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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique
solution of the equation

J (F (x) + G(x)) = 0, (1. 1)

whereF is a Fŕechet–differentiable operator defined on an open convex subset of a Banach
spaceX with values in Banach space ,J ∈ (,X ) the space of bounded linear operators
fromX into andG :−→ is continuous.

Many problems from Applied sciences such as engineering, optimization, economics,
physics, mathematical bilogy and other disciplines can be formulated like equation (1. 1 )
using mathematical modelling [6],[8], [11],[15], [21], [25], [26]. The solutions of these
equations can be found in closed form only in special cases. That is why the solution
methods for these equations are iterative– when starting from one or several initial approx-
imations a sequence is constructed that converges to a solution of the equation. Since all
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of these methods have the same recursive structure, they can be introduced and discussed
in a general framework. We consider Newton–like methods

xn+1 = xn −A(xn)# (F (xn) + G(xn)) for each n = 0, 1, 2, · · · , (1. 2)

to generate a sequence approximating, wherex0 ∈ D is an initial point. Here,F ′(xn)
denotes the Fréchet–derivative operatorF evaluated atx = xn, A(xn) ∈ (X , ) is an
approximation ofF ′(xn) andA(xn)# denotes an outer inverse ofA(xn),
i.e.,A(xn)#A(xn)A(xn)# = A(xn)# (n ≥ 0) [4, 6, 8, 11], [20, 12], [28].

Under some Lipschitz–type assumptions, Rheinboldt [27] presented a convergence the-
orem for (1. 2 ), whenA(xn)# = A(xn)−1 (n ≥ 0) andG(x) = 0 on , which includes
the Newton–Kantorovich theorem for Newton’s method (i.e.,A(xn) = F ′(xn)) as a spe-
cial case. A further generalization was given by Dennis [14]. Yamamoto [18], Argyros
and Hilout [10]) and others [1, 2, 16, 28, 3] improved on the error bounds obtained by
the above. In the context of outer and generalized inverses, Ben–Israel [20], Deuflhard
[15], Häubler [28], Yamamoto [29], Chen and Nashed [12] and Argyros [4, 5, 6], have
established Newton–Kantorovich–type theorems under various conditions.

Our goal is to expand the applicability of Newton–like methods (1. 2 ) for solving equa-
tions by enlarging the convergence domain of these methods. Using more precise majoriz-
ing sequences we provide a tighter convergence analysis than in earlier studies such as [2]-
[14], [16]-[30]. Moreover, our sufficient semilocal convergence conditions are also weaker.
Numerical examples where older convergence conditions do not hold but for which our
convergence conditions are satisfied in this study.

The study about convergence matter of iterative procedures is usually based on two
types: semilocal and local convergence analysis. The semilocal convergence matter is,
based on the informatiuon around an initial point, to give conditions ensuring the conver-
gence of the iterative procedure; while the local one is, based on the information around
a solution, to find estimates of the radii of convergence balls. The paper is organized as
follows.

Section 2 contains the semilocal and local convergence of Newton–like method where
as the examples are given in the concluding Section 3.

2. SEMILOCAL CONVERGENCE ANALYSIS

We need the following auxiliary result on the convergence of majorizing sequences for
Newton–like method. LetK0 > 0, K > 0, L ≥ 0, L0 ≥ 0, `0 ≥ 0, ` ≥ 0, M ≥ 0,
λ ≥ 0, µ ≥ 0 andη > 0 be given prameters. Define parameterα by

α =
2 (K − 2 M)

K +
√

K2 + 8 L (K − 2 M)
. (2. 3)

Suppose the following conditions hold

2 M < K, µ ≤ α(1− `); (2. 4)

L0η + `0 < 1, Lt2 + ` < 1; (2. 5)

and

(M + αL)[
t2 − t1
1− α

+ η] + µ ≤ α(1− `), (2. 6)
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wheret1, t2 are given in ( 2. 7 ).α0 is given in ( 2. 11 ) andα0 ≤ α. Then, scalar sequence
{tn} given by

t0 = 0, t1 = η, t2 = η + K0 η+2 λ
2 (1−`0−L0 η) η

tn+2 = tn+1 +
K (tn+1 − tn) + 2 (M tn + µ)

2 (1− `− L tn+1)
(tn+1 − tn)

(2. 7)

for eachn = 1, 2, · · · , is well defined, increasing, bounded from above by

=
(

1 +
K0 η + 2 λ

2 (1− `0 − L0 η) (1− α)

)
η (2. 8)

and converges to its unique least upper bound which satisfies

∈ [t2, ]. (2. 9)

Moreover, the following estimates hold for eachn = 1, 2, · · · :

0 < tn+2 − tn+1 ≤ K0 η + 2 µ

2 (1− `− Lη)
αn η. (2. 10)

Proof. Parameterα belongs in interval(0, 1) by (2. 3 ) and (2. 4 ). Let

α0 =
K (t2 − t1) + 2 (M t1 + µ)

2 (1− `− L t2)
. (2. 11)

It follows from (2. 5 ) and (2. 7 ) that

L t2 + ` < 1. (2. 12)

Moreover, by (2. 3 ), (2. 6 ) and (2. 12 ), we have that

0 < α0 ≤ α. (2. 13)

We shall show using induction on the integeri ≥ 1:

0 ≤ K (ti+1 − ti) + 2 (M ti + µ)
2 (1− `− L ti+1)

≤ α. (2. 14)

Estimate (2. 14 ) is true fori = 1 by (2. 13 ). Then, we have by (2. 7 ) and (2. 14 ) for
i = 1 that

0 < t3 − t2 ≤ α (t2 − t1) =⇒ t3 ≤ t2 + α (t2 − t1)
=⇒ t3 ≤ t2 + (1 + α) (t2 − t1)− (t2 − t1)
=⇒ t3 ≤ t1 + 1−α2

1−α (t2 − t1) < .
(2. 15)

Assume (2. 14 ) holds for allj ≤ i. Then, we have that

0 < tj+2 − tj+1 ≤ αj (t2 − t1) (2. 16)

and

tj+2 ≤ t1 +
1− αj+1

1− α
(t2 − t1). (2. 17)

We must show

0 ≤ K (tj+2 − tj+1) + 2 (M tj + µ)
2 (1− `− L tj+1)

≤ α (2. 18)

or
K (tj+2 − tj+1) + 2 (M tj + µ) ≤ 2 α (1− `− L tj+1)

or
K (t2 − t1) αj + 2 M 1−αj

1−α (t2 − t1) + 2 α L 1−αj+1

1−α (t2 − t1)+
2 (M η + α L η + µ− α (1− `)) ≤ 0.

(2. 19)
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Estimate (2. 19 ) motivates us to define recurrent functions on(0, 1) by

fj(s) = K (t2 − t1) sj + 2 M (t2 − t1) (1 + s + s2 + · · ·+ sj−1)
2 L (t2 − t1) s (1 + s + · · ·+ sj) + 2 ((M + sL) η + µ− s (1− `)).

(2. 20)
We need a relationship between two consecutive functionsfj :

fj+1(s) = fj+1(s)− fj(s) + fj(s) = fj(s) + g(s) (t2 − t1) sj , (2. 21)

where
g(s) = 2 Ls2 + K s + 2 M −K. (2. 22)

Note that by ( 2. 4 ) and ( 2. 22 ), functiong has an unique positive zeroα given by ( 2. 3
). In view of ( 2. 20 ), estimate ( 2. 19 ) holds if

fj(α) ≤ 0. (2. 23)

Define functionsf∞ on (0, 1) by

f∞(s) = lim
j→∞

fj(s). (2. 24)

We have from ( 2. 21 ) and ( 2. 22 ) that

fj+1(α) = fj(α). (2. 25)

Then, it follows from ( 2. 24 ) and ( 2. 25 ) that ( 2. 23 ) holds if

f∞(α) ≤ 0. (2. 26)

By letting j −→∞ in ( 2. 16 ) and by ( 2. 6 ), we have that

f∞(α) = 2
(

M η+α L η+µ−α (1−`)+
M

1− α
(t2−t1)+

α L

1− α
(t2−t1)

)
≤ 0. (2. 27)

The induction for ( 2. 14 ) is now completed. Hence, sequence{tn} is increasing, bounded
from above by given in ( 2. 8 ) and as such it converges to its unique least upper bound
which satisfies ( 2. 9 ). The proof of Lemma 2 is complete. £

Inequalities ( 2. 5 )–( 2. 6 ) describe the smallness ofη and can be solved forη
(see, e.g. Section 3). However, we decided to leave them as uncluttered as possible,
since their representation is very long. Notice also that these inequalities are the expected
Kantorovich-type hypotheses appearing in these type of methods. LetU(x, r) andU(x, r)
stand, respectively, for the open and closed ball inX with centerx and radiusr > 0.

We shall use the following conditions for the semilocal convergence of Newton–like
method

(C) F :⊆ X → is Fŕechet–differentiable andG :→ is continuous;

There exist an approximationA(x) ∈ L(X,Y ) of F ′(x), an open convex subset0 of , an
initial point x0 ∈0, a bounded outer inverseA# of A(x0) and a parameterη > 0 such that

‖ A# (F (x0) + G(x0)) ‖ ≤ η. (2. 28)

Moreover, suppose that there exist parametersK > 0, M ≥ 0, µ0 ≥ 0, µ2 ≥ 0, L ≥
0, ` ≥ 0 such that for eachx andy in 0

‖ A# (F ′(x + θ(y − x))− F ′(x)) ‖ ≤ Kθ ‖ x− y ‖ for eachθ ∈ [0, 1],(2. 29)

‖ A# (F ′(x)−A(x)) ‖ ≤ M ‖ x− x0 ‖ +µ0, (2. 30)

‖ A# (G(x)−G(y)) ‖ ≤ µ2 ‖ x− y ‖, (2. 31)

‖ A# (A(x)−A(x0)) ‖ ≤ L ‖ x− x0 ‖ +`; (2. 32)
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hypotheses of Lemma 2 hold and
U(x0, ) ⊆0, (2. 33)

where is defined in Lemma 2.
In view of ( 2. 29 ), ( 2. 31 ) and ( 2. 32 ), we have respectively that forx1 =

x0 −A(x0)#(F (x0) + G(x0)) for eachx ∈0

‖A# (F ′(x0 + θ(x1−x0))−F ′(x0)) ‖≤ K0θ ‖ x1−x0 ‖ for eachθ ∈ [0, 1], (2. 34)

‖A# (G(x1)−G(x0)) ‖≤ µ1 ‖ x1 − x0 ‖, (2. 35)

and
‖A# (A(x1)−A(x0)) ‖≤ L0 ‖ x1 − x0 ‖ +`0. (2. 36)

Clearly
K0 ≤ K, µ1 ≤ µ2, L0 ≤ L, `0 ≤ ` (2. 37)

and K
K0

, µ2
µ1

, L
L0

can be arbitrarily large [5, 6, 8, 11]. Note that in practice the computation
of K,µ2, L and` requires the computation ofK, µ1, L0 and`0, respectively. So, ( 2. 34
)-( 2. 36 ) are not additional respectively to ( 2. 29 ), ( 2. 31 ) and ( 2. 32 ) hypotheses.

We can show the following semilocal convergence theorem for Newton–like method.

Theorem 1. Suppose that the (C) conditions hold. Then, sequence{xn} (n ≥ 0) gener-
ated by Newton-like method is well defined, remains inU(x0, ) for eachn = 0, 1, 2, · · ·
and converges to a solution of equationA# (F (x)+G(x)) = 0 in U(x0, ). Moreover, the
following estimates hold for alln ≥ 0

‖ xn+1 − xn ‖≤ tn+1 − tn (2. 38)

and
‖ xn− ‖≤ −tn, (2. 39)

where sequence{tn} (n ≥ 0) is given by ( 2. 7 ), withµ = µ0 + µ2 andλ = µ0 + µ1.
Furthemore, the solution of equation ( 1. 1 ) is unique inU(x0, ) provided that

(
K

2
+ M + L

)
+ µ + ` < 1. (2. 40)

Proof. We shall show using induction onm that ( 2. 38 ) holds. Estimate ( 2. 39 ) will
then follow from ( 2. 38 ) using standard majorization techniques [6, 8, 11, 21]. By the
initial conditions, we have that

‖ x1 − x0 ‖≤ t1 − t0

and ( 2. 38 ) holds form = 0. Using ( 2. 32 ), we get that

‖ A# (A(xm)−A) ‖≤ L∗ ‖ xm − x0 ‖ +`∗ ≤ L∗ tm + `∗ ≤ L∗ + `∗ < 1, (2. 41)

where

L∗ =
{

L0, if m = 1
L, if m = 2, 3, · · ·

and

`∗ =
{

`0, if m = 1
`, if m = 2, 3, · · · .

From Banach’s perturbation Lemma [12, Lemma 2.2] and ( 2. 41 ), we obtain that
A(xm)# := (I + A# (A(xm) − A))−1 A# is an outer inverse ofA(xm). Moreover, we
have that

‖ A(xm)# A ‖≤ (1− L∗ ‖ xm − x0 ‖ −`∗)−1 ≤ (1− L∗ tm − `∗)−1
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andN (A(xm)#) = N (A#). Assume that for1 ≤ m ≤ k:

‖ xm − xm−1 ‖≤ tm − tm−1 and N (A(xm−1)#) = N (A#).

Then, we obtain that

‖ xm − x0 ‖≤ tm − tm−1 and N (A(xm)#) = N (A(xm−1)#) = N (A#).

Hence, we have from [12, Lemma 2.3] that

A(xm)# (I −A(xm−1)A(xm−1)#) = 0

and

xm+1 − xm = −A(xm)# (F (xm) + G(xm))

= −A(xm)#
( ∫ 1

0

(F ′(xm + t (xm−1 − xm))− F ′(xm−1)) (xm − xm−1) dt

+(F ′(xm−1)−A(xm−1)) (xm − xm−1) + (G(xm)−G(xm−1))
)

.

(2. 42)
Using also [12, Lemma 2.3], we obtain that

A(xm)# (I −A A#) = 0.

In view of ( 2. 29 )–( 2. 33 ), ( 2. 41 ) and ( 2. 42 ) for

K? =
{

K0 if m = 1
K if m = 2, 3, · · ·

we deduce that

‖ xm+1 − xm ‖
≤‖ A(xm)# A ‖

{( ∫ 1

0

‖ A# (F ′(xm + t (xm−1 − xm))− F ′(xm−1)) ‖ dt+

‖ A# (F ′(xm−1)−A(xm−1)) ‖
)
‖ xm − xm−1 ‖ + ‖ A# (G(xm)−G(xm−1)) ‖

}

≤ 1
1− L∗ tk − `∗

(
K?

2
‖ xm − xm−1 ‖2 +(M ‖ xm−1 − x0 ‖ +µ) ‖ xm − xm−1 ‖

)

≤ 1
1− L∗ tk − `∗

(
K?

2
(tm − tm−1)2 + M tm−1 + µ

)
(tm − tm−1) = tm+1 − tm,

(2. 43)
which completes the induction. Hence, we have for anym that

‖ xm+1 − xm ‖≤ tm+1 − tm,

‖ A# (A(xm+1)−A) ‖≤ L∗ ‖ xm+1 − x0 ‖ +`∗ ≤ L∗ tm+1 + `∗ ≤ L∗ + `∗ < 1,

‖ xm − x0 ‖≤ tm ≤
and A(xm+1)# := (I + A# (A(xm+1) − A))−1 A# is an outer inverse ofA(x). It
follows thatxm ∈ U(x0, ), m ≥ 0 and{xm} converges to a point inU(x0, ). The point
is a solution ofA# (F (x) + G(x)) = 0. Indeed, by definition

A(xm)# = (I + A# (A(xm)−A))−1 A#, for all m

and
0 = lim

m−→∞
(I + A# (A(xm)−A)) (xm − xm−1)

= lim
m−→∞

A# (F (xm) + G(xm)) = A# (F () + G()).
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Hence, solves equationA# (F () + G()) = 0. Finally to show that is the unique solution
of equation ( 1. 1 ) inU(x0, ), as in ( 2. 42 ) and ( 2. 43 ), we get in turn for∈ U(x0, ),
with A# (F () + G()) = 0, the estimation

‖ −xm+1 ‖
≤‖ A(xm)# A ‖

{( ∫ 1

0

‖ A# (F ′(xm + θ (−xm))− F ′(xm)) ‖ dθ

+ ‖ A# [F ′(xm)−A(xm)] ‖
)
‖ −xm ‖ + ‖ A# [G(xm)−G()] ‖

}

≤ (1− `∗ − L∗ tm+1)−1

(
K?

2
‖ −xm ‖2 +(M ‖ xm − x0 ‖ +µ) ‖ −xm ‖

)

≤ (1− `∗ − L∗ tm+1)−1

(
K?

2
(−tm) + M tm + µ

)
‖ −xm ‖

≤ (1− `∗ − L∗ )−1

(
K?

2
(−t0) + M + µ

)
‖ −xm ‖<‖ −xm ‖,

(2. 44)
by the uniqueness hypothesis ( 2. 40 ). It follows by ( 2. 44 ) thatlim

m−→∞
xm =. But we

showed lim
m−→∞

xm =. Hence, we deduce=. The proof of Theorem 1 is complete. £
(a) The hypotheses of Lemma 2 are used to show that sequence{tn} is increasingly

convergent. These conditions can be replaced in Theorem 1 by the weaker

tn <
1− `

L
for each n = 0, 1, 2, · · · . (2. 45)

It follows from ( 2. 7 ) and ( 2. 45 ) that sequence{tn} is increasing and bounded
above by1−`

L and as such it converges to somet∗ ∈ [t2, 1−`
L ]. Clearly, hypotheses

of Lemma 2 imply ( 2. 45 ) but not necessarily vice versa. Then, ( 2. 45 ) can
replace conditions of Lemma 2 in Theorem 1.

(b) Another set of conditions weaker than those of Lemma 2 but stronger than ( 2. 45
) is given by the following
(H) Suppose that there existsN ≥ 1 such that

t0 < t1 < · · · < tN <
1− `

L
for 0 ≤ ` < 1

and hypotheses of Lemma 2 are satisfied withηN = tN+1 − tN replacingη.
Then, sequence{tn} is increasingly convergent and

tn+2 − tn+1 ≤ α(tn+1 − tn) for eachn = N, N + 1, · · · .

If N = 1 we obtain Lemma 2. Clearly, weaker hypotheses (H) can replace
those of Lemma 2 in the hypotheses of Theorem 1.

The point can be replaced by , given in closed form by ( 2. 9 ) in all hypotheses of
Theorem 1. As it was also noted in [17] (see Theorem 1 above), suppose that

[I + (A(x)−A(x0)) A+]−1 A(x) mapsN (A(x0)) into R (A(x0)) (2. 46)

wheneverI + (A(x) − A(x0))A+ is invertible for somex ∈, whereN (A) denotes the
null space ofA andA+ the generalized inverse ofA(x0). Then by [12, Lemma 2.4]:
A(xn) = [I + A+(x0) (A(xn) − A(x0))]−1 A+(x0) is a generalized inverse. Hence by
[12, Lemma 2.4] and Theorem 1, we establish a semilocal convergence theorem for ( 1. 2
) using generalized inverses. In the finite dimensional case (X , both finite), condition ( 2.
46 ) can be replaced by

rank (A(x)) ≤ rank (A(x0)) (x ∈). (2. 47)
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Next, we present the local convergence of the Newton–like method. We shall use the
same notation as in the semilocal case for the parameters involved. As in the semilocal
convergence case we use the conditions

(C∗) F :⊆ X → is Fŕechet–differentiable andG :→ is continuous. There exist an
approximationA(x) ∈ L(X, Y ) of F ′(x), an open convex subset0 of , x∗ ∈0,

a bounded outer inverseA#
∗ of A(x∗) and parametersK > 0, M ≥ 0, µ0 ≥

0, µ2 ≥ 0, L ≥ 0, ` ≥ 0 such thatA#
∗ (F (x∗) + G(x∗)) = 0 and for eachx in 0

‖ A#
∗ (F ′(x + θ(x∗ − x))− F ′(x)) ‖ ≤ Kθ ‖ x− x∗ ‖ for eachθ ∈ [0, 1],

‖ A#
∗ (F ′(x)−A(x)) ‖ ≤ M ‖ x− x∗ ‖ +µ0,

‖ A#
∗ (G(x)−G(x∗)) ‖ ≤ µ2 ‖ x− x∗ ‖,

‖ A#
∗ (A(x)−A(x∗)) ‖ ≤ L ‖ x− x∗ ‖ +`;

µ + ` < 1,

and
U(x∗, R) ⊆,

whereR = 1−(µ0+µ2+`)
K
2 +M+L

andµ = µ0 + µ2.

As in the case of the (C) conditions we have

‖A#
∗ (F ′(x1 + θ(x∗ − x1))− F ′(x1)) ‖≤ K0θ ‖ x1 − x∗ ‖ for eachθ ∈ [0, 1],

‖A#
∗ (G(x1)−G(x∗)) ‖≤ µ1 ‖ x1 − x∗ ‖,

and
‖A#

∗ (A(x1)−A(x∗)) ‖≤ L0 ‖ x1 − x∗ ‖ +`0.

Comments similar to the ones given for the semilocal convergence case can now follow.
Next, we present the local convergence result for the Newton–like method.

Theorem 2. Suppose that the (C∗) conditions hold. Then, sequence{xn} (n ≥ 0) gen-
erated by Newton-like method forx0 ∈ U(x∗, R) is well defined, remains inU(x∗, R) for
eachn = 0, 1, 2, · · · and converges to a solutionx∗. Moreover, the following estimates
hold

‖ xn+1 − x∗ ‖< a∗n‖xn − x∗‖ ≤ a‖xn − x∗‖, (2. 48)

and

a =
(K∗

2 + M)R + µ

1− (` + LR)
,

where

a∗n =
K∗
2 ‖xn − x∗ + M‖xn − x∗‖+ µ∗

1− (`∗ + L∗‖xn − x∗‖)
whereK∗, L∗ are given in Theorem 1,

`∗ =
{

`0, if n = 0
`, if n = 1, 2, 3, · · ·

and

µ∗ =
{

λ, if n = 0
µ, if n = 1, 2, 3, · · · .

Proof. Simply replacex0, A
#, y∗, (C), in ( 2. 44 ) respectively byx∗, A#

∗ , x∗, (C∗)
to obtain ( 2. 48 ) from which it followsxn ∈ U(x∗, R) and limn→∞ xn = x∗. That
completes the proof of the Theorem.
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3. SPECIAL CASES AND APPLICATIONS

In this Section we shall compare majorizing sequences with earlier ones.

Case 1Let us introduce scalar sequence{sn} given by

s0 = 0, s1 = η,

sn+2 = sn+1 +
K (sn+1 − sn) + 2 (M sn + µ)

2 (1− `− Lsn+1)
(sn+1 − sn) for eachn = 0, 1, 2 · · ·

(3. 49)
where

K =
{

K0 if K0 < K
K if K0 = K.

Note that ifK0 = K, ( 3. 49 ) reduces to the majorizing sequence used in [2]-
[11]. The majorizing sequence in [12, 13, 14, 28, 26, 27, 29, 30] is given by (for
G=0)

v0 = 0, v1 = η, vn+2 = vn+1 +
f(vn+1)
q(vn+1)

for eachn = 0, 1, 2 · · · (3. 50)

where

f(s) =
σ

2
s2 − (1− b) s + η, q(s) = 1− Ls− `,

b = µ + ` and σ = max{K, M + L}.
Next, we compare majorizing sequence{sn}with {vn}. (see [5, Proposision 3.1])
Suppose sequences{tn}, {sn} and{vn} given by ( 2. 7 ), ( 3. 49 ) and ( 3. 50 )
respectively are increasingly convergent. Then, the following assertions hold

tn+1 ≤ sn+1 ≤ vn+1 for eachn = 1, 2, · · · , (3. 51)

tn+1 − tn ≤ sn+1 − sn ≤ vn+1 − vn for eachn = 1, 2, · · · , (3. 52)

t∗ − tn ≤ −sn ≤ v? − vn for eachn = 0, 1, 2, · · · , (3. 53)

t∗ ≤≤ v?, (3. 54)

wheret∗ = limn→∞ tn and= limn→∞ sn and= limn→∞ vn. Moreover, strict
inequality holds in the right hand side inequality in ( 3. 51 ) and ( 3. 52 ) if
K < M + L. Furthermore, strict inequality holds in the left hand side inequality
in ( 3. 51 ) and ( 3. 52 ) if̀ 0 < ` or L < K.

So far we showed that{sn} is a tighter sequence than{vn} and the informa-
tion on the location of the solution at least as precise, since≤. The sufficient
convergence conditions given in this study can also be weaker in many interesting
cases.

Case 2 We setA#(x) = A(x)−1, A(x) = F ′(x) andG(x) = 0 on 0 for simplicity. The
parameters are chosen to beM = µ = ` = `0 = µ0 = λ = µ1 = µ2 = 0 and
K0 = L0 = L. That is we consider the popular case of Newton’s method. Then
Lemma 2 reduces to:

Let K > 0, L > 0 andη > 0 be constants. SupposeK ≥ L and

h2 = K2 η ≤ 1
2
, (3. 55)

whereK2 = 1
8 (4L + (K L + 8 L2)1/2 + (LK)1/2). Set

α =
2 K

K + (K2 + 8 LK)1/2
. (3. 56)
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Then, scalar sequence{tn} given by

t0 = 0, t1 = η, t2 = η + L η2

2 (1−L η) ,

tn+2 = tn+1 +
K (tn+1 − tn)2

2 (1− L tn+1)
(n ≥ 1),

(3. 57)

is well defined, increasing, bounded from above by

= η +
Lη2

2 (1− α) (1− Lη)
(3. 58)

and converges to its unique least upper bound which satisfiesη ≤≤. Moreover,
the following estimates hold for alln ≥ 1

0 < tn+2 − tn+1 ≤ αn Lη2

2 (1− Lη)
. (3. 59)

Clearly ( 3. 55 ) is weakened even further ifK0 < L or L0 < L. The sufficient
convergence condition in [4], [20]- [30] forK0 = L0 = K = L is given by the
Kantorovich condition

h? = K η ≤ 1
2
. (3. 60)

Moreover, ifL0 = K0 = K, the condition given by us in [5]-[11] is

h1 = K1 η ≤ 1
2
, (3. 61)

whereK1 = 1
4 (K + 4 L + (K2 + 8 LK)1/2). We have that

h? ≤ 1
2

=⇒ h1 ≤ 1
2

=⇒ h2 ≤ 1
2

but not necessarily vice versa unless ifK0 = K. Note also that since

L ≤ K

holds in general andLK can be arbitrarily small, we have that

h1

h?
−→ 1

4
,

h2

h?
−→ 0,

h2

h1
−→ 0 as

L

K
−→ 0.

Case 3Let An = 1
bn

F ′(xn) for bn 6= 0. That is we consider the damped Newton method
[10]

xn+1 = xn − bnF ′(xn)#(F (xn) + G(xn)) for eachn− 0, 1, 2 · · · .

Then, we can show to choose the parametersbn. For example condition ( 2. 30 )
is satisfied provided that

|1− 1
bn
|L0 ≤ M

and

|1− 1
bn
|‖A#F ′(x0)‖ ≤ µ0,

since

‖A#(F ′(xn)−A(xn)‖ = |1− 1
bn
|‖A#F ′(xn)‖

≤ |1− 1
bn
|(‖A#(F ′(xn)− F ′(x0)) + A#F ′(x0)‖
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≤ |1− 1
bn
|(L0‖xn − x0‖+ ‖A#F ′(x0)‖.

Similarly, we find the other conditions onbn using ( 2. 32 ) and ( 2. 36 ).
Case 4Let An = bnI + B(xn), whereB(x) is an approximation toF ′(x). That is we

consider the Levenberg-Marquardt method (LM) [15, 16]

xn+1 = xn − (bnI + B(xn))#(F (xn) + G(xn)) for eachn = 0, 1, 2, · · · .

Then, the choice ofbn can be determined as in Case 3. As an example, ifB(x) =
F ′(x), then

‖A#(F ′(xn)−A(xn)‖ = ‖A#bnI‖ = |bn|,
so we can chooseM = 0 and|bn| ≤ µ0. Notice that the conditions on parameters
bn are more general and weaker than the ones usually associated with the Damped
Newton method or the Levenberg-Marquardt method.

Semi-local case.
(a) Let G = 0, A(x)# = F ′(x)−1, x ∈,X == R, x0 = 1 and= U(1, 1 − a) for

a ∈ (0, .5). Define functionF on by

F (x) = x3 − a. (3. 62)

Then, using ( 2. 28 )-( 2. 32 ) we get thatη = 1−a
3 andK = 2 (2 − a). The

Newton-Kantorovich condition ( 3. 60 ) is violated, sinceh? = 4 (1 − a) (2 −
a)/3 > 1 for eacha ∈ (0, .5). Hence, there is no guarantee under the Kantorovich
theorem that sequence{xn} converges to . Using ( 2. 32 ), we get thatL = 3− a.
Our hypothesis holds fora = [.4271907643, .5). Hence, ( 3. 55 ) is violated, say
for a = .427. However, hypotheses of Remark 2.3 (a) or (b) are satisfied.

(b) Let G(x) = 3ε|x − 1|, ε > 0. Then, using ( 2. 31 ) we getµ2 = ε. So, the
sufficient convergence condition given in [12, 13, 14, 30] is

2Kη ≤ (1− ε)2

which is violated for allε > 0. However, our conditions (see e.g. Lemma 2) are
satisfied for sufficiently smallε.

Let C[0, 1] stand for the space of continuous functions defined on interval[0, 1] and be
equipped with the max-norm. Let alsoX == C[0, 1], = U(0, r) for somer > 1, G = 0
andA(x)# = F ′(x)−1. DefineF on by

F (x)(s) = x(s)− y(s)− ζ

∫ 1

0

G(s, t) x3(t) dt, x ∈ C[0, 1], s ∈ [0, 1].

y ∈ C[0, 1] is given,ζ is a real parameter and the KernelG is the Green’s function defined
by

G(s, t) =
{

(1− s) t if t ≤ s
s (1− t) if s ≤ t.

Then, the Fŕechet-derivative ofF is defined by

(F ′(x) (w))(s) = w(s)− 3 ζ

∫ 1

0

G(s, t)x2(t) y(t) dt, w ∈ C[0, 1], s ∈ [0, 1].

Let us choosex0(s) = y(s) = 1 and|ζ| < 8/3. Then, we have that

‖ −F ′(x0) ‖< 3
8
|ζ|, F ′(x0)−1 ∈ (,X ),
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r ζ? h? h1 h2

2.09899 .9976613778 1.007515200 .9757536188 .9639223786
2.19897 .9831766058 1.055505600 .9915015816 .9678118280
2.29597 .9698185659 1.102065600 1.006635036 .9715205068
3.095467 .8796313211 1.485824160 1.127023800 1.000082409

TABLE 1. Comparison table of conditions ( 3. 55 ), ( 3. 60 ) and ( 3. 61 )

‖ F ′(x0)−1 ‖≤ 8
8− 3 |ζ| , η =

|ζ|
8− 3 |ζ| , L =

12 |ζ|
8− 3 |ζ| ,

K =
6 r |ζ|

8− 3 |ζ| and h? =
12 r |ζ|2

(8− 3 |ζ|)2 .

Denote byζ? the positive root of equation3 (4 r − 3) t2 + 48 t − 64 = 0. Notice that if
ζ > ζ?, thenh? > 1. Hence the Newton-Kantorovich condition is not satisfied. Let us
choose for exampler = 3. Then, we obtainµ? = .888889.

In Table 1, we pick some values ofr for ζ = 1, so we give the corresponding values of
ζ? and we compare the ”h” conditions. We have chosenK0 = L0 = L. Hence, Table 1
shows that our conditions are always better than the Newton-Kantorovich conditions ”h?”
(see the third column of Table 1). Local ConvergenceLet A(x)# = F ′(x)−1, x ∈
,X == R3, = U(0, 1) and= (0, 0, 0). Define functionsF, G on forw = (x, y, z) by

F (w) = (ex − 1,
e− 1

2
y2 + y, z) (3. 63)

and

G(x) = ε(|x|, |y|, |z|) for someε ∈ (0, 1).

Then, the Fŕechet derivative ofF is given by

F ′(w) =




ex 0 0
0 (e− 1) y + 1 0
0 0 1




Notice that we haveF () = 0, F ′() = F ′()−1 = diag {1, 1, 1} andL = e − 1 < K0 =
K = e, M = µ0 = ` = `0 = µ∗ = λ = 0 andµ1 = µ2 = ε. Then, Theorem 2 gives that
the convergence radius is

R =
2(1− ε)
3e− 2

,

whereas the convergence radius given by others [12, 13, 14, 27, 29, 30] (usingK = L) is

R0 =
2(1− ε)

3e
.

Notice thatR0 < R.
More examples whereL < K or R0 < R can be found in [5]-[11].
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19. J. A. Ezquerro, M. A. Herńandez and N. Romero,Newton-type methods of high order and domains of semi-

local and global convergence, Appl. Math. Comput.214, No.1 (2009) 142-154.
20. A. B.Israel and T.N.E. Greville:Generalized Inverses: Theory and Applications, John Wiley and Sons, 1974.
21. L. V. Kantorovich and G. P. Akilov:Functional Analysis, Pergamon Press, Oxford, 1982.
22. K. A. Levenberg,A method for the solution of certain nonlinear problems in least squares, Quart. Appl.

Math.2, (1944) 164-168.
23. Marquardt,An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math.11,

(1963) 431-441.
24. F. A Potra,Sharp error bounds for a class of Newton–like methods, Libertas Mathematica5, (1985) 71-84.
25. P. D. Proinov,General local convergence theory for a class of iterative processes and its applications to

Newton’s method, J. Complexity25, (2009) 38-62.
26. P. D. Proinov,New general convergence theory for iterative processes and its applications to Newton-

Kantorovich type theorems, J. Complexity26, (2010) 3-42.
27. W. C. Rheinboldt,An adaptive continuation process for solving systems of nonlinear equations, Polish Acad-

emy of Science, Banach Ctr. Publ.3, (1977) 129-142.
28. W. M. Ubler, A Kantorovich–type convergence analysis for the Gauss–Newton method, Numer. Math.48,

(1986) 119-125.
29. T. Yamamoto,A convergence theorem for Newton–like methods in Banach spaces, Numer. Math.51, (1987)

545-557.
30. P. P. Zabrejko and D. F. Nguen,The majorant method in the theory of Newton–Kantorovich approximations
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