + 1) operational matrix of derivative given by

Db = AΛV, (2. 13)

such thatA is a(n + 1)× (n + 1) upper triangular matrix where

Ai+1,j+1 =





0, for i > j

(−1)j−i

(
n
i

) (
n− i
j − i

)
, for i ≤ j

(2. 14)

i, j = 0, 1, ..., n, Λ is (n + 1)× (n) matrix as follows

Λi+1,j+1 =
{

j, for i = j + 1,
0, for otherwise,

(2. 15)

i = 0, ..., n, j = 0, ..., n− 1. And V is (n)× (n + 1) matrix can be expressed by

Vk+1 = A−1
k+1, k = 0, 1, ..., n− 1, (2. 16)

whereA−1
k+1 is (k + 1)th row ofA−1.

3. SOLUTION OF THE PROBLEM

We consider Eqs. (1. 1 )-(1. 4 ), and supposeφ(x) andφ(t) are vectors of Bern-
stein polynomials on [0,1]. we consider approximate solution of the form

Un(x, t) =
n∑

i=0

n∑

j=0

ui,jBi,n(x)Bj,n(t) = φT
n (t)Uφn(x), (3. 17)

where
U = [U0, ..., Un],

with
Ui = [u0i, ..., uni]T .

Also, we approximateg(x, t) andf(x) by (n+1)terms of the Bernstein series, thus we get

g(x, t) '
n∑

i=0

n∑

j=0

gi,jBi,n(t)Bj,n(x) = φT
n (t)Gφn(x), (3. 18)

where
G = [G0, ..., Gn], Gi = [g0i, ..., gni]T , i = 0, 1, ..., n.

f(x) '
n∑

j=0

fjBj,n(x) = Fφn(x), (3. 19)
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F = [f0, ..., fn],
Also, we can write:

ut(x, t) = φT (x)UDbφ(t). (3. 20)

Also, we have
uxx(x, t) = φT (x)(D2

b )T Uφ(t), (3. 21)

Using Eqs. (3. 20 ) and (3. 21 ) in Eq. (1. 1 ) we obtain

φT (x)UDbφ(t) = φT (x)(D2
b )T Uφ(t) + g(x, t), (3. 22)

we now collocate Eq. (3. 22 ) in(n−1)× (n) points(xi, tj), i = 2, ..., n, j = 2, ..., n+1
and hence the residual is as following:

R(xi, tj) = φT (xi)UDbφ(tj)− φT (xi)(D2
b )T Uφ(tj)− g(xi, tj) = 0, (3. 23)

i = 2, ..., m, j = 2, ...,m + 1.

wherexi, i = 1, ..., n andtj , j = 1, ..., n + 1, are shifted points of chebyshev polynomial.
Collocating Eqs. (1. 2 )-(1. 4 ) inn + 1 pointsxi, i = 1, ..., n + 1 andn pointstj , j =
1, ..., m we obtain:

u(xi, 0) = f(xi), i = 1, 2, ..., n + 1, (3. 24)

λ0u(0, tj) =
∫ 1

0

p0(x)u(x, tj)dx + q0(tj), j = 1, ..., n, , (3. 25)

λ1u(1, tj) =
∫ 1

0

p1(x)u(x, tj)dx + q1(tj), j = 1, ..., n, , (3. 26)

(3. 23 ) together with (3. 24 )-(3. 26 ) give a system of equations, Now u(x,t) can be calcu-
lated.

4. NUMERICAL RESULTS

In this section, for testing the accuracy and efficiency of described method we solve
two test examples.

Example 1. For the first example, we consider Eqs. (1. 1 )-(1. 4 ) with

g(x, t) = exp(t)(x2 − 2), 0 < x < 1, 0 < t ≤ 1, f(x) = x2,

λ0 = 1, p0(x) = 0, q0(t) = 0,

λ1 = 0, p1(x) = 1, q1(t) = −exp(t)
3

,

The theoretical solution of this problem isu(x, t) = exp(t)(x2).
We compare the absolute errors at grid points of the computed solution are given for

different values of time levels with result in [2], in Tables 1. As the numerical results in
this table show the proposed method is very effective.

Example 2. We consider Eqs. (1. 1 )-(1. 4 ) with:

g(x, t) = 0, 0 < x < 1, 0 < t ≤ 1, f(x) = cos(
πx

2
),

λ0 = 1, p0(x) = 0, q0(t) = exp(
−π2t

4
),
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λ1 = 0, p1(x) = 1, q1(t) = −(
2
π

)exp(
−π2t

4
),

The theoretical solution of this problem isexp(−π2t
4 ) cos(πx

2 ).
Similar to the previous example, the values of absolute error for different values of x

and t are given in Tables 2. The obtained results are seen to be very reliable and accurate.
For more investigation, the absolute errors for0 < t < 1 for examples 1 and 2 are plotted
in Fig.1 and Fig.2. As we observe, there is very good agreement between the approximate
solution obtained by the spectral collocation method and the exact solution.

Table 1: Comparison the absolute error of the peresented method
and method in [2] foru(x, t) from Example 1.
(x, t) presented method [2]

(0.1, 01) −7.0398× 10−20 1.19× 10−08

(0.2, 0.2) 3.0217× 10−19 2.81× 10−11

(0.4, 04) 1.7972× 10−18 3.98× 10−11

(0.6, 0.6) 6.0223× 10−18 2.52× 10−11

(0.8, 0.8) 1.5018× 10−17 1.38× 10−13

(1, 0.8) −1.2493× 10−16 1.19× 10−11

Table 2: Comparison the absolute error of the peresented method
and method in [2] foru(x, t) from Example 2.
(x, t) presentedmethod [2]

(0.1, 01) 1.0186× 10−12 1.08× 10−08

(0.2, 0.2) 6.5900× 10−13 2.49× 10−11

(0.4, 04) −5.5424× 10−14 5.59× 10−11

(0.6, 0.6) −3.1669× 10−13 1.45× 10−10

(0.8, 0.8) −5.9724× 10−13 1.38× 10−13

(1, 0.8) −1.2493× 10−16 4.27× 10−11

Fig. 1: Absolute error of u(x,t) for example 1.
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Fig. 2: Absolute error of u(x,t) for example 2.

5. CONCLUSION

In this paper, the spectral method with Bernstein polynomials has been success-
fully used to obtain the approximate solutions to the non-local parabolic partial differential
equations. Based on the numerical experiments, we conclude that our method is a practical
and effective numerical technique for solving the non-local parabolic partial differential
equations.
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