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Abstract. . In this paper, liquid layer flow considering surface tension
effect, encountering a convex corner has been discussed. The flow profile
far upstream is fully developed. Half-Poiseuille gives exact solution far
upstream. Due to small disturbance of0(δ), matched asymptotic tech-
nique has been opted to get the linearized solutions far downstream. The
obtained equations have been solved numerically using Chebyshev Col-
location method in collaboration with finite difference scheme. These
results have been verified via computational work. The aforementioned
method is beneficial, as we have successfully plotted graphs for the cases
s = 0.1 and0.2. Eventually, we have compared obtained results with the
Gajjar’s results [3]
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1. INTRODUCTION AND MAIN RESULTS

In this paper, we will discuss the liquid layer flow over a convex corner with the effect
of surface tension. Free surface flows are related to various practical problems for instance;
river flows, flow through part filled pipes etc. Previously a lot of work has been carried out
by J. S Gajjar [3] about the behavior of liquid layer flow over a convex corner facing ob-
stacles in free surface flow without taking into account surface tension effects. Gajjar has
calculated analytic and numerical solutions for this problem, but for small corner angles
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by using matched asymptotic technique. He got the central idea of his work from the triple
deck type structure to solve the problem which was first formulated by Stewartson [14].
Ludwig Prandtl (1875-1953) , German mathematician for the first time presented his pa-
per in 1904 on boundary layer concept. Triple deck theory is an extension of the classical
boundary layer theory proposed by Prandtl [10]. Prandtl, and his many students proceeded
his work to formulate the essential principles of airfoil and propeller operation [11] . Re-
cently, attention has been focused on the behavior of liquid layer flows under the effect of
an electric field, as discussed in Tseluiko and Papageorgiou and also in Sadia farid and Gaj-
jar’s paper [18] [2]. Also, the work has been carried out on the behavior of boundary layers
in external and internal flows by Stewartson [14] [15] and Smith [13].Moreover, transonic
bi-convex corner flows have been discussed by Kung Ming-Chung, Po-Hsiung. Chang,
Keh-Chin Chang, Frank K. Lu [1]. The asymptotic technique converts the corresponding
equations into boundary layer equations along with no slip and matching conditions and
also with interaction law i.e.,p = −sA− (1− 1/C)A′′, including surface tension effects.
Here,”s” represents the scaled measure of the angle of inclination of initial plane and”C”
is capillary number. An extensive amount of work on asymptotic theory has also been done
by Sychev [16]. With the passage of time, it became evident that his results were insuffi-
cient if corner angles are to be increased. In this particular situation, we need to smooth the
corner angles so, that we could obtain fine results. We will solve this problem using numer-
ical techniques such as, Chebyshev Collocation method and Finite difference method [9].
Primitive variables have been used instead of stream functions such as in [5] [8]. Use of
primitive variables makes it possible to apply the adopted method for 3-D problems. The
problem on undeveloped profile has been done by Gajjar [3].

1.1. Development of the problem. In this problem we will consider a 2D steady laminar
flow of a liquid layer passing through a convex corner.. The Reynolds number is assumed
to be large (i.e.,R >> 1) and the flow profile is fully developed. The crucial part is to
consider surface tension effects. To be precise, we focus on the flow of liquid layer down
an inclined plane having anglesβ∗, β∗ + α∗ to the horizontal, upstream and downstream
respectively.(See Figure 1). We note that far upstream the simple solution given by the
half-Poiseuille form satisfies the Navier-Stokes equations exactly and that it is reasonable
to expect that the flow sufficiently far downstream is also given by a similar half-Poiseuille
profile. Global arguments e.g. mass flux considerations, can then be used to deduce useful
relations between the upstream and downstream velocities and depths. However, we are
primarily interested in how the boundary layer and the free surface first anticipate the pres-
ence of an obstacle such as a corner when the oncoming profile is fully developed, and our
interest therefore will be centered more on the linearized solution of the problem. Before
discussions of scalings it is necessary to throw some light on few important assumptions. If
we say that distortion of bed is locally small of0(δ) say(δ << 1), then obviously the fluid
is displaced by the same amount of0(δ), since the oncoming profile is fully developed and
the viscous effects extend up to the free surface. It means that the displacement of the free
surface is of the same order as that of the bed, i.e. that the basic flow has not been modified
by an0(1) amount due to the presence of an infinitesimally small obstacle, and this as-
sumption is crucial to the analysis and scalings given below. We consider how fluid tackles
the corner. It is useful to note the upstream behavior in channel flow theory [12], there
a displacement of the core induces a pressure gradient across the channel which in turn
drives the viscous wall layers and provides a self-sustaining mechanism for the upstream
response. Here the fully developed profile can be considered as half a channel profile and
essentially the same ideas as those in channel flow theory are applied further in this section
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FIGURE 1. Problem Model.

below. The basic equations in Region I are incompressible Navier-Stokes equations.

uux + wuz = −px

ρ
+ ν(uxx + uzz) + g sin β∗, (1. 1)

uwx + wwz = −pz

ρ
+ ν(wxx + wzz)− g cos β∗, (1. 2)

ux + wz = 0. (1. 3)

The boundary conditions are;

• No slip condition holds at the wall,u|z=0 = 0, w|z=0 = 0.
• The kinematic condition isw = uhx.

At the interfacez = h(x) we must satisfy the kinematic condition and balance of normal
and tangential stresses. The outward normal(n) and unit tangent(t) vectors at any point
onz = h(x) are;

n =
(−hx, 1)√

1 + h2
x

(1. 4)

And,

t =
(1, hx)√
1 + h2

x

(1. 5)

respectively. An exact solution of the problem exists and is given by [4] [5] [6],

U∗
B =

g sin β∗

2ν
(2h0z − z2), (1. 6)

W ∗
B = 0, (1. 7)

P ∗B = Patm − ρg(z − h0) cos β∗. (1. 8)

U∗
B and W ∗

B represents velocities inx and z direction respectively. WhereP ∗B is the
pressure andPatm shows atmospheric pressure,”ν” is kinematic viscosity of the fluid,
”ρ” represents the density and”g” is acceleration due to the gravity. We observe that
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velocity profile is parabolic in nature. We non-dimensionalize with respect to the length
scale”h” using the following dimensionless quantities,

x́ =
x

h0
, ź =

z

h0
, ú =

u

Uc
, h́ =

h

h0
, ẃ =

w

Uc
, ṕ =

p

ρU2
c

, (1. 9)

Here Uc represents characteristic velocity andUc = 2U∗
B(h0). Substituting these into

Navier-Stokes equations leads to:

uux + wuz = −px +
1
R

(uxx + uzz) +
2
R

, (1. 10)

uwx + wwz = −pz +
1
R

(wxx + wzz)− 2
R

cot β∗, (1. 11)

Along with the boundary conditions of no slip, kinematic condition and the stress of normal
and tangent balance that is

u = 0, w = 0, atz = 0 (1. 12)

w = uhx,

(1− h2
x)(uz + wx) + 4hxwz = 0,

(1 + h2
x

1− h2
x

)
wz +

1
2
R(ṕatm − p) =

σhxx

2C(1 + h2
x)

3
2

(1. 13)

Since,

Uc =
gh2

0

2ν
sin β∗

So, the other dimensionless parameters are Reynolds numberR (measuring the ratio of
viscous forces to inertial forces), Capillary numberC (measuring the ratio of viscous to
capillary forces) and are given by

R =
Uch0

ν
=

gh3
0sinβ∗

ν2

C =
Ucµ

σ
=

ρgh2
0sinβ∗

σ
Similarly, in non-dimensional form the upstream profile become,

UB = z − 1
2
z2, (1. 14)

WB = 0, (1. 15)

PB =
(1− z)
Rtanβ∗

(1. 16)

Consider a perturbation of0(δ) to the oncoming flow. Gajjar postulates that the interaction
here occurs because of two factors , (a) the displacement of the free surface which induces
a pressure of0(δ/Rtanβ∗) to counteract the change in the hydrostatic pressure and (b) the
displacement of the free surface which sets up a transverse pressure gradient of0(δ), as in
channel flow Smith [3] [12]. We consider the case where (a) and (b) are comparable. From
the z momentum equation the pressure is0( δ

L2 ), where”L” is the unknown stream wise
length scale and assumed to be large. Hence;

λ ∼ δ

Rtanβ∗
∼ δ

L2
, (1. 17)
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The rest of the argument is same as given by Smith [12] and further details may be found
there. Viscous-inertial and pressure balances imply;

δ2

L
∼ λ

L
∼ δ

Rδ2
, (1. 18)

These equations ( 1. 17 ) and ( 1. 18 ) give the crucial scalings:

δ ∼ R,L ∼ R
−2
7 , λ ∼ R

−4
7 , tanβ∗ ∼ R

−5
7 , (1. 19)

With regard to (a) and (b) above, ifβ∗ << R
−5
7 then the hydrostatic pressure is important

and if β∗ >> R
−5
7 then the transverse pressure is dominant.δ is of order”R”. It is

convenient to setε = R
−5
7 , tanβ∗ = R

−5
7 s̄andz = αε2F (εx) whereF̄ (x) is the reduced

wall shape, and̄F (x) → x for x >> 1. Hence, far downstream the angleα∗ is of 0(R
−3
7 ).

1.2. Solution Of the problem. Let X̄ = εx be the scaled stream-wise co-ordinate and
z = 1 + ε2η + ... be the free surface. Then the flow in layer I wherez 0(1) is

u ∼ UB + ε2u1 + o(ε4), (1. 20)

w ∼ ε3w1 + o(e5), (1. 21)

p ∼ ε2s̄(1− y) + ε4p1 + o(ε6). (1. 22)

HereuB = z − z2/2 is the basic flow.Substituting into dimensionless NS equations
( 1. 1 )−( 1. 3 ), ) gives the simple displacement solution i.e.

u1 = Ā(X̄)ŪBz, (1. 23)

w = −Ā′(X̄)UB , , (1. 24)

p1 = P̄ (X̄) + Ā′′(X̄)
∫ z

0

U2
Bdt. (1. 25)

Here”t” is taken as variable of integration.Ā(X̄), P̄ (X̄) are unknown and both approaches
to zero asX̄ → −∞. Implementing the conditions at the free surfacez = 1 + ε2η̄, gives

η̄(X̄) = Ā(X̄), (1. 26)

P̄ (X̄) = −s̄η(X̄) +
1
C

ĀX̄ − Ā′′(γ), (1. 27)

γ =
∫ 1

0

U2
Bdz, (1. 28)

Now we need a viscous layer of thicknessO(ε2) to reduce the slip velocity in equation ( 1.
20 - 1. 22 ) to zero, and thereforez = ε2Z̄, Z̄ ∼ 0(1)

u ∼ ε2Ū1 + ..., (1. 29)

w ∼ ε5w̄ + ..., (1. 30)

p ∼ ε2s̄ + ε4(−sz̄ + P̄1) + ..., . (1. 31)

So,Ū1, W̄1, P̄1 satisfy the boundary layer equations:

Ū1X̄ + W̄1Z̄ = 0, (1. 32)

Ū1Ū1X̄ + W̄1Ū1Z̄ = −P̄1X̄ + ŪZ̄Z , (1. 33)

P̄1Z̄ = 0. (1. 34)
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along with the boundary conditions

Ū1 = W̄1 = 0 at Z̄ = −αF̄ (X̄), (1. 35)

Ū1 → Z̄ + Ā(X̄) as Z̄ → −∞, (1. 36)

Ū1 → Ȳ as X̄ →∞, (1. 37)

P̄1 = P̄ (X̄). (1. 38)

To match with I, and for no slip at the wall. We can set the factorγ equal to unity in
equation ( 1. 27 ) with the normalization [3] [4]:

[U,W,X, Y,A, η, P, s, F (X)] =[γ
−1
7 Ū1, γ

1
7 W̄1, γ

−3
7 X̄, γ

−1
7 Ȳ ,

γ
−1
7 Ā, γ

−1
7 η̄, γ

−2
7 P̄1, γ

−1
7 s̄, γ

−1
7 F̄ (X̄)] (1. 39)

After applying Prandtl transformationY = Z + αF (X),V = W + αF ′(U) to the set of
equations ( 1. 35 )− ( 1. 38 ), we obtain

UX + VY = 0, (1. 40)

UUX + V UY = −PX + UY Y , P = P (X) (1. 41)

U = V = 0, on Y = 0, (1. 42)

U → Y + A− αF (X) as Y →∞, (1. 43)

U → Y as X → −∞, (1. 44)

P = −sA− (1− 1
C

)A” as , η = −A. (1. 45)

Our aim is to obtain the linearized solutions of the system ( 1. 40 ) to ( 1. 45 ) numerically.
In this paper, we have obtained the results for pressure(P ), displacement(A) and skin
friction (τ = (Uy)y=0.

2. NUMERICAL METHOD

The equations under consideration have been briefed earlier. The method adopted in
this paper is shaped in the form of primitive variables in which finite difference method
is applied in X-direction and Chebyshev collocation method in Y-direction. In Chebyshev
collocation methodY domain is mapped into Chebyshev domainz ∈ [−1, 1].Using stan-
dard differentiation matrix we deal with derivatives ofY in discrete form. Then to tackle
with continuity equation it will be converted first into discrete form via inverse standard
differentiation matrix B and then the obtained result is substituted into momentum equa-
tion. This method is based on iterative method known as Newton linearization. Sum of
an initial guess and small correction is provided to each unknown parameter. Products of
correction can be neglected. And the iteration continues in the same fashion until we get
small correction. It depicts that the initial guess has converged to final equation of the
solution [5] [9].
TheX domain is discretized into a uniform grid defined over[xmin, xmax] given as,

Xf = Xmin + (f − 1)∆X , f = 1, 2, 3, ..., n (2. 46)

And to apply Chebyshev methodY domain is first mapped into−1 < Z < 1 via,

Y =
1
2
Ymax(Z + 1) (2. 47)

After discretization we get,

Y =
1
2
Ymax(zr + 1) (2. 48)



Fully Developed Liquid Layer Flow Over a Convex Corner Considering Surface Tension Effects Using Numerical Methods41

Wherezr is set of Chebychev points given as,

zr = − cos(
rπ

M
), r = 0, 1, ., M (2. 49)

By the construction of mesh, we define

U(Xf , Y (zr)) = Ufr, V (Xf , Y (zr)) = Vfr, P (Xf ) = Pf , A(Xf ) = Af , F (Xf ) = Ff

(2. 50)
For the numerical calculations we have considered the wall shaped function asF (X) =
α
2 (X + (

√
x2 + r2), with ”r” as smoothing convex corner co-efficient.We will use the

following matrix operation.
φ
′
= BMφ (2. 51)

Whereφ = (φ1, φ2, ..., φM )T , φ
′

= (φ
′
1, φ

′
2, ..., φ

′
M )T andBM is (M + 1) × (M + 1)

matrix [17]. To explain the construction ofBM , the casesM = 1 andM = 2 are now
evaluated.ForM = 1, the chebychev points are given byz0 = −1 and z1 = 1.The
polynomialp(z) is formed using Lagrangian interpolation and is given by,

p(z) =
1
2
(1− z)φ0 +

1
2
(1 + z)φ1 (2. 52)

Differentiating this gives,

p
′
(z) =

1
2
φ0 +

1
2
φ1 (2. 53)

Now it is obvious that above expression can be put into he form of equation ( 2. 51 ) with
the differentiation matrix taking the form

M1 =



− 1

2
1
2

− 1
2

1
2




Same is the case with M=2. Now arranging from 0 to M,

(BM )00 = − (2M2 + 1)
6

, (BM )MM =
(2M2 + 1)

6
, (2. 54)

(BM )rr =
(−zr)

(2(1− z2
r ))

, r = 1, 2, ..., M − 1 (2. 55)

(BM )ir =
ci(−1)(i+r)

ci(zi − zr)
, i 6= r, i, r = 0, 1, ...,M, (2. 56)

Ci =

{
2 , i = 0,M

1 , otherwise
(2. 57)

U is used as variable andnth Y derivative is calculated in discretized manner via,

(
∂nU

∂Y n
) = (

2
Y n

max

)
M∑

(k=0)

(Bn
M )fkUkr (2. 58)

This is going to be used such as(BnU)fr.The Continuity equation can be reorganized as,

V = − ∫ Y

0
UXdY and inverse ofBM is here

IM = (
Ymax

2
)B−1

M (2. 59)

The continuity equation can be rewritten as

Vf = − 1
2∆X

IM (Uf−2 − 4Uf−1 + 3Uf ), (2. 60)
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Using second order backward difference scheme, momentum equation can be expressed in
the following form

1
2∆X

Ufr(Uf−2r − 4Uf−1r + 3Ufr) + Vfr(BU)fr = − 1
2∆X

(Pf−2 − 4Pf−1 + 3Pf )+

(B2U)fr, 3 ≤ f ≤ n− 1 (2. 61)

Newton linearization is the foundation of this method. So, we will linearize the above
momentum equation by using following equations each of which is the sum of initial guess
and small correction.

Ufr = ufr + Jfr, Vfr = vfr + Kfr, (2. 62)

Pf = pf + p̄f , Af = af + āf . (2. 63)

Substitute above equations ( 2. 62 )-( 2. 63 ) into ( 2. 61 ) and neglecting quadratically
small terms, we acquired,

1
2∆X

ufr(Jf−2r − 4Jf−1r + 3Jfr) +
1

2∆X
Jfr(uf−2r − 4uf−1r + 3ufr) + Vfr(BJ)fr+

Kfr(Bu)fr +
1

2∆X
(p̄f−2 − 4p̄f−1 + 3p̄f )− (B2J)fr) = Rfr , 3 ≤ f ≤ n− 1

(2. 64)

Rfr = − 1
2∆X

ufr(uf−2r−4uf−1r+3ufr)−vfr− 1
2∆X

(pf−2−4pf−1+3pf )+(B2U)fr,

(2. 65)
Similarly

vf = − 1
2∆X

IM (uf−2 − 4uf−1 + 3uf ), (2. 66)

Kf = − 1
2∆X

IM (Jf−2 − 4Jf−1 + 3Jf ). (2. 67)

Combining relevant matrix equations, we get the matrix equation,

Jfφ
f−2

+ Lfφ
f−1

+ Cfφ
f

+ Efφ
f+1

= R̄f (2. 68)

The no slip condition atZ = 0 isU(X, 0) = o, Uf,0 = 0, uf0+Jf0 = 0, Jf0 = −uf0. The
condition atZ = ∞ for (M+1)th row is givenJfM−āf = ZM +af−ufM−αFf and for
(M + 2)nd row (BJ)fM → 1 − (BU)fM respectively.Ultimately pressure displacement
law is implemented into the method through row(M + 3)rd of ( 2. 68 ) is

Pf = −sAf − (1− 1
C

)A
′′
f (2. 69)

p̄f +sāf +(
C − 1
C∆X2

)[āf+1−2āf − āf−1] = −pf −saf − (
C − 1
C∆X2

)[af+1−2af −af−1]
(2. 70)

This method is complete for3 ≤ f ≤ n− 1. we will repeat the same process of discretiza-
tion and linearization forf = 2, but this time we are going to use second order difference
scheme instead of three point backward difference method. So, after doing linearization
we get,

1
2∆X

(u2r + u1r)(G2r −G1r) +
1

2∆X
(J2r −G1r)(u2r − u1r) + v 3

2 r

2

((BJ)2r + (BJ)1r)+

H 3
2 r

2

((Bu)2r + (Bu)1r) + (
P̄2 − P̄1

∆X
)− 1

2
((B2J)2r + (B2J1r)) = R2r. (2. 71)



Fully Developed Liquid Layer Flow Over a Convex Corner Considering Surface Tension Effects Using Numerical Methods43

Where,R2r = − 1
2 (u2r + u1r) 1

∆X (u2r − u1r) − v 3
2

1
2 ((Bu)2r + (Bu)1r)...p2−p1

∆X +
1
2 ((B2u2r) + (B2u1r))
This can be written in the form of ( 2. 68 ) and then we get matrices forJf , Bf , Cf , EfandR̄f

same as above. Forf = n, we linearize this problem on the same lines as before, but again,
we will imply different discretization scheme. Since, additional node is required outside
the domain so second order backward differencing scheme is used forA

′′
term. So, after

linearization the obtained pressure displacement expression turns to be,

p̄f + sāf + (
C − 1
C∆X2

)[āf−3 − 4āf−2 − 5āf−1 − 2āf ] = −pf − saf − (
C − 1
C∆X2

)

[af−3 − 4af−2 + 5af−1 − 2af ]
(2. 72)

Since, it carries an extra matrix to incorporate the term at the(f − 3) station. So forf = n
the matrix system takes the form

Kfφf−3 + Jfφf−2 + Lfφf−1 + Cfφf = R̄f (2. 73)

We have calculated sparse matrices for the system in ( 2. 68 ) for allf = n. The completed
reduced form of matrix is



C1 E1 0M+3 0M+3 0M+3 0M+3 · · · 0M+3

L2 C2 E2 0M+3 0M+3 0M+3 · · · 0M+3

J3 L3 C3 E3 0M+3 0M+3 · · · 0M+3

0M+3 J4 L4 C4 E4 0M+3 · · · 0M+3

0M+3 0M+3 J5 L5 C5 E5 · · · 0M+3

...
.. .

. . .
.. .

. . .
.. .

. ..
...

...
.. .

. . .
.. .

. . .
.. .

. ..
...

0M+3 0M+3 · · · 0M+3 Kn Jn Ln Cn







ψ1

ψ2

ψ3

ψ4

ψ5

...

...
ψn




=




R̄1

R̄2

R̄3

R̄4

R̄5

...

...
R̄n




Where0M+3 × 0M+3 matrix of Zeroes.

2.1. Results and Dscussions.Linearized solutions of numerical method have been ob-
tained by using Matlab solver. We have takens = 0.1, 0.2andC = 5 in computational
work while considering grid size as 60 by 1001. So, graphs for linearized solutions of
pressure (p), displacement (a) and skin friction(τ) have been plotted. An example of this
can be seen as in [7].

vspace*4pc

2.2. Comparison. To check the validity, the results obtained are compared with Gaj-
jar [3].WhenC >> 1, the surface tension effects are very low and can be neglected. This
is also supported by the graphs (8- 9)in which our results are compared with Gajjar [3]
results and they show good agreement.

After comparing our results with the problem of Gajjar, it is clear from the obtained
graphs, that if we takeC >> 1 then obtained graphs show good agreement with the
plotted graphs of Gajjar [3]. So, ifC is very large then we can ignore surface tension
effects. Similarly, if we considerS = 0, along withC >> 1, then also it matches with the
smith’s results [8]. Also, rich set of new problems (e.g. stability, extensions to undeveloped
flow...) is being investigated.
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FIGURE 2. Plot of Pressurepα for C = 5 ands = 0.1,−α = 0.01.

FIGURE 3. Plot of DisplacementAα for C = 5 ands = 0.1,−α = 0.01.

FIGURE 4. Plot of Skin Friction(τ−1)
α for C = 5, s = 0.1 and−α = 0.01.
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FIGURE 5. Plot of Pressurepα for C = 0.5, s = 0.1,−α = 0.01.

FIGURE 6. Plot of DisplacementAα for C = 0.5, s = 0.1 and−α = 0.01.

FIGURE 7. Plot of Skin Friction(τ−1)
α for C = 0.5, s = 0.1 and−α = 0.01.
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FIGURE 8. Plot of PressureC = 10, s = 0.2 and−α = 0.01.

FIGURE 9. Plot of Skin FrictionC = 10, s = 0.2 and−α = 0.01.

3. CONCLUSION

In this paper we have studied the behavior of liquid layer flow when it passes through
a convex corner and surface tension effects are not negligible. Inclusion of surface tension
effects in the flow of liquid layer leads to the interaction law

P = −sA− (1− 1
C

)A
′′

The linearized solutions are obtained for the problem and it is observed that the high surface
tension effects cannot be ignored because it affects the behavior of flow. It can be seen from
the graphs of pressure, displacement and skin friction forC << 1 (surface tension effects
are high) that they are different from the results forC >> 1 (surface tension effects are
low).
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