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Abstract. A new Hermite-Hadamard inequality for p-convex(nonconvex) functions is ob-
tained, which can be viewed as a refinement of known results. We derive some new inequali-
ties for functions whose derivatives in absolute value are nonconvex.Results obtained in this
paper continue to hold for special cases. Techniques and ideas of this paper may stimulate
further research in this field.
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1. Introduction

Inequalities are everywhere and play an important and significant role in almost all sub-
jects of Mathematics including other areas of sciences, see [1-19]. Inequalities present a
very active and attractive field of research. In recent years, much attention have given to
develop various inequalities for several classes of convex functions and their generalizations
using novel and new ideas, see [9, 6, 15]. Zhang et al. [19] investigated and studied a new
class of convex functions which is called p-convex(nonconvex) functions. Motivated by this
ongoing research, Noor et al. [13] have derived several inequalities for differentiable p-convex
functions.

Inspired and motivated by the ongoing research in this field, we obtain some new Simp-
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son type integral inequalities for nonconvex functions. Our results can be considered as a
refinement of the previous results. For some recent investigations, see [19, 13, 14].

Let I be an interval. We say that a function f : I = [a,b] C R — R is a p-convex
function(nonconvex), if and only if,

f({ap+bp];>< p bf(m)dx<f(“)‘;f(b), v €ab). (1)

2 ~bp—qar J, P T

This double inequality is known as the Hermite-Hadamard inequality for nonconvex func-
tions. The inequality 1 holds in reversed direction if f is a p-concave function.

If p = 1, then inequality 1 is known as Hermite-Hadamard inequality for convex functions
which was introduced and studied by Hermite [8] and Hadamard [7] independently. If
p = —1, then inequality (1.1) holds for the harmonic functions, [9].For recent developments,
applications, generalizations and other aspects of the Hermite-Hadamard and Simpson type
inequalities, see [1-19] and the references therein.

2. Preliminaries

Definition 0.1. [19, 6]. A set I =[a,b] C R is said to be p-convex set, if

1
[(1—t)zP +ty?]” €I, Va,yel,te[0,1], p#0.

Definition 0.2. [19, 6]. Let I be a p-convex set. A function f: I = [a,b] CR — R is
said to be p-convex function or belongs to the class PC(I), if

FlA = 02?4+ t?]7 < (- (@) +tf(y), Va,yelte01] (2)
Ift = %,then
f(l:xp;yp:|f’>§f($)—;f(y)7 Vx’yej7 (3)

which is called Jensen p-convex function.

It is clear that the nonconvex functions include the convex functions and their variant
forms as special cases, but the converse is not true, see [19, 11].
3. Main results

In this section, we obtain our main results.

Lemma 0.3. Let f: I =[a,b] CR — R be a p-convex function, then

([=57T) < k(=] ) (=] )

Lo [T 1 [fqa“bpr) . f(a)+f(b)}

w—ar |, atr T2 2 2
< Sl + 1) (1)

Proof. By applying 1 on each of the interval [a, [#ﬁ] and [[#]%,b}, we have

aP+

() e [ B0 e ([722])]
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and
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Summing up side by side, we obtain

(5] = ) (3]
< bpfap abﬁi ;{f({ap-l-bp} )+f(a);f<b)}
< Sl@+ 7o)

O

We would like to mention that inequality (4) can be regarded as a refinement of the

previous known inequalities.

Lemma 0.4. Let f: I = [a,b]
I If ' € Lla,b], then

C R — R be a differentiable function on the interior I° of

1 a? + b7 " f@)
G[f() 4f<|: :| ) } bp—ap u xlfpdx
_ wew) u(t 1= t)a? + 1577t 7
. /o[(l—t)ap+tbp] — /([0 = )a” + ] ") at, (7)
where t—1 telo,3),
u(t)Z{ t,% tels 1.
Proof. Let
b —a?) [* p(t) »
I = 1 —t)aP 4 tbP| 7 )dt
. /o[(l_t)awtbp} —/'([(1=a” +w7]7)at
ey b -l L t)a? + 1] )t
= oy (0w at
(b —a?) (1 t—3 1~ t)aP + tb?] 7 )dt
s A[(l_t)autbp]”f([( JaP + tb7] 7 ) dt
= Il+12
Now
wow :
L = 1—t)a? +tb?|»)dt
S [ e s
- ‘(t—(la>f([(1_t)ap+tbp];);_/ozf([(l—t)a“rtbp];)d
N AW C I B A
_ 3f(|: 5 })—F 6 (bp_ap)/a "Elfpd.
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Similarly,
b= (b”;a”) /; [(1_t)i;ftb”]l_’l’f,([(l_t)autbﬂ;)dt
- ‘(t 2)]"([(1 — t)aP + th?] ") 11 /;f([(l ~ t)a + 1] 7)dt
- P[] Sy B
Now
L +1,= é[f(a) +4f<{ap42rb”} le) +f(b)] B (bpfap) ab il(i)?dx

Theorem 0.5. Let f: I =[a,b] CR — R be a differentiable function on the interior I°
of I. If f' € Lla,b] and |f'|? is p-convex function on I for ¢ > 1, then

‘ﬂﬂ@+ﬁqﬂ+“r>+ﬂﬂ—XMp bﬂ@m‘

6 2 —ap) J, xt-P
< =D .0 ) Colp. 0 OIS (@) + Colpsa, b7 B
+(C1(p, b, @) 7 [Cs(p. b, a)| /(@) + Calp, b,a)| f'(B)] )7 }, 8)
where
: |t — 1]
Ch ,a,b = 1dt 9
(o) /0 (1= t)ar + tbr] 7 ©)
! |t — 3]
Ci(p,b,a) = —dt 10
(p:0:) /é (1= t)ar +tbr]' 7 1o
I e (V)
OQ ,a,b = 1dt 11
(o) /0 (1= t)ar +tbr] 7 )
! |t =31t
Cy(p,ba) = _dt 12
(0 /; (1= t)ar +tbr]' 7 12
@m%w::/f e L (13)

(1 —t)ar +tbP] *

Lo t=3ja1 -1
Cs(p,b,a) = -dt. 14
oo 0ra) /; (1= t)ar +tbr]' 7 )

Proof. Using Lemma 0.4 and the power mean inequality, we have



Nonconvex Functions and Integral Inequalities 23

sl (5] ) - 0] - 2 [ £

< wpwqﬁiu_i;im1;fw1wﬂ+wpﬁi
) wf[(/ [(1—t)|;jtbp]1_;dt>l_;
<AéK1J;;imy;f“U1”“+tWﬁvqw);
+<A}u—w;f;¢ﬁ@0bé
(ot )]
_ ; "

wiﬁ”Klm—J;fWF;&>q
(Aﬁw@mwwmmw+wmwha

[(1 = t)ar + th] 7

! t— 3| " sl '(@)|7 + 1/ (0)|]
U e )

2

Q=

Q=
— 1

-

‘ 1

R ) ([ s

R 1! , A S s | e
+ —|f/(b)dt ) + —dt
0 [(1—t)ar +tbp] 7 3 [(A—t)ar +tbP] P

1

L e 1 _5 a
(/ It —gl(1 t)l ; \f’(a)|th+/ it —glt . |f/(b)th) :|
3 [(1—tyar + tor] " 3 [ —tar +ape]

2

]
= o (G ) HCalp I @] + Cotra b ]

-

H(C1(p,b,a) "5 [Ca(p, by a)| £ ()| + Calp, b, a)| £ (b)|9)7 }.
O

For appropriate and suitable choice of p and ¢, one can obtain several new and known
results as special cases for various classes of convex functions and their variant forms.
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Theorem 0.6. Let f: 1 =[a,b] CR — R be a differentiable function on the interior I°
of I. If f' € L[a,b] and |f'|? is p-convex function on I forr,q > 1, % + % =1, then

Hf(a) +4f<{ap_;bpr) +f(b)} = (bpfap) ab ﬁxzdx’

6
" — a) (@I ()
< P [(04(r,p,a,b)) < 4 )
1 ([aP4bP 15 |q r(pY1aN &
where
r,p;a = : |t_%‘r
C4( ) P; 7b) A [(1—t)ap—|—tbp}r_%dt (16)

=31

1
Ca(r,p;b,a) = v
a(r.pib,a) /; [(1— t)ar + tbe] >

2

dt. (17)

Proof. Using Lemma 0.4, inequalities (5),(6) and the Holder’s integral inequality, we have
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If p =1, then, from Theorem 0.6, we have

Corollary 0.7. Let f: I = [a,b] CR — R be a differentiable function on the interior I°
of I. If f" € L[a,b] and |f'|? is harmonic convex function on I forr,q > 1, %—i—% =1, then

(52 0]

< (b—a)<6r1+f(ijll))l[(|f( A+ 17 (23) |q>

L +|f'<b>|q>é], (18)

Theorem 0.8. Let f: 1 =[a,b] CR — R be a differentiable function on the interior I°
of I. If f € L[a,b] and |f'|? is p-convex function on I forr,q > 1, % + % =1, then

o[22 ) 0] g [

a

(b —a) [ 1+2H N B ()
L x<6m(r+1)) [(Co(a.ps )| (@)
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1
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Proof. Using Lemma 0.4 and the Holder’s integral inequality, we have
1
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Remark. For appropriate and suitable choice of p and ¢, one can obtain several new
and known results as special cases for various classes of convex functions and their variant
forms. If p = —1, then our results continue to hold for harmonic convex functions, see
[9]. We expect that the interested readers can obtain several results for the special cases of
p—convex functions.
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