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Abstract. In this paper, we study the family of graphŝW2n for n ≥ 2,
defined by removing the alternate spokes of a wheel graph with2n rim
vertices. We then determine the abstract structure of the critical group of
the graphŴ2n and show that the critical group of this whole family of
graphŝW2n is the product of two cyclic groups.
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1. INTRODUCTION AND MAIN RESULTS

2. INTRODUCTION

Let G be graph of ordern and multiple edges may be allowed. LetA(G) be the adja-
cency matrix ofG andD(G) = diag(d1, d2, . . . , dn) the degree matrix. Then the Lapla-
cian is given asL(G) = D(G)−A(G). The critical group ofG is closely connected with
L(G) as follows: thinking ofL(G) as a linear mapZn −→ Zn, its cokernelhas the form
cokerL(G) = Zn

L(G)Zn
∼= Z⊕S(G), whereS(G) is called thecritical groupof G. [2], [9].

Let vr be a vertex (called root) of a graphG and consider∆i = dixi −
∑

aijxj and
whereaij is the number of edges between verticesvi andvj , andxi = (0, . . . , 0, 1, 0,
. . . , 0) ∈ Zn whose unique non-zero entry is in the positioni ∀ i = 1, 2, . . . , n. Then
S(G) = Zn

span(∆1,...,∆r−1,xr,∆r+1,...,∆n) . The critical groupS(G) is independent of the
choice ofvr; for more details see [5].

The explicit structure ofS(G) for a given family of graphs is not always easy. In the last
ten years, a series of papers has been written in this regards: wheel graphs [2], the Möbius
ladder graphs [4], the Cayley graphDn of dihedral group [6], the squared cycleC2

n [7],
the graphK3 × Cn [8], complete graphs [9], the graphsKm × Pn [10], the graphs3× n
twisted bracelets [12] and for the cone of the hypercube [1].

It is interesting to note that almost all such families of graphs studied are regular. There
is very little known about the critical group of families of irregular graphs. In this paper,
we consider one such family of irregular graphs and calculate its critical group.
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Consider the following sequenceai of integers with initial conditionsa1 = 0, a2 =
1, a3 = 2, a4 = 5,

ai = 4ai−2 − ai−4.

The aim of this paper is to compute the abstract structure ofS(Ŵ2n). We construct̂W2n by
considering a cycleC2n : v1, v2, v3, . . . , v2n, v1 and a new vertexv0 adjacent ton vertices
v1, v3, v5, v7, . . . , v2n−1 of C2n . This graph has order2n + 1 and size3n. Equivalently,
it can be obtained from wheelWn+1 by adding a vertex on each edge of the cycle.

The main result of this paper is given as:

S(Ŵ2n) =
{
Zan+1 ⊕ Z2an+1 , if n is odd;
Zan+1 ⊕ Z3an+1 , if n is even.

In section 1, we state the main result of this paper and give the reader a road map to its
proof in sections 2 and 3. It suffices to analyze the Smith normal form(SNF) of a certain
2× 2 matrix. We do this by looking at gcd’s of certain auxiliary sequences of integers and
prove certain facts about their modular residues.

3. SYSTEM OF RELATIONS FOR THE COKERNEL OF THELAPLACIAN OF Ŵ2n

In this section, we shall first show that there are at most two generators for the critical
groupS(Ŵ2n) of the grapĥW2n and reduce the relation matrix to the special matrixA2n.
Then, we shall give some properties of the entries of the matrixA2n.

Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Z2n, whose unique non-zero entry is in the position
corresponding to vertexvi. Let xi be the image ofei in S(Ŵ2n). The vertexv0 is chosen
to be the root vertex, hencex0 = 0 in S(Ŵ2n). The relations of cokerL(Ŵ2n) give rise to
the following system of equations:

3xi−1 − xi − xi−2 = 0; i = even (3. 1)

2xi−1 − xi − xi−2 = 0; i = odd. (3. 2)

LEMMA 3.1. There are two sequences(ai) and(bi) of integers such that

xi = aix2 − bix1, 3 ≤ i ≤ 2n. (3. 3)

Moreover, the sequences have the following recurrence relations with initial conditions
a1 = 0, b1 = −1, a2 = 1, b2 = 0, a3 = 2, b3 = 1, a4 = 5, b4 = 2,




ai = 4ai−2 − ai−4,
bi = 4bi−2 − bi−4,
bi = ai−1 i=odd.

Proof. We know that there are2n rim vertices of the grapĥW2n. So we have2n equations
in 2n variables. We keep two equationsx2n = 3x1 − x2, and x1 = 2x2n − x2n−1,
corresponding to the verticesv1 andv2n. Each of the remaining2n−2 equations, represent
xi variable in terms ofx1 andx2 as follows:

x3 = 2x2 − x1 andx4 = 3x3 − x2 are the equations corresponding to the verticesv2

andv3. One can easily expressx4 in terms ofx1 andx2 by substitutingx3 in the equation
x4 = 3x3 − x2 asx4 = 5x2 − 3x1. In a similar manner one can writex5 = 8x2 − 5x1,
x6 = 19x2 − 12x1, x7 = 30x2 − 19x1, x8 = 71x2 − 45x1, x9 = 112x2 − 71x1,
x10 = 265x2 − 168x1, and so on. It is easy to see that eachxi can be written in terms of
x1 andx2 such that

xi = aix2 − bix1, 3 ≤ i ≤ 2n,
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where the two sequencesai andbi have the following recurrence relations;

ai = 3ai−1 − ai−2; i = even (3. 4)

ai = 2ai−1 − ai−2; i = odd (3. 5)

bi = 3bi−1 − bi−2; i = even (3. 6)

ai−1 = bi = 2bi−1 − bi−2; i = odd. (3. 7)

From the above equations, it is easy to get the required recurrent relations between the two
sequencesai andbi, which completes the proof. ¤.

We know from lemma 3.1 and the system of equations (2.1 & 2.2) that the group
S(Ŵ2n) has at most2 generators. So, there are at least2n−2 diagonal entries of the Smith
normal form ofL(Ŵ2n) equal 1. However, the remaining invariant factors ofL(Ŵ2n) hide
inside the relation matrix induced byx2 andx1. From the structure of the grapĥW2n, we
havex2n = 3x1 − x2, andx1 = 2x2n − x2n−1, corresponding to the verticesv1 andv2n.
Then by equation ( 3. 3 ), we have following system of two equations:

a2nx2 − b2nx1 = x2n = 3x1 − x2, andx1 = 2x2n − x2n−1 = 2[a2nx2 − b2n] −
[a2n−1x2 − b2n−1x1] = a2n+1x2 − b2n+1x1. Thus, we have the required form of the
matrixA2n.

A2n =
(

a2n+1 a2n + 1
b2n+1 + 1 b2n + 3

)
. (3. 8)

From the above argument, one can reduceL(Ŵ2n) up to equivalence toI2n−2 ⊕ (A2n)
by performing some row and column operations. Now, we only need to evaluate the SNF
of the matrixA2n.

4. ANALYSIS OF THE COEFFICIENTS OF THESMITH NORMAL FORM OF A2n

In this section, we shall try to find the SNF ofA2n by calculating its diagonal entries.
Let us define the following sequences of positive integers with initial conditions,K0 = 1
andK1 = 2

Km = 4Km−1 −Km−2,

Lm = Km + Km−1.

Some useful properties of the above sequences are given in the following proposition:

PROPOSITION4.1. Letm be any positive integer. Then

• 3 - Km ,
• 2 - Km if m ≡ 0(mod2),
• 2 | Km if m ≡ 1(mod2),
• 2 - Km + Km−1,
• 3 | Lm,
• 2 - Lm.

LEMMA 4.1.

• a2m = Km −Km−1 if m ≡ 0(mod2),
• a2m+1 = 1

3 (Km+1 −Km−1) if m ≡ 1(mod2).

Proof. It is easy to prove by induction.

PROPOSITION4.2. The sequencesKm andLm are relatively prime for eachm.
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Proof. To the contrary, suppose that there exists a primep such thatp | Km andp | Lm,
thenp 6= 2. SinceKm = 4Km−1 − Km−2 this implies thatp | Km−2, hence, we get
p | Km−1 andp | Km−2. But we know that,Km−1 = 4Km−2 − Km−3 this implies
that p | Km−3 ⇒ · · · p | Km−j · · · p | K1 = 2 thus p = 2, a contradiction to our
supposition. ¤

LEMMA 4.2. If n = 2m + 1, then the following relation between the entries of the matrix
A2n which is defined in equation ( 3. 8 ) holds,

a2n+1 = a4m+3 =
2
3
Lm+1an+1,

a2n + 1 = a4m+2 + 1 = 2Kman+1,

b2n+1 + 1 = b4m+3 + 1 = 2Kman+1,

b2n + 3 = b4m+2 + 3 = Lman+1.

If n = 2m, then the following relations holds,

a2n+1 = a4m+1 = 2Kman+1,

a2n + 1 = a4m + 1 = Lman+1,

b2n+1 + 1 = b4m+1 + 1 = Lman+1,

b2n + 3 = b4m + 3 = 3Km−1an+1.

Proof. We prove the first equation in each case; the remaining equations can be proved in a
similar fashion. The proof is done by simultaneously taking induction onn. The equations
are true forn = 2, 3.
The inductive hypothesis states that the equations are true for all integers less than or equal
to n, i.e. a4m+3 = 2

3Lm+1an+1 anda4m+1 = 2Kman+1. We have to show that
a4m+7 = 2

3Lm+2a2(m+2) anda4m+5 = 2Km+1a2m+3. Sincea4m+7 = 15a4m+3 −
4a4m+1, by the inductive step we have,a4m+7 = 10Lm+1a2m+2 − 8Kma2m+1. Using
equation (2.5) we get,a4m+7 = (10Km+1 − 6Km)a2m+2 + 8Kma2m+3. Using equation
(2.4) and lemma 3.2 we havea4m+7 = 10a2m+3(3Km+1 − Km) − a2m+4(10Km+1 −
6Km) = 2

3Lm+2a2(m+2). Now we shall prove thata4m+5 = 2Km+1a2m+3. Since
a4m+5 = 4a4m+3 − a4m+1, then by inductive hypothesis, we get the identitya4m+5 =
4( 2

3Lm+1a2m+2)−2Kma2m+1, by equation (2.5) we geta4m+5 = [ 83Lm+1−4Km]a2m+2+
2Kma2m+3 and applying lemma 3.2 leads to the desired identity. ¤

PROPOSITION4.3.

gcd(a2n+1, a2n + 1, b2n+1 + 1, b2n + 3) = an+1 ∀ n ≥ 2. (4. 9)

Proof. By lemma 4.2 and proposition 4.2, we have the desired result. ¤

PROPOSITION4.4. If n is odd, then

detA2n = 2a2
n+1,

whereA2n is defined in ( 3. 8 ).
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Proof. Sincen = 2m + 1, then by lemma 4.2, we have

detA2n = a4m+3(b4m+2 + 3)− (a4m+2 + 1)2

= −2
3
a2

n+1

[
(Km −Km−1)2 − 2KmKm−1

]

= −2
3
a2

n+1

[
(Km−1 −Km−2)2 − 2Km−1Km−2

]

...

= −2
3
a2

n+1

[
(K2 −K1)2 − 2K2K1

]

= 2a2
n+1.

¤
THEOREM 4.1. If n is odd, then the critical group of̂W2n is the direct product of two
cyclic groups. In particular

S(Ŵ2n) = Zan+1 ⊕ Z2an+1 .

Proof. Since the matrixA2n has Smith normal form as diag(s11, s22) ands11 is equal to
the gcd of all the entries ofA2n, by proposition 4.3, we have

s11 = an+1. (4. 10)

Also s11s22 is equal to the determinant of the matrixA2n and by proposition 4.4, we have

s11s22 = 2a2
n+1. (4. 11)

Combining ( 4. 10 ) and ( 4. 11 ), we obtain

s22 = 2an+1, (4. 12)

which competes the proof. ¤
PROPOSITION4.5. If n is even, then

detA2n = 3a2
n+1,

whereA2n is defined in ( 3. 8 ).

Proof. Sincen = 2m, then by lemma 4.2, we have

det A2n = a4m+1(b4m + 3)− (a4m + 1)2

= −a2
n+1

[
(Km −Km−1)2 − 2KmKm−1

]

= −a2
n+1

[
(Km−1 −Km−2)2 − 2Km−1Km−2

]

...

= −a2
n+1

[
(K2 −K1)2 − 2K2K1

]

= 3a2
n+1.

¤
THEOREM 4.2. If n is even, then the critical group of̂W2n is the direct product of two
cyclic groups. In particular

S(Ŵ2n) = Zan+1 ⊕ Z3an+1 .
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Proof. Sinces11 is equal to the gcd of all the entries ofA2n, by proposition 4.2, we have

s11 = an+1. (4. 13)

Also s11s22 = det A2n and by proposition 4.5, we have

s11s22 = 3a2
n+1. (4. 14)

Combining ( 4. 13 ) and ( 4. 14 ), we obtain

s22 = 3an+1, (4. 15)

which competes the proof. ¤

THEOREM 4.3. If n1 | n2, then the critical group of̂W2n1 is isomorphic to a subgroup of
the critical group of̂W2n2 .

Proof. It is sufficient to prove that every invariant factor ofS(Ŵ2n1) is a divisor of the
corresponding one ofS(Ŵ2n2) and ifn1 | n2 thenan1+1 | an2+1. There are four cases to
be considered, depending on the parties ofn1 andn2. Since the proofs are all very similar,
we verify only the case in which both are odd. We know that

ai = 4ai−2 − ai−4

and its characteristic equation is

t4 − 4t2 + 1 = 0. (4. 16)

⇒ ±
√

3±1√
2

are the roots of this polynomial.

Putpk = a2k andqk = a2k−1, thent2 − 4t + 1 is the characteristic polynomial for{pk}
and{qk}, hence

pk =
√

3− 1
2

(
2 +

√
3
)k

−
√

3 + 1
2

(
2−

√
3
)k

,

qk =
2
√

3− 3
3

(
2 +

√
3
)k

− 2
√

3 + 3
3

(
2−

√
3
)k

.

Suppose thatn1 andn2 are odd integers such thatn1 | n2, thenn2 = sn1, so

an2+1 =
1√
2

[(√3 + 1√
2

)n2 −
(√3− 1√

2

)n2
]
,

an1+1 =
1√
2

[(√3 + 1√
2

)n1 −
(√3− 1√

2

)n1
]
,

we get

an2+1

an1+1
=

s−1∑

k=0

(√3 + 1√
2

)n1k(√3− 1√
2

)n1(s−k−1)

.

√
3±1√
2

are the roots of the polynomial defined in ( 4. 16 ), hence
an2+1

an1+1
is an algebraic

integer. But
an2+1

an1+1
∈ Q and the only algebraic integers over the set of rationalsQ are the

set of integers, therefore
an2+1

an1+1
∈ Z, this implies thatan1+1 | an2+1. As noted above the

proofs of the other cases are similar and so omit them. ¤
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5. THE TREE NUMBER

Let G be a graph, then the tree numberk(G) is equal to the number of spanning trees of
the graphG. In this section, we shall give the closed formula for the number of spanning
trees for the grapĥW2n, for details see [3].

A regular graphis a graph in which each vertex has the same number of neighbors; i.e.,
every vertex has the same degree. A regular graph with vertices of degreer is called an
r-regular graph or a regular graph of degreer.

A nearly regular graphis a graph in which all the vertices except one have a fixed
degreer, while the vertex not of this degree is called anexceptional vertex, for example
the wheel graph is a nearly regular graph of degree 3.

The characteristic polynomialof a graph is the characteristic polynomial of its adja-
cency matrix.

PROPOSITION5.1. [3]
LetG be a nearly regular graph of degreer andH be its subgraph obtained by removing
the exceptional vertex, then

k(G) = PH(r),

wherePH(t) is the characteristic polynomial of the graphH.

REMARK 1. Since the wheel graphWn is a nearly regular graph of degree3, so by
proposition 5.1, we get

k(Wn) = PCn(3).

The characteristic polynomial of a cycleCn is given as

PCn(t) = 2Tn

( t

2

)
− 2, (5. 17)

where

Tn(t) =
n

2

bn
2 c∑

m=0

(−1)m

n−m

(
n−m

m

)
(2t)n−2m

is the Chebyshev polynomial of the first kind. It is easy to see that, it gives the same number
of spanning trees of wheel graph given by N.Biggs in[2].

A very interesting application of the proposition 5.1 is given as; the inner dual planar
graphG∗∗ is the subgraph of the usual dualG∗ obtained by deleting the vertex correspond-
ing to the infinite region of the original planar graph.

Let G be a planar graph in which any finite region is bounded by a cycle of fixed length
r. ThenG∗ is a nearly regular graph, so we have the following result.

PROPOSITION5.2. [3]
LetG be a planar graph in which any bounded region is a cycle of lengthr, then

k(G) = P ∗∗G (r),

whereP ∗∗G (t) is the characteristic polynomial of the graphG∗∗.

THEOREM 5.1. The tree number for the grapĥW2n is

k(Ŵ2n) = PCn(4) = 2Tn(2)− 2, (5. 18)

whereTn(t) is the Chebyshev polynomial of the first kind.
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Proof. The grapĥW2n is a planar graph in which bounded regions are bounded by a cycle
of length4 and the total number of bounded regions aren. Hence, the inner dual is a cycle
of lengthn and its characteristic polynomial is defined in ( 5. 17 ). The result follows
accordingly. ¤
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