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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique

solution of the equation

J (F(z) + G(x)) =0, 1.1
whereF' is a Fechet—differentiable operator defined on an open convex subset of a Banach
spaceX’ with values in Banach space7, € (, X) the space of bounded linear operators
from X into andG : — is continuous.

Many problems from Applied sciences such as engineering, optimization, economics,
physics, mathematical bilogy and other disciplines can be formulated like equation (1. 1)
using mathematical modelling [6],[8], [11],[15], [21], [25], [26]. The solutions of these
equations can be found in closed form only in special cases. That is why the solution
methods for these equations are iterative— when starting from one or several initial approx-
imations a sequence is constructed that converges to a solution of the equation. Since all
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of these methods have the same recursive structure, they can be introduced and discussed
in a general framework. We consider Newton-like methods

Tpy1 = Tn — A(z,)? (F(x,) + G(z,)) foreachn =0,1,2,--, 1.2

to generate a sequence approximatimgherez, € D is an initial point. HereF’(x,,)
denotes the Erchet—derivative operatdr evaluated att = z,, A(z,) € (&X,) is an
approximation ofF’(z,,) and A(z,,)* denotes an outer inverse éfz,,),

i.e., A(z,)# A(z,) A(xn)# = A(z,)? (n > 0) [4, 6, 8, 11], [20, 12], [28].

Under some Lipschitz—type assumptions, Rheinboldt [27] presented a convergence the-
orem for (1. 2), whem(x,,)# = A(x,)~! (n > 0) andG(z) = 0 on, which includes
the Newton—Kantorovich theorem for Newton’s method (i4%,,) = F'(z,)) as a spe-
cial case. A further generalization was given by Dennis [14]. Yamamoto [18], Argyros
and Hilout [10]) and others [1, 2, 16, 28, 3] improved on the error bounds obtained by
the above. In the context of outer and generalized inverses, Ben-Israel [20], Deuflhard
[15], Haubler [28], Yamamoto [29], Chen and Nashed [12] and Argyros [4, 5, 6], have
established Newton—Kantorovich—type theorems under various conditions.

Our goal is to expand the applicability of Newton—like methods (1. 2 ) for solving equa-
tions by enlarging the convergence domain of these methods. Using more precise majoriz-
ing sequences we provide a tighter convergence analysis than in earlier studies such as [2]-
[14], [16]-[30]. Moreover, our sufficient semilocal convergence conditions are also weaker.
Numerical examples where older convergence conditions do not hold but for which our
convergence conditions are satisfied in this study.

The study about convergence matter of iterative procedures is usually based on two
types: semilocal and local convergence analysis. The semilocal convergence matter is,
based on the informatiuon around an initial point, to give conditions ensuring the conver-
gence of the iterative procedure; while the local one is, based on the information around
a solution, to find estimates of the radii of convergence balls. The paper is organized as
follows.

Section 2 contains the semilocal and local convergence of Newton-like method where
as the examples are given in the concluding Section 3.

2. SEMILOCAL CONVERGENCE ANALYSIS

We need the following auxiliary result on the convergence of majorizing sequences for
Newton—like method. Lef{, > 0, K > 0, L >0, Ly > 0,49 > 0,¢{ >0, M > 0,
A >0, x> 0andn > 0 be given prameters. Define parametdry
2(K—-2M)

T K+ JK21SL(K _20) @3)

Suppose the following conditions hold

2M < K, p<a(l—20); (2. 4)
Lon+4y <1, Lt + 0 < 1; (2 5)
and
to —t1

(M+aL)[1 +n+up<a(l-19), (2. 6)
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wheret,, t; are givenin (2. 7 )ag isgivenin (2. 11) andyy < «. Then, scalar sequence
{tn} given by
Ko 7]-‘1-2/\

to=0, ti=mn =0+ s 0 r,m"

B K (th41 —tn) +2 (M ty + ) 2.7)
tn+2 - tn+1 + 2 (1 — E — Ltn+1) (thrl tn)
foreachn = 1,2,--- , is well defined, increasing, bounded from above by
Kon+2X >
=1+ 2.8
(s g @9
and converges to its unique least upper bound which satisfies
€ [ta,]. (2.9)
Moreover, the following estimates hold for each=1,2, - - -:
KO n +2 1% )
— <—1 "2 " 2.1
0 <tpyo th_Q(lféan)a Ui (2. 10)
Proof. Parametew belongs in interva(0, 1) by (2. 3) and (2. 4). Let
K (to—t1) +2(Mty + p)
a0 = 2(1—(— Lty) (2. 11)
It follows from (2. 5) and (2. 7 ) that
Lty +0 < 1. (2.12)
Moreover, by (2. 3), (2. 6) and (2. 12 ), we have that
0<ay<La. (2. 13)
We shall show using induction on the integer 1:
K (tigr —t;)+2(Mt;
0< (tz+1 tz) + ( tz + /J) (2 14)

= 2(1—€—Lti) =
Estimate (2. 14) is true for = 1 by (2. 13). Then, we have by (2. 7) and (2. 14 ) for
i = 1that
0<ty—to Sa(tg—tl) — 13 §ﬁ2+04(t2—t1)
= t3<to+(l4a)(ta—t1))—(ta—t1) (2.15)
= t3<t;+ 11_a2 (t2 —t1) <.

—«

Assume (2. 14) holds for ajl < i. Then, we have that

0< tj+2 — thrl < O[j (tQ — tl) (2 16)
and
1—aitt
tivz St —5—— (ta —t1). (2.17)

We must show
K (tjze —tj41) +2(M t; + p)

0< < 2.18
= 2(1—(—Lt;11) = (2. 18)
or
K (tjp2 —tjp1) +2(Mt; +p) <2a(1—L€— Ltj)
or _ :
K(tg — tl)Oéj +2M 11_:);5 (tg — tl) +2al 1_1221 (tQ — t1)+ (2 19)

2(Mn+aLn+p—a(l—10))<0.
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Estimate (2. 19 ) motivates us to define recurrent function®ph) by

fj(S) = K(tg7t1)$j+2]\/[(t27t1)(1+8+82+"'+5j71)
2L(ts—t1)s(l+s+-+s)+2(M+sL)n+p—s(l—1)).
(2. 20)
We need a relationship between two consecutive functfgns
fiv1(s) = fi1(s) = fi(s) + fi(s) = fi(s) + g(s) (t2 — t1) &7, (2. 21)
where
g(s)=2Ls* +Ks+2M — K. (2. 22)

Note that by (2. 4) and ( 2. 22), functignhas an unique positive zetogiven by (2. 3
). In view of (2. 20), estimate ( 2. 19) holds if

file) 0. (2. 23)
Define functionsf,, on (0, 1) by
fools) = Jim fy(s) (2. 24)
We have from (2. 21) and ( 2. 22) that
fi+1(a) = fi(a). (2. 25)
Then, it follows from (2. 24 ) and ( 2. 25) that ( 2. 23 ) holds if
foola) <0. (2. 26)

By lettingj — oo in (2. 16 ) and by ( 2. 6 ), we have that

M L
The induction for (2. 14 ) is now completed. Hence, sequéngkis increasing, bounded
from above by given in (2. 8) and as such it converges to its unique least upper bound

which satisfies (2. 9). The proof of Lemma 2 is complete. X

Inequalities ( 2. 5 )—( 2. 6 ) describe the smallness)@nd can be solved for
(see, e.g. Section 3). However, we decided to leave them as uncluttered as possible,
since their representation is very long. Notice also that these inequalities are the expected
Kantorovich-type hypotheses appearing in these type of methods! (ket) andU (x, )
stand, respectively, for the open and closed baltiwith centerx and radius- > 0.

We shall use the following conditions for the semilocal convergence of Newton-like
method

(C) F :C X — is Frechet—differentiable an@ : — is continuous;
There exist an approximatiof(x) € L(X,Y) of F'(z), an open convex subsgbf , an
initial point zo €9, a bounded outer invers&” of A(x,) and a parameter > 0 such that
| A% (F(x0) + G(wo)) | < - (2. 28)

Moreover, suppose that there exist parametérs- 0, M > 0, up > 0, uo > 0, L >
0,¢ > 0 such that for eaclr andy in g

| A# (F'(@+0(y —2))— F'(x)) || < K0 | z—y]| foreachd e [0,1)2. 29)
| A% (F'(z) — A(x)) | < M ||z -0l +po, (2. 30)

| A#(Gx) =G | < pallz—yll (2.31)

| A% (A(z) = A(o)) | < L || z—aoll +6 (2. 32)
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hypotheses of Lemma 2 hold and

U(zo,) Co, (2. 33)

where is defined in Lemma 2.
In view of (2. 29), (2. 31) and (2. 32 ), we have respectively thatafpor=
xo — A(z0)? (F(20) + G(20)) for eachr €

||A# (F’(xo—i—ﬁ(xl —xo))—FI(SL'o)) ||§ K00 || r1— X9 || for eachf [0, 1], (2 34)

| A% (G(a1) — G(wo)) < || 21 — o |, (2. 35)
and
A% (A(21) — A(w0)) |< Lo || 21 — 20 || +Co- (2. 36)
Clearly
Ko< K, pu <pg, Lo <L by </ (2. 37)
and,%, %, LLO can be arbitrarily large [5, 6, 8, 11]. Note that in practice the computation

of K, us, L and/{ requires the computation df, 1, Lo and{y, respectively. So, (2. 34
)-( 2. 36 ) are not additional respectively to (2. 29 ), (2. 31) and ( 2. 32) hypotheses.
We can show the following semilocal convergence theorem for Newton—like method.

Theorem 1. Suppose that the (C) conditions hold. Then, sequéngé (n > 0) gener-
ated by Newton-like method is well defined, remain¥ {m,, ) for eachn = 0,1,2,---
and converges to a solution of equatidi (F(z)+G(z)) = 0in U(xo, ). Moreover, the
following estimates hold for alt > 0

H Tn4+1 — Tn ||S tn+1 —1n (2 38)

and

| Zn— IS —tn, (2. 39)
where sequencét, } (n > 0) is given by (2. 7)), withy = g + pe and X = po + p.
Furthemore, the solution of equation ( 1. 1) is uniqué/ifx,, ) provided that

K
(2+M+L> Fu+l<l. (2. 40)

Proof. We shall show using induction on that ( 2. 38 ) holds. Estimate ( 2. 39 ) will
then follow from ( 2. 38 ) using standard majorization techniques [6, 8, 11, 21]. By the
initial conditions, we have that

| 21 —zo |I< t1 — o
and ( 2. 38) holds fom = 0. Using ( 2. 32 ), we get that
| A* (A(xp,) — A) || L* || @ — 20 || +0° < Lty + 05 < L* +0° <1, (2.41)

where
L*—{ LO,me:]_

Lifm=2,3,---
and
0 — fo,lfmil
Tl Lifm=23,---

From Banach’s perturbation Lemma [12, Lemma 2.2] and ( 2. 41 ), we obtain that
A(xp)? = (I + A% (A(x,,) — A))~! A% is an outer inverse ofi(z,,). Moreover, we
have that

I A@@m)* A< (1= L* || 2 — o | =€) 7" < (1= L* by — )7
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andN (A(z,,)*) = N (A#). Assume that foi < m < k:
| Zm = Tt |t —tmo1 and N (A(z,_1)%) = N (A%).
Then, we obtain that
| T — 20 |< tm —tm_1 and N (A(z)%) = N (A(zm_1)?) = N (A%).
Hence, we have from [12, Lemma 2.3] that
Alwn)# (I = A1) Al@m-1)*) = 0
and
Tygl — Ty = —A(xm)f (F(m) + G(zm))
= —Axn,)? (/0 (F'(xm +t(xm_1 — Tm)) — F'(xm_1)) (Tm — Tm_1) dt

+H(F'(@m—1) = A(@m-1)) (Tm — Tm-1) + (G(Tm) — G(Tm-1)) |-

(2. 42)
Using also [12, Lemma 2.3], we obtain that

Az,)* (I — A AF) = 0.
In view of (2.29)—(2.33),(2.41)and (2. 42) for

* KO if m=1
K _{K if m=23,---
we deduce that

| Tmi1 — Tm ||

<|| A(zm)* A || {(/ | A% (F' (2 4 t (Tt — 2m)) — F'(@m_1)) || dt+

| A% (F'(@m1) — A1) ) |t — s |+ | A% (G ) — 1)) }

1 K*
< - =
1 —Lxt, —¢* 2

1 K*
< - (=
— 11— L*t, —£* 2

0 = mes 12 4O [ os =20 [ +2) | =21 1)

(tm - tm—1)2 + th—l + M) (tm - tm—l) = tm+l - tm;

(2. 43)
which completes the induction. Hence, we have for anghat

|| Tm+1 — Tm ||S tm+1 - tm;
| A% (A@mi1) — A) < L* || @1 — @0 || +6° < L tyypr + 0 < L* + 0% < 1,
|| Tm — 0 ||§ tm <

(A(zmy1) — A))~L A7 is an outer inverse ofi(z). It
> 0 and{z,,} converges to a point if/(x,). The point
)) = 0. Indeed, by definition

and A(z,1)* = (I +
follows thatxm U (zo,
is a solution ofA# (F

+ A#
), m
(fU)Jr G(x
A(z,)® = (I + A% (A(x,,) — A))"P A# | forall m

and

=
Il

limoo(I + A% (A(z) — A)) (T — 1)

m—

= lim A% (F(z) + Glam)) = AT (F() + G().
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Hence, solves equatiot” (F() + G()) = 0. Finally to show that is the unique solution
of equation (1. 1) i/ (zo,), asin (2. 42) and ( 2. 43), we get in turn ferU(zo, ),
with A% (F() + G()) = 0, the estimation

| =%t ||

1
<[l A(zm)* A {(/O | A# (F' (@ + 0 (=2m)) = F'(2m)) || df

A [F () — Alan)] | ) | —2m |+ | A% [Glam) - GO | }

*

2

*

K
<=0 =L tyyq1) ! - (—tm) + M tp, +u> | —2m ||
*

K
<=2 (Gt 4 M ) [ =z <l =

S (1 - Z* - L* t77L+1)71

| = 2 4(M || 2 — 0 || 440) |~ | )

(2. 44)
by the unigueness hypothesis ( 2. 40). It follows by ( 2. 44 ) tHan z,,, =. But we

showed lim z,, =. Hence, we deduce. The proof of Theorem 1 is complete. X

m——>00

(a) The hypotheses of Lemma 2 are used to show that seqyepnkés increasingly
convergent. These conditions can be replaced in Theorem 1 by the weaker

tn<1—zg foreachn =0,1,2,--- . (2. 45)

It follows from (2. 7)) and ( 2. 45) that sequen{s, } is increasing and bounded
above by% and as such it converges to sotriec [ts, l—zf]. Clearly, hypotheses
of Lemma 2 imply ( 2. 45 ) but not necessarily vice versa. Then, ( 2. 45) can
replace conditions of Lemma 2 in Theorem 1.

(b) Another set of conditions weaker than those of Lemma 2 but stronger than ( 2. 45
) is given by the following
(H) Suppose that there exists > 1 such that

1-/
t0<t1<--«<tN<Tfor0§£<1

and hypotheses of Lemma 2 are satisfied with= ¢y 11 — ¢t replacingn.
Then, sequenc§, } is increasingly convergent and

toto — tnt1 < a(tpy1 —t,) foreachn =N, N +1,---.
If N = 1 we obtain Lemma 2. Clearly, weaker hypotheses (H) can replace
those of Lemma 2 in the hypotheses of Theorem 1.

The point can be replaced by , given in closed form by (2. 9) in all hypotheses of

Theorem 1. As it was also noted in [17] (see Theorem 1 above), suppose that
[T+ (A(z) — A(z)) AT] 7' A(x) mapsN (A(zg)) into R (A(z)) (2. 46)

wheneverl + (A(z) — A(xg)) AT is invertible for somer €, where N'(A) denotes the
null space ofA and A* the generalized inverse of(zy). Then by [12, Lemma 2.4]:
A(xyn) = [I + At (20) (A(m,) — A(x0))] "t AT (20) is a generalized inverse. Hence by
[12, Lemma 2.4] and Theorem 1, we establish a semilocal convergence theorem for (1. 2
) using generalized inverses. In the finite dimensional casd6th finite), condition ( 2.
46 ) can be replaced by

rank (A(x)) < rank (A(zg)) (z €). (2. 47)
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Next, we present the local convergence of the Newton—like method. We shall use the
same notation as in the semilocal case for the parameters involved. As in the semilocal
convergence case we use the conditions

(C*) F :C X — is Frechet—differentiable an@' : — is continuous. There exist an

approximationA(x) € L(X,Y) of F'(x), an open convex subsgtof , =* &,
a bounded outer inversd? of A(z*) and parameter& > 0, M > 0, po >
0, g2 >0, L > 0,£ > 0 such thatd? (F(z*) + G(z*)) = 0 and for each: in

| A% (F'(z +0(z* —2)) — F'(2)) || < K80 ||z—a*| foreachd € [0,1],
| AF (F'(z) = A@)) | < M || —a" || +po,
| A7 (G(z) = G@)) || < po [l —a |,
| A% (A@)— A@) | < Llz—a" | +6
w+l < 1,
and B
U(z*,R) C,

_ 1=(potu2+e) _
whereR = % andu = po + po.
As in the case of the (C) conditions we have
|A# (F'(x1 + 0(z* — x1)) — F'(z1)) ||< Kof || 21 — 2™ || foreachd € [0,1],
|AZ (G (1) = G(z)) < . || w1 — 2™ |,
and
A7 (A(z1) = A(x) I Lo || 21 — 2™ || +Lo.
Comments similar to the ones given for the semilocal convergence case can now follow.
Next, we present the local convergence result for the Newton—like method.

Theorem 2. Suppose that the’{*) conditions hold. Then, sequenge,,} (n > 0) gen-
erated by Newton-like method fop € U(z*, R) is well defined, remains i&f («*, R) for
eachn = 0,1,2,--- and converges to a solutiar*. Moreover, the following estimates
hold
| Zns1 — 27 [|< apflen — 27| < allzn — 2], (2. 48)

and .

(B +M)R+p

T 1-({+LR) "’
where

o Kl =0+ Mz =]+

" 1= (& + L*||lzn — 2%
whereK*, L* are given in Theorem 1,

0 = EOaanZO
N\ Gifn=1,2,3,--

and

« ] Nifn=0
H M)ifn:17273a"'

Proof. Simply replacery, A%, y*, (C), in (2. 44 ) respectively by*, A¥  z*, (c*)
to obtain ( 2. 48 ) from which it followsr,, € U(z*, R) andlim,, ., 2, = z*. That
completes the proof of the Theorem.
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3. SPECIAL CASES AND APPLICATIONS
In this Section we shall compare majorizing sequences with earlier ones.
Case 1Let us introduce scalar sequeniesg, } given by
so=0, si1=mn,
K (Sn-i-l - Sn) + 2 (M Sn + ,U)
2(1 =0 —Ls,i1)

(Sp+1 — Spn) foreachn =0,1,2---
(3. 49)

Sn4+2 = Sp4+1 T

where
K — { Ky if Ko< K

K it Ky=K.
Note that if Ky = K, ( 3. 49 ) reduces to the majorizing sequence used in [2]-
[11]. The majorizing sequence in [12, 13, 14, 28, 26, 27, 29, 30] is given by (for
G=0)
f(vnt1)
q(vnt1)

vo=0, v1=1 Upio=uUps1+ foreachhn =0,1,2--- (3. 50)

where

f(s):%sz—(l—b)s—l—n, q(s)=1—Ls—¢,

b=p+¢ and o=max{K,M + L}.
Next, we compare majorizing sequereg } with {v,,}. (see [5, Proposision 3.1])
Suppose sequencés, }, {s,} and{v,} givenby (2. 7), (3. 49)and (3. 50)
respectively are increasingly convergent. Then, the following assertions hold

tht1 < Spt1 < vpgq foreachn =1,2)--- (3.51)

tht1l —tn < Sp+1 —Sn < Upy1 — v, foreachn =1,2,--- (3.52)
t*—t, <-s, < v*-—u,foreachn=0,1,2,---, (3.53)
<<%, (3. 54)

wheret* = lim,,_,o t,, and= lim,,_, s, and= lim,, -, v,,. Moreover, strict
inequality holds in the right hand side inequality in ( 3. 51 ) and ( 3. 52) if
K < M + L. Furthermore, strict inequality holds in the left hand side inequality
in(3.51)and (3.52)ify < forL < K.

So far we showed thdts,, } is a tighter sequence thgmw,, } and the informa-
tion on the location of the solution at least as precise, siiceThe sufficient
convergence conditions given in this study can also be weaker in many interesting
cases.

Case 2 We setd#(z) = A(x)~!, A(z) = F'(z) andG(z) = 0 on, for simplicity. The
parameters are chosentohe =y =0 =46y = pg = A = py = uo = 0 and
Ko = Ly = L. That is we consider the popular case of Newton’s method. Then
Lemma 2 reduces to:
Let K > 0, L > 0 andn > 0 be constants. Suppo$é > L and

1
h2=K277§§, (3 55)

whereK, = 2 (4L + (K L +8L?)'/2 + (L K)/?). Set

2K
— . 3.56
YT K+ (K2 +8LK) (3. 56)
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Then, scalar sequenge, } given by

2
to=0, t1=mn, t2=77+2(%7“7),

K (the1 —tn)? (3.57)
- —ndl Tng >
tny2 = tpy1 + 5 (1 — Ltn,_;,_l) (n > ].),
is well defined, increasing, bounded from above by
Ln?
= 3. 58
" —a (- (3.59)

and converges to its unique least upper bound which satigfies. Moreover,
the following estimates hold for atl > 1

Ln?

2(1—Ln)
Clearly ( 3. 55) is weakened even furtherdf, < L or Ly < L. The sufficient
convergence condition in [4], [20]- [30] faKy, = Ly = K = L is given by the
Kantorovich condition

0< tnyo — tnt1 <a" (3 59)

1
h*:Kn§§. (3. 60)
Moreover, if Lo = Ky = K, the condition given by us in [5]-[11] is
1
=K< g, (3. 61)
whereK; = 1 (K +4 L+ (K*+ 8L K)'/?). We have that
1 1 1
<= <= <=
h*_2:>h1_2:>h2_2
but not necessarily vice versa unles&i§ = K. Note also that since
L<K
holds in general an% can be arbitrarily small, we have that
hq 1 he hao ‘
hi*‘)z’ h7*—>0, h71*>0 as K4>0
Case 3Let 4,, = iF/(x”) for b, # 0. That is we consider the damped Newton method

[10]
Tyl = Ty — b F'(2,)* (F(2,) + G(x,)) foreachn —0,1,2--- .

Then, we can show to choose the paramedigréor example condition ( 2. 30)
is satisfied provided that

1
1 ——[Lo <M
bn

and )
11— b*|||A#F/(350)|| < po,
n
since

IA (F" (n) = Aa) |

1
1= IA#F ()]

IN

L= I (F(20) = F'(a0)) + A#F (a0)|
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1
< - b*|(Lo||l‘n — x|l + || A% F' ().

Similarly, we find the other conditions dn using (2. 32) and ( 2. 36).
Case 4lLet A, = b, + B(z,), whereB(x) is an approximation t&”'(z). That is we
consider the Levenberg-Marquardt method (LM) [15, 16]

Tpy1 = Tp — (bod + B(z,))# (F(z,) + G(z,)) foreachn=0,1,2,---.

Then, the choice df,, can be determined as in Case 3. As an examplB(if) =
F'(x), then

1A (F" (2n) — A(za)|| = [[AFbpI[| = [bnl,

so we can choos&l = 0 and|b,,| < uo. Notice that the conditions on parameters
b, are more general and weaker than the ones usually associated with the Damped
Newton method or the Levenberg-Marquardt method.

Semi-local case.
(@ LetG =0, A(x)* = F'(z)"!, 2 €,X == R, 29 = 1 and= U(1,1 — a) for
a € (0,.5). Define functionF’ on by

F(z) = 2® —a. (3.62)

Then, using (2. 28 )-( 2. 32) we get that= 15“ andK = 2(2 —a). The
Newton-Kantorovich condition ( 3. 60 ) is violated, sinkge = 4(1 — a) (2 —
a)/3 > 1foreacha € (0,.5). Hence, there is no guarantee under the Kantorovich
theorem that sequenée,, } converges to . Using (2. 32), we get tHat= 3 — a.
Our hypothesis holds far = [.4271907643, .5). Hence, ( 3. 55) is violated, say
for a = .427. However, hypotheses of Remark 2.3 (a) or (b) are satisfied.

(b) Let G(z) = 3¢|z — 1], e > 0. Then, using (2. 31 ) we gets = ¢. So, the
sufficient convergence condition given in [12, 13, 14, 30] is

2Kn < (1-¢)

which is violated for all: > 0. However, our conditions (see e.g. Lemma 2) are
satisfied for sufficiently smad.

Let C[0, 1] stand for the space of continuous functions defined on intéoval and be
equipped with the max-norm. Let alst == C[0, 1], = U(0,r) forsomer > 1, G =0
andA(z)# = F'(x)~L. DefineF on by

1
F(x)(s) =x(s) —y(s) — ¢ /0 G(s,t)2®(t)dt, xeC[0,1], s € [0,1].

y € C[0,1] is given,( is a real parameter and the Kerideis the Green’s function defined

by
cen={ ") i L5

Then, the Fechet-derivative of ' is defined by

(F'(x) (w))(s) = w(s) — 3¢ /0 G(s,t) 2%(t)y(t)dt, w € C[0,1], s € [0,1].
Let us choose(s) = y(s) = 1 and|¢| < 8/3. Then, we have that

| —Fo) I< 21cl, F'(eo)™ € (%),
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r C* h* h1 hg

2.09899 .9976613778 1.007515200 .9757536188 .9639223786
2.19897 .9831766058 1.055505600 .9915015816 .9678118280
2.29597  .9698185659 1.102065600 1.006635036 .9715205068
3.095467 .8796313211 1.485824160 1.127023800 1.000082409

TABLE 1. Comparison table of conditions (3. 55), (3. 60) and (3. 61)

o1 8 _ <] _ 12
67[c| 127|¢]?
K= d hy=—"F7-.
s=3lc] ™ (8= 3[¢]?

Denote by(* the positive root of equatiod (4 — 3) t? + 48¢ — 64 = 0. Notice that if
¢ > (*, thenh, > 1. Hence the Newton-Kantorovich condition is not satisfied. Let us
choose for example = 3. Then, we obtain* = .888889.

In Table 1, we pick some values offor { = 1, so we give the corresponding values of
¢* and we compare theh” conditions. We have choseliy = Ly = L. Hence, Table 1
shows that our conditions are always better than the Newton-Kantorovich conditighs ”
(see the third column of Table 1). Local ConvergenceLet A(x)# = F'(x)~!, x €

,X ==R3,=0U(0,1) and= (0,0,0). Define functions”, G on forw = (x,y, z) by

F(w)=(ew—1,—e;1y2+y,z) (3. 63)
and
G(z) = e(|z], |y|, |z|) for somee € (0,1).

Then, the Fechet derivative of” is given by

e’ 0 0
F(wy=[0 (e—1)y+1 0
0 0 1

Notice that we havé’() = 0, F/() = F'()7! = diag{1,1,1} andL = e -1 < Kq =
K=e, M =py=40=40 =p*"=X=0andu; = us = <. Then, Theorem 2 gives that
the convergence radius is

_2(1—-¢)
- 3e—2"
whereas the convergence radius given by others [12, 13, 14, 27, 29, 30] {ising) is
_2(1—¢)
Ry = 5

Notice thatR, < R.
More examples wheré < K or Ry < R can be found in [5]-[11].
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