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Abstract. In this paper, we study the slicing of currents, with respect to a
locally bounded plurisubharmonic function. For a positive closed current
and its associated Lelong-Skoda potential, we prove that, with respect to a
smooth and strictly plurisubharmonic function, the slices are well defined
except at points lying in a pluriplolar subset. In particular, the slices of
the current of integration over an analytic set, are well defined explicitly,
except at points lying in a countable family of proper analytic subsets.
Furthermore, we state the analogue of the generalized slicing formula due
to H. Ben Messaoud and H. El Mir.
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1. INTRODUCTION AND MAIN RESULTS

Slicing of currents was studied in [3] and [6], this is an important tool for studying
global geometric problems as well as for questions related to local algebra and intersection
theory. Here, we develop some approach to slicing with respect to a locally bounded
plurisubharmonic function.

We consider inCn, the unit poly-disk∆n and an open subsetΩ such that∆n b Ω. Let
1 ≤ k ≤ p ≤ n, any pointz ∈ ∆n, is writtenz = (z1 . . . zn) = (z′, z′′) andπ(z) is
defined byπ(z) = z′, wherez′ := (z1 . . . zk) andz′′ := (zk+1 . . . zn). Given a locally
bounded plurisubharmonic functionϕ = ϕ(z′) on∆n. The positive measure with support
Sϕ, such that

(ddcϕ)k = µϕ
i

2
dz1 ∧ dz̄1 ∧ · · · ∧ i

2
dzk ∧ dz̄k (1. 1)

is denotedµϕ and we say thatµϕ is the trace measure of the current(ddcϕ)k.
Slicing of a current, with respect to the functionϕ, is defined as the following

DEFINITION 1. For any pointa ∈ Sϕ, we say the slice< R, π, a >ϕ of a current
R of bidimension(p, p) on Ω, associated withϕ(z′), at pointa, exists if, and only if the
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following limit

lim
ε→0

1
µϕ(Bk(a, ε))

∫

Bk(a,ε)×Cn−k

R ∧ (ddcϕ)k ∧ f (1. 2)

exists inC for any test formf ∈ D(p−k,p−k)(∆n); this limit is denoted< R, π, a >ϕ (f).

In caseϕ(z′) = |z′|2 we get the definition of the slice by Federer [3].
Being introduced, theϕ- slicing of currents, is the main goal of this paper.
The first part of the paper deals with some properties of slicing with respect to a locally

bounded plurisubharmonic functionϕ. The second part, deals with the study of the exis-
tence of slices of positive closed currentsT of bidimension(p, p) on∆n, with respect to a
smooth and strictly plurisubharmonic functionϕ.

We will break our study into a sequence of steps. First we reduce the problem to the case
of a current having continuous coefficients. Then we study the slice of a current having
integrable coefficients with respect to the measureµϕ ⊗ λn−k whereµϕ is the measure
defined by ( 1. 1 ) andλn−k is the Lebesgue measure onCn−k.

Under assumption thatµϕ is given by a locally bounded function on∆n−k, we show
that the slice< R, π, a >ϕ, of a currentR having locallyµϕ⊗λn−k-integrable coefficients,
is well defined forµϕ-almost everya ∈ Sϕ, which generalizes the Federer’s theorem [3]
for locally plate currents.

The study of theϕ-slicing of the Lelong-Skoda potentialU associated with a positive
closed currentT , is a typical case. If the potentialU is given canonically by

U(z) =
∑

I,J

UI,JdzI ∧ dzJ (1. 3)

then we prove that, every coefficientz 7→ UIJ(z) of the decomposition ( 1. 3 ), is a locally
µϕ ⊗ λn−k-integrable function and forµϕ-almost everya ∈ Sϕ, the current〈U, π, a〉ϕ is
well defined.

Next, we suppose thatϕ is smooth and strictly psh. We establish that< U, π, a >ϕ is
well defined for any pointa 6∈ Eϕ, whereEϕ is a pluripolar subset of∆k. Explicitly, Eϕ

is given by the set of pointsa ∈ Sϕ such that the currentj∗a(U) does not have a locally
finite mass in∆n−k, whereja denotes the map defined onCn−k by ja(z′′) = (a, z′′).

A very important example of theϕ-slicing of closed positive currents is the case of
currents of integration over analytic sets. This will be done in the last section of this paper.

The followings are the main results of this paper.

Theorem 3.1Letϕ ∈ C 2∩Psh(∆k) such thatϕ is strictly psh and letUj be a sequence
of smooth currents which decreases weakly toU . Then for anya ∈ ∆k, limj→+∞〈Uj , π, a〉ϕ
exists inD ′

(p−k+1,p−k+1)(∆
n) if, and only ifa 6∈ Eϕ and in this case, in the weak sense of

currents, we havelimj→+∞〈Uj , π, a〉ϕ = j∗a(U).
Investigating the results of [6], we establish the formula ( 1. 4 ) called theϕ-slicing

formula. The origin of formula ( 1. 4 ) was due to Federer [3]. It can be seen as a
generalization to the Fubini Formula. Whenϕ(z′) = |z′|2, we get the slicing formula
of [6] stated in 1995. Theϕ-slicing formula may provide a useful tool for studying many
problems related to Monge -Ampere operators, extension of currents, intersection theory,...

Theorem 4.1Letϕ = ϕ(z′) ∈ C 2 ∩ Psh(∆n) such thatϕ is strictly psh anda ∈ ∆k.
Then we have
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(1) The slice〈U, π, a〉ϕ is well defined inD ′
(p−k+1,p−k+1)(∆

n) if and only if a 6∈ Eϕ

and in this case the current〈U, π, a〉ϕ is equal toj∗a(U).
(2) For anyΨ ∈ D(p−k+1,p−k+1)(∆n) and for anyv1, . . . , vk ∈ L∞loc∩Psh(∆k), we

have the following slicing formula with respect toϕ
∫

∆n

U ∧ ddcṽ1 ∧ · · · ∧ ddcṽk ∧Ψ =
∫

a∈Sϕ

〈U, π, a〉ϕ(Ψ)ddcv1 ∧ · · · ∧ ddcvk (1. 4)

whereṽj = vj ◦ π, j = 1, . . . , k.

Formula ( 1. 4 ) holds not only for the Lelong-Skoda potential but it is also available
for closed positive currents:

Theorem 4.2Let ϕ = ϕ(z′) ∈ C 2 ∩ Psh(∆n) such thatϕ is strictly psh and let
a ∈ ∆k. Then we have

(1) For anya 6∈ Eϕ, the slice〈T, π, a〉ϕ is well defined.
(2) For anyΨ ∈ D(p−k+1,p−k+1)(∆n) and for anyv1, . . . , vk ∈ L∞loc∩Psh(∆k), we

have

∫

∆n

T ∧ ddcṽ1 ∧ · · · ∧ ddcṽk ∧Ψ =
∫

a∈Sϕ

〈T, π, a〉ϕ(Ψ)ddcv1 ∧ · · · ∧ ddcvk (1. 5)

whereṽj = vj ◦ π, j = 1, . . . , k.

A natural problem arises through the work of this paper, can these results hold with re-
spect to a given locally bounded plurisubharmonic function without smoothness assump-
tion. The study of the general case may be very subtile. We would like to define this, in
a next paper, in some cases when the potentialU is associated with(1, 1)-closed positive
currents.

Let now review some notions and notations. We denoteD(s,t)(Ω) the space of smooth
compactly supported-differential forms of bidegree(s, t) on Ω. The dualD ′

(s,t)(Ω) is
the space of currents of bidimension(s, t) or of bidegree(n − s, n − t). A currentR
of bidimension(p, p) on Ω, is said to be positive if for allγ1, . . . , γp in D(1,0)(Ω), the
distributionR ∧ iγ1 ∧ γ̄1 ∧ · · · ∧ iγp ∧ γ̄p is a positive measure.

We denote byPsh(Ω) the set of plurisubharmonic functions onΩ andL∞loc ∩ Psh(Ω)
the subset of elements inPsh(Ω) which are locally bounded. We use the standard notations
for the operatorsd = ∂ + ∂̄, dc = i(∂̄ − ∂) andddc = 2i∂∂̄. The Kähler form onCn is
denoted byβ(t) = ddc|t|2 and can be written asβ(t) = β′(t′) + β′′(t′′) whereβ′ andβ′′

are K̈ahler forms onCk andCn−k respectively.
Let ϕ = ϕ(z′) ∈ L∞loc∩Psh(∆n), following [1], ddcϕ and its exterior powers(ddcϕ)j

are well defined currents on∆n. In particular, the positive closed current(ddcϕ)k satisfies
the equality

(ddcϕ)k ∧ β′′n−k = µϕβn. (1. 6)

In caseϕ is smooth, the measureµϕ may be considered as the Lebesgue measure with
density a continuous function denoted alsoµϕ(z′). In local coordinates, the equation ( 1.
6 ) gives the following explicit formula ofµϕ(z′):

µϕ(z′) = ck det(
∂2ϕ

∂zs∂z̄ t

)1≤s,t≤k, (1. 7)
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whereck is a positive constant. Furthermore, according to [1], ifµϕ 6≡ 0, then the support
Sϕ of the measureµϕ is not pluripolar in∆k. The functionϕ is said to be strictly plurisub-
harmonic on∆n if, it is locally integrable on∆n and if, for every pointz0 ∈ ∆n, there
exists a neighbor-hoodω of z0 andc > 0, such thatϕ(z)−c|z|2 is plurisubharmonic onω.
Finally,Bk(r) andBn−k(r) are the balls centered at the origin and of radiusr respectively
in Ck andCn−k.

2. ϕ-SLICING OF A CURRENT WITH COEFFICIENTS INL1
loc(µϕ ⊗ λn−k)

We begin this study by the case of a currentR having coefficients separately continuous
with respect to variablesz′ andz′′.

2.1. ϕ-Slicing of a current with continuous coefficients. It is well known that the Lelong
skoda potentialU associated with a closed positive currentT , satisfies the equality of
currentsddcU = T +R whereR is a smooth form. Hence, to study theϕ-slicing ofT it is
sufficient to study theϕ-slicing of the associated Lelong-Skoda potentialU . So we begin
this paragraph by the following proposition which will be useful in the proof of Theorem
4.2.

PROPOSITION2.1. LetR ∈ D ′
(p,p)(∆

n), ϕ = ϕ(z′) ∈ L∞loc ∩ Psh(∆n) anda ∈ Sϕ such
that 〈R, π, a〉ϕ is well defined. Then

(1) 〈R, π, a〉ϕ is supported bySϕ ∩ Supp R ∩ π−1{a}.
(2) d〈R, π, a〉ϕ andddc〈R, π, a〉ϕ are well defined, moreover we haved〈R, π, a〉ϕ =

〈dR, π, a〉ϕ andddc〈R, π, a〉ϕ = 〈ddcR, π, a〉ϕ.

Proof. We verify at once that these statements come from the definition of〈R, π, a〉ϕ and
the weak continuity of the operatorsd andddc. ¤

We shall now prove that for allϕ = ϕ(z′) ∈ L∞loc ∩ Psh(∆n), the slice〈R, π, a〉ϕ of
a continuous current, is well defined for alla ∈ Sϕ. Note that the study of theϕ−slicing
of continuous currents will be useful in the study of theϕ−slicing of the Lelong-Skoda
potential. The case of the potential will be studied in section 3 where a regularization
procedure will be used.

PROPOSITION2.2. Letϕ = ϕ(z′) ∈ L∞loc ∩ Psh(∆n) andR ∈ D ′
(p,p)(∆

n) such that the
coefficients are continuous separately with respect toz′, z′′. Then we have the following

(1) for any a ∈ Sϕ the slice〈R, π, a〉ϕ is well defined. Further, for any test form
Ψ ∈ D(p−k,p−k)(∆n), we have

〈R, π, a〉ϕ(Ψ) =
∫

z′′∈∆n−k

j∗aR ∧ j∗aΨ.

(2) For anyΨ ∈ D(p−k,p−k)(∆n) and for anyv1, . . . , vk ∈ L∞loc∩Psh(∆k), we have
∫

∆n

R ∧ ddcṽ1 ∧ · · · ∧ ddcṽk ∧Ψ =
∫

a∈Sϕ

〈R, π, a〉ϕ(Ψ)ddcv1 ∧ · · · ∧ ddcvk.

whereṽj = vj ◦ π, j = 1, . . . , k.

Proof. We may assume the currentR takes the formR = fσn−pdzI ∧ dz̄J where,f is a
function continuous separately with respect toz′, z′′. Letσs = is

2
2−s, i2 = −1 (s ∈ N∗)



Slicing Associated with a Plurisubharmonic Function 25

and letΨ = ψσp−kdzL ∧ dz̄K be a test form such thatI ∩ K ∩ {1, . . . , k} 6= ∅ and
J ∩ L ∩ {1, . . . , k} 6= ∅; which means thatI, J,K, L ⊂ {k + 1, . . . , n}. Put

Γδ =
1

µϕ(Bk(a, δ))

∫

Bk(a,δ)×∆n−k

R ∧ (ddcϕ)k ∧Ψ, (2. 8)

an easy computation of the second member of ( 2. 8 ) yields

Γδ =
1

µϕ(Bk(a, δ))

∫

{|z′−a|<δ}
dµϕ(z′)

∫

z′′∈∆n−k

f(z′, z′′)ψ(z′, z′′)dλn−k(z′′) (2. 9)

Let g(z′) =
∫

z′′∈∆n−k f(z′, z′′)ψ(z′, z′′)dλn−k(z′′), then ( 2. 9 ) can written as

Γδ − g(a) =
1

µϕ(Bk(a, δ))

∫

{|z′−a|<δ}
(g(z′)− g(a))dµϕ(z′) (2. 10)

Since for each fixedz′′ ∈ ∆n−k the functionz′ 7→ f(z′, z′′)Ψ(z′, z′′) is continuous on
∆k, then the functiong is continuous on∆̄k and hence it is uniformly continuous on̄∆k,
so for anyε > 0, there existsδ0 > 0 such that for any0 < δ ≤ δ0, we have by ( 2. 10 ),
|Γδ − g(a)| < ε. Hence we get

〈R, π, a〉ϕ(Ψ) = limδ→0 Γδ

= g(a)
=

∫
z′′∈∆n−k f(a, z′′)ψ(a, z′′)dλn−k

this means that

〈R, π, a〉ϕ(Ψ) =
∫

z′′∈Cn−k

j∗a(R) ∧ j∗a(Ψ). (2. 11)

The equality ( 2. 11 ) is equivalent to〈R, π, a〉ϕ(Ψ) = π∗(R ∧ Ψ) and this achieves the
proof of the first statement. To prove the second statement, we observe that

∫

∆n

R ∧ ddcṽ1 ∧ · · · ∧ ddcṽk ∧Ψ = 〈ddcv1 ∧ · · · ∧ ddcvk , π∗(R ∧Ψ)〉. (2. 12)

The equality ( 2. 12 ) holds true sinceπ∗(R∧Ψ) is the functiona 7→ 〈R, π, a〉ϕ(Ψ) which
is continuous and compactly supported inSϕ. ¤

REMARK 1. If the slice〈R, π, a〉ϕ is well defined then it depends only onSϕ, more
precisely ifϕ1, ϕ2 ∈ L∞loc ∩ Psh(∆n) such thatSϕ1 = Sϕ2 and if 〈R, π, a〉ϕi , (i = 1, 2),
is well defined then we have〈R, π, a〉ϕ1 = 〈R, π, a〉ϕ2 in the weak sense of continuous
currents.

2.2. ϕ-Slicing of a current with coefficients in L1
loc(µϕ ⊗ λn−k). Let ϕ = ϕ(z′) ∈

L∞loc ∩ Psh(∆n) and assume that0 ∈ Sϕ. For technical reasons, we need to use a reg-
ularization method that can be related to the definition ( 1. 2 ) of the slice associated
with ϕ, so we define the following convolution procedure: for anyε > 0 we denote by

α1,ε(.) the function inL1
loc(π(Ω), µϕ) defined by the quotientα1,ε(t) =

1lBk(ε)(t)
µϕ(Bk(ε))

; if

f ∈ L1
loc(π(Ω), µϕ), then the convolution of the functionz′ 7→ f(z′) by the measure

α1,εµϕ is given by

(f ∗ α1,εµϕ)(z′) =
1

µϕ(Bk(ε))

∫

Bk(ε)

f(z′ − t′)dµϕ(t′). (2. 13)
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One can ask if the family(f ∗ α1,εµϕ), given by formula ( 2. 13 ), is continuous and
converges tof pointwise asε → 0. We Know by the Lebesgue’s theorem that for any
locally λk-integrable function onCk and forλk-almost everya ∈ Ck, we have

1
ω2kε2k

∫

Bk(a,ε)

f(z′)dλk(z′) −→ f(a) as ε → 0

whereω2k is the volume of the unitary ball inCk. It is not evident to justify this result for
the family (f ∗ α1,εµϕ)ε. In addition, the functionz′ 7→ f ∗ α1,εµϕ(z′) do not need to
be continuous, indeed when the measureµϕ takes the formσ + δ0 whereσ is a positive
measure having support without holes andδ0 is the Dirac measure at point 0, then we get
f ∗ α1,εµϕ = f ∗ α1,εσ + f . In order to surmount these difficulties, it will be convenient
in this section, to assume thatϕ satisfies the following assumption:

there exists a locally bounded functionm onπ(Ω) and a constantc0 > 0
such that

(ddcϕ)k ≡ mβ′k

for λk − almost everyz′ ∈ π(Ω), m(z′) ≥ c0.
(2. 14)

PROPOSITION2.3. Letϕ ∈ L∞loc ∩ Psh(∆k) satisfying ( 2. 14 ) andR ∈ D ′
p,p(∆

n) be a
positive current with coefficients inL1

loc(∆
n, µϕ ⊗ λn−k). Then

lim
ε→0

1
µϕ(Bk(a, ε))

∫

Bk(a,ε)×∆n−k

R ∧ (ddcϕ)k ∧Ψ

exists for allΨ(z) ∈ D(p−k,p−k)(∆n) if, and only if,

lim
ε→0

1
µϕ(Bk(a, ε))

∫

Bk(a,ε)×∆n−k

R ∧ (ddcϕ)k ∧Ψ

exists for allΨ(z′′) ∈ D(p−k,p−k)(∆n−k).

Proof. We have only to prove the converse statement. TakeΨ =
∑

I,J ΨI,JdzI ∧ dz̄J ∈
D(p−k,p−k)(∆n) and put||Ψ||(z) =

∑
I,J |ΨI,J |. By the rest integral formula, there exists

Ψ0 ∈ D(∆n) positive such that

||Ψ− j∗a(Ψ)|| ≤ |z′ − a|Ψ0(z).

LetΨ1 ∈ D(∆n−k) be a smooth function with compact support such thatΨ0(z) ≤ Ψ1(z′′)
for all z ∈ ∆n. Put

Iδ =
1

µϕ(Bk(a, δ))

∫

Bk(a,δ)×∆n−k

R ∧ (ddcϕ)k ∧ [Ψ− j∗a(Ψ)],

by the assumption that(ddcϕ)k ≡ m(z′)β′k, we have

|Iδ| ≤ ||R ∧ m1lBk(a,δ)×∆n−k

µϕ(Bk(a, δ))
β′k ∧ β′′p−k|| (||Ψ− j∗a(Ψ)||)

≤ 1
µϕ(Bk(a, δ))

∫

Bk(a,δ)×∆n−k

R ∧ (ddcϕ)k ∧ |z′ − a|Ψ0(z)β′′p−k

≤ δ

µϕ(Bk(a, δ))

∫

Bk(a,δ)×∆n−k

R ∧ (ddcϕ)k ∧Ψ1(z′′)β′′p−k

the last quantity goes to 0 whenδ → 0, and this proves the statement. ¤
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In [6], it was proved that, for a currentR having locallyλk ⊗ λn−k-integrable coefficient,
the slice〈R, π, a〉 is well defined forλk-almost everya ∈ ∆k. We want to improve this
result by proving that, for any currentR with µϕ ⊗ λn−k-integrable coefficients, the slice
〈R, π, a〉ϕ is well defined except fora in aµϕ-negligible subset of∆k. More precisely we
have:

THEOREM 2.1. Letϕ = ϕ(z′) ∈ L∞loc ∩ Psh(∆n) satisfying ( 2. 14 ) andR ∈ D ′
p,p(∆

n)
be a current with coefficients inL1

loc(∆
n, µϕ ⊗ λn−k). Then forµϕ-almost everya ∈ Sϕ

the slice〈R, π, a〉ϕ is well defined and is equal toj∗a(R).

Proof. AssumeR = fβn−p wheref ∈ L1
loc(∆

n, µϕ ⊗ λn−k). Take a test function
ψ(z′′) ∈ D(∆n−k) and put

Γδ =
1

µϕ(Bk(a, δ))

∫

Bk(a,δ)×∆n−k

R ∧ (ddcϕ)k ∧ ψβ′′p−k.

Forµϕ−almost everya ∈ Sϕ we have

Γδ = 1
µϕ(Bk(a,δ))

∫

{|z′−a|<δ}
dµϕ(z′)

∫

z′′∈∆n−k

f(z′, z′′)ψ(z′′)dλn−k(z′′)

= 1
µϕ(Bk(a,δ))

∫

{|z′−a|<δ}
g(z′)dµϕ(z′)

= 1
µϕ(Bk(a,δ))

∫

{|z′−a|<δ}
(g(z′)− g(a))m(z′)dλk(z′) + g(a)

whereg is the function defined by

g(z′) =
∫

z′′∈∆n−k

f(z′, z′′)ψ(z′′)dλn−k(z′′). (2. 15)

Sincef ∈ L1
loc(∆

n, µϕ ⊗ λn−k) and sinceg is given by ( 2. 15 ), then by the Fubini
theorem we may affirm thatg ∈ L1

loc(µϕ, π(Ω)). By hypothesis onϕ, we haveµϕ ≡ mλk

where the functionm is positive and locally bounded. As a consequence, the function
z′ 7→ (g(z′)− g(a))m(z′) lies inL1

loc(λk, π(Ω)). PutD(δ) = Γδ − g(a), we have

|D(δ)| ≤ 1
c0ω2kδ2k

∫

{|z′−a|<δ}
|g(z′)− g(a)|m(z′)dλk(z′)

= 1
c0ω2k

∫

{|z′|<1}
|g(δz′ + a)− g(a)|m(δz′ + a)dλk(z′).

Since the functionz′ 7→ |g(δz′ + a) − g(a)|m(δz′ + a) is finite λk− almost everywhere
on Bk(0, 1) and for almost everya ∈ ∆k, it tends to the zero function, asδ → 0, then
we can conclude, by the dominated convergence theorem, thatlimδ→0 D(δ) = 0. This
shows that, forµϕ−almost everya ∈ ∆k, the slice〈R, π, a〉ϕ is well defined and is equal
to j∗a(R). ¤

REMARK 2. In caseϕ(z′) = |z′|2 we find the theorem of Federer[3] for the locally
plate currents.

3. ϕ-SLICING OF THE LELONG-SKODA POTENTIAL

In this section we study the existence of the slice〈U, π, a〉ϕ of the Lelong-Skoda poten-
tial associated with a closed positive currentT , defined by

U(z) =
∫

x∈Cn

η(x)N(z − x)T (x) ∧ βn−1(z − x) (3. 16)
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whereη is a function inD(Ω) such that0 ≤ η ≤ 1, η ≡ 1 on a neighborhood of∆n, and
N(t) = −cn

|t|2n−2 is the Newton Kernel inCn. We start this study, by the following Lemma

LEMMA 3.1. Let T be a positive closed current of bidimension(p, p) on Ω and U be
the potential ofT such thatddcU = T on a neighborhood of∆n. Let v ∈Psh(∆n) ∩
L∞loc(∂∆n), then we have∫

∆n

T ∧ (ddcv)k ∧ βp−k < ∞ and
∫

∆n

−U ∧ (ddcv)k ∧ βp−k+1 < ∞.

Proof. Let ω ⊂ Ω be a neighborhood of∆n. Without loss of generalities we may assume
thatv ≡ ||z||2 onω \∆n. Let g be a function inD(ω) such that0 ≤ g ≤ 1 andg = 1 on
∆n. By Stokes theorem we have∫

∆n

T ∧ (ddcv)k ∧ βp−k =
∫

∂∆n

T ∧ dcv ∧ (ddcv)k−1 ∧ βp−k

=
∫

∆n

T ∧ βp < ∞.

For the second integral we have

I =
∫

ω

U ∧ (ddcv)k ∧ ddc(g||z||2)p−k+1 =
∫

∆n

+
∫

ωr∆n

(3. 17)

Since, by Stokes theorem, we have

I =
∫

ω

g||z||2T ∧ (ddcv)k ∧ ddc(g||z||2)p−k

we observe that the first term of the second hand right of ( 3. 17 ) is bounded. Furthermore
sinceg andv are smooth onω r∆n thenI is bounded. Hence∫

∆n

U ∧ (ddcv)k ∧ βp−k+1 =
∫

∆n

U ∧ (ddcv)k ∧ (ddcg||z||2)p−k+1 > −∞.

¤
For I ∪ J ⊂ {k + 1, . . . , n}, let U =

∑
|I|=|J|=n−p−1 UI,JdzI ∧ dz̄J be the canon-

ical decomposition of the potentialU . Following Lemma 3.1, ifv ≡ ϕ then we have∫
∆k×∆n−k −U ∧ (ddcϕ)k ∧ β′′p−k+1 < ∞. Hence we get

∫

∆k×∆n−k

∑

I

−UII(z)dµϕ(z′)⊗ dλn−k(z′′) < ∞. (3. 18)

From ( 3. 18 ) we deduce thatz 7→ ∑
I −UII(z) is a locally integrable function with

respect to the measureµϕ ⊗ λn−k. According to [2], for allI, J we have

|UIJ | ≤ c
∑

I

−UII

wherec > 0 is a fixed constant. Hence eachz 7→ UIJ(z) is a µϕ ⊗ λn−k-integrable
function and we have∫

∆k

dµϕ(z′)
∫

∆n−k

|UIJ(z′, z′′)|dλn−k(z′′) < ∞, (3. 19)

( 3. 19 ) implies that forµϕ-almost everya ∈ ∆k the functionz′′ 7→ UIJ(a, z′′) is locally
λn−k-integrable on∆n−k. Then for any pointa ∈ ∆k, we set

j∗a(U) =
∑

|I|=|J|=n−p−1, I∪J⊂{k+1,...,n}
UI,J (a, z′′)dzI ∧ dz̄J ;
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and we denote byEϕ the set of pointsa ∈ Sϕ such thatj∗a(U) does not have locally, a
finite mass in∆n−k. It is clear that,a ∈ Eϕ, means that at least one coefficientUI,J (a, z′′)
of the currentj∗a(U) is not locallyλn−k-integrable on∆n−k. In addition, we can easily
see that

Eϕ = {a ∈ Sϕ; z′′ 7→
∑

I

UII(a, z′′) 6∈ L1
loc(∆

n−k, λn−k).

REMARK 3. In the particular caseϕ(z) = |z′|2, it is well known, by[6], that

Eϕ = E = {a ∈ ∆k; z′′ 7→
∑

|I|=n−p−1

UI,I(a, z′′) 6∈ L1
loc(∆

n−k, λn−k)}.

It was proved by[6] thatE is a pluripolar subset of∆k.

Now we suppose thatϕ is smooth of classC 2 and strictly psh, the measureµϕ is
then considered as the Lebesgue measure with density given by the continuous function
z′ 7→ µϕ(z′) defined in local coordinates by formula ( 1. 7 ).

For any smooth regularization kernel(χj)j depending only on|z|2, we let

Uj(z) = U ∗ χj(z) :=
∫

Cn

η(x).(N ∗ χj)(z − x)T (x) ∧ βn−1(z − x) (3. 20)

whereU is defined as in ( 3. 16 ).

PROPOSITION3.1. Letϕ = ϕ(z′) ∈ C 2∩Psh(∆n) such thatϕ is strictly psh, leta ∈ ∆k,
andUj = U ∗ χj . If a 6∈ Eϕ, then we havelimj→∞ j∗a(Uj) = j∗a(U) weakly.

Proof. By Proposition 2.2 and Lemma 3.1, since the coefficients of the potentialUj are
continuous, then the slice〈Uj , π, a〉 is well defined except for pointsa lying in a µϕ-
negligible subset of∆k, furthermore〈Uj , π, a〉ϕ = j∗a(Uj). As a 6∈ Eϕ, then every
coefficientz′′ 7→ UIJ(a, z′′) of the currentj∗a(U) is a locally integrable function on∆n−k.
Consider a strongly positive test formg ∈ D(n−p+k−1,n−p+k−1)(Cn−k) and defineIj =∫
Cn−k j∗a(Uj)(z′′) ∧ g(z′′). It is sufficient to prove that

lim
j→+∞

Ij =
∫

Cn−k

j∗aU(z′′) ∧ g(z′′).

Using ( 3. 20 ), we have

j∗a(Uj)(z′′) =
∫

x∈Cn

η(x).(N ∗ χj)((a, z′′)− x)T (x) ∧ βn−1((a, z′′)− x),

then we get

Ij =
∫

(x,z′′)
η(x).(N ∗ χj)((a, z′′)− x)T (x) ∧ βn−1((a, z′′)− x) ∧ g(z′′).

Sinceη(x)T (x) ∧ βn−1((a, z′′) − x) ∧ g(z′′) is a positive measure compactly supported
in Cn × Cn−k, and since

lim
j→+∞

(N ∗ χj)((a, z′′)− x) = N((a, z′′)− x)

pointwise, then by Egorof’s theorem, for anyε > 0, there exists a setA ⊂ Cn × Cn−k

such that
[η(x)T (x) ∧ βn−1((a, z′′)− x) ∧ g(z′′)](A) ≤ ε

and
lim

j→+∞
(N ∗ χj)((a, z′′)− x) = N((a, z′′)− x)
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uniformly on{A. Hence, forε > 0 and forj ∈ N big enough, there is a constantC > 0
such that

|Ij −
∫

Cn−k

j∗aU ∧ g| ≤ C sup
(x,z′′)∈{A

|N ∗ χj((a, z′′)− x)−N((a, z′′)− x)| ≤ ε.

¤

THEOREM 3.1. Let ϕ = ϕ(z′) ∈ C 2 ∩ Psh(∆n) such thatϕ is strictly psh and let
Uj = U ∗ χj . Then for alla ∈ ∆k, limj→+∞〈Uj , π, a〉ϕ exists inD ′

(p−k+1,p−k+1)(∆
n)

if, and only ifa 6∈ Eϕ, and in this case we havelimj→+∞〈Uj , π, a〉ϕ = j∗a(U) weakly.

Proof. Let a ∈ Sϕ. By Proposition 2.2, we have〈Uj , π, a〉ϕ = j∗a(Uj). For any positive
test functionh in D(∆n−k), we put

I(ε, j) := 1
µϕ(Bk(a,ε))

∫

Bk(a,ε)×Cn−k

Uj ∧ (ddcϕ)k ∧ hβ′′p−k+1

= 1
µϕ(Bk(a,ε))

∫

Bk(a,ε)

dµϕ(z′)
∫

Cn−k

uj(z′, z′′)h(z′′)dλn−k(z′′)

= 1
µϕ(Bk(a,ε))

∫

Bk(a,ε)

wj(z′)dµϕ(z′)

where the functionwj is defined on∆k by

wj(z′) :=
∫

Cn−k

uj(z′, z′′)h(z′′)dλn−k(z′′) (3. 21)

and the functionuj is defined on∆n by

uj(z) =
∑

|I|=n−p−1

UII ∗ χj(z) (3. 22)

We know by [5] that(uj)j given by ( 3. 22 ) is a sequence of negative subharmonic
functions which decreases to the subharmonic functionu defined byu(z) =

∑
I UII(z).

Sinceh is positive, then the sequence(wj)j given by ( 3. 21 ) decreases pointwise to the
functionw defined by

w(z′) :=
∫

Cn−k

u(z′, z′′)h(z′′)dλn−k(z′′). (3. 23)

Since, by Lemma 3.4.1, forµϕ−almost everya ∈ ∆k, the functionw defined by ( 3. 23 )
satisfies∫

z′∈Bk(a,ε)

|w(z′)|dµϕ ≤
∫

z′∈Bk(a,ε)

dµϕ

∫

z′′∈Cn−k

∑

|I|=|J|
|UIJ(z′, z′′)|h(z′′)dλn−k

< ∞
which implies thatw is µϕ-integrable onBk(a, ε). Recall that, sinceϕ is smooth and
stricly psh, then the measureµϕ is the Lebesgue measure onCk with density the contin-
uous functionz′ 7→ µϕ(z′) given, in local coordinates, by formula ( 1. 7 ). Then, forλk-
almost everya ∈ ∆k, the functionwµϕ is λk-integrable onBk(a, ε).

In addition for smallε > 0, we have

I(ε, j) ∼ ε2k

ω2kµϕ(a)

∫

Bk(a,ε)

wj(z′)µϕ(z′)dλk(z′)

= 1
ω2kµϕ(a)

∫

Bk(0,1)

wj(a + εt′)µϕ(a + εt′)dλk(t′).
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If a 6∈ Eϕ then for allj ∈ N we have

limε→0 I(ε, j) = wj(a)
≥ w(a)
> −∞.

Hence, by the Lebesgue’s dominated convergence theorem and Proposition 3.1, ifa 6∈ Eϕ,
then limj→+∞〈Uj , π, a〉ϕ exists inD ′

(p−k+1,p−k+1)(∆
n) and is equal toj∗a(U). Con-

versely, if for any positive test functiong ∈ D(∆n−k), the limit, asj → +∞, of
〈Uj , π, a〉ϕ(gβ′′p−k+1) exists, and is given by

lim
j→+∞

〈Uj , π, a〉ϕ(gβ′′p−k+1) =
∫

∆n−k

j∗a(U) ∧ g(z′′)β′′p−k+1 (3. 24)

hence, we have

lim
j→+∞

∫

z′′∈∆n−k

j∗a(Uj) ∧ g(z′′)β′′p−k+1 =
∫

z′′∈∆n−k

j∗a(U) ∧ g(z′′)β′′p−k+1.

By taking an increasing sequence(gs) of smooth functions compactly supported in∆n−k

such thatlims→0 gs = 1l∆n−k , the equality ( 3. 24 ) implies thatj∗a(U) has a locally finite
mass on∆n−k and this means thata 6∈ Eϕ. ¤

REMARK 4. SinceEϕ = Sϕ ∩ E whereE = Ez′ 7→|z′|2 is the exceptional subset
introduced in[6] and since it was proved in[6] thatE is a pluripolar subset of∆k, then it
is clear thatEϕ is also a pluripolar subset of∆k.

4. GENERALIZED ϕ-SLICING FORMULA

Now, we give the proof of the formula ( 4. 25 ) which is an amelioration of the slicing
formula of H. Ben Messaoud and H. El Mir [6], the origin of the slicing formula is due to
Federer [3]. Using results of [6], we prove that formula ( 4. 25 ) holds with respect to any
smooth and strictly plurisubharmonic function. Here is a question that remains open: does
formula ( 4. 25 ) hold for a given locally bounded plurisubharmonic function on∆k?

THEOREM4.1. Letϕ = ϕ(z′) ∈ C 2∩Psh(∆n) such thatϕ is strictly psh and leta ∈ ∆k.
Then the following statements hold

(1) 〈U, π, a〉ϕ exists inD ′
(p−k+1,p−k+1)(∆

n) if and only ifa 6∈ Eϕ and in this case
we have〈U, π, a〉ϕ = j∗a(U).

(2) For anyΨ ∈ D(p−k+1,p−k+1)(∆n) and for anyv1, . . . , vk ∈ L∞locPsh(∆k), we
have∫

∆n

U ∧ ddcṽ1 ∧ · · · ∧ ddcṽk ∧Ψ =
∫

a∈Sϕ

〈U, π, a〉ϕ(Ψ)ddcv1 ∧ · · · ∧ ddcvk (4. 25)

whereṽj = vj ◦ π, j = 1, . . . , k.

Proof. Let us prove the first assertion. Suppose that the slice〈U, π, a〉ϕ is well defined in
D ′

(p−k+1,p−k+1)(∆
n), which is, by [6], equivalent to the existence of the following weak

limit in D ′
(p−k+1,p−k+1)(∆

n):

lim
j→∞

〈Uj , π, a〉ϕ = j∗a(U),

hence we havea 6∈ Eϕ (by Theorem 3.1). Conversely, leta ∈ Sϕ such thata 6∈ Eϕ. It
is sufficient to prove that〈U, π, a〉ϕ is well defined inD ′

(p−k+1,p−k+1)(∆
n). Takeh ∈

D(∆n−k) a test function, then for smallε > 0, we have
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µϕ(Bk(a, ε) =
∫

Bk(a,ε)

µϕ(z′)dλk(z′)

∼ ω2kµϕ(a)ε2k.

Put

Iϕ(a, ε, h) =
1

µϕ(Bk(a, ε))

∫

Bk(a,ε)×Cn−k

U ∧ (ddcϕ)k ∧ h(z′′)β′′n−k

using [6], we get

Iϕ(a, ε, h) ∼ε→0
1

ω2kµϕ(a)ε2k

∫

Bk(a,ε)×Cn−k

U ∧ β′k ∧ µϕ(z′)h(z′′)β′′n−k

= 1
µϕ(a) 〈U, π, a〉 (µϕ(a)hβ′′n−k

)

= 〈U, π, a〉 (hβ′′n−k
)

= 〈U, π, a〉ϕ
(
hβ′′n−k

)
.

This implies thata 6∈ Eϕ. To prove the second statement, we observe that, following
Proposition 5.1, the formula ( 4. 25 ) holds withUε. The general case may be deduced by
lettingε → 0. ¤

We get the following result which can be deduced from Theorem 4.1

THEOREM 4.2. Let ϕ = ϕ(z′) ∈ C 2 ∩ Psh(∆n) such thatϕ is strictly psh and let
Tj = T ∗ χj . Then we have

(1) For anya ∈ ∆k r Eϕ, the slice〈U, π, a〉ϕ is well defined and is equal toj∗a(U).
(2) For anya ∈ ∆k r Eϕ, the slice〈T, π, a〉ϕ is well defined. Furthermore, in the

weak sense of currents we havelimj→+∞〈Tj , π, a〉ϕ = 〈T, π, a〉ϕ.
(3) For anyΨ ∈ D(p−k,p−k)(∆n) and for allv1, . . . , vk ∈ L∞loc ∩ Psh(∆k), we have

the following slicing formula for positive closed currents∫

∆n

T ∧ ddcṽ1 ∧ · · · ∧ ddcṽk ∧Ψ =
∫

a∈Sϕ

〈T, π, a〉ϕ(Ψ)ddcv1 ∧ · · · ∧ ddcvk (4. 26)

whereṽj = vj ◦ π, j = 1, . . . , k.

Proof. The first statement is a result of Theorem 4.1. The second statement is a con-
sequence of the first statement and Proposition 2.2 since we have, in the weak sense of
currents,ddcU = T + R, whereR is a smooth form. The third statement holds since
formula ( 4. 26 ) is a consequence of formula ( 4. 25 ). ¤

5. ϕ-SLICING OF A THE CURRENT OF INTEGRATION OVER AN ANALYTIC SET

In this section we want to exprime explicitly the slice〈[X], π, a〉ϕ whereϕ(z′) is a
smooth and strictly plurisubharmonic function on∆n and[X] is the current of integration
over an analytic subsetX of ∆n.

In order to do this, we need the following well known proposition (for more details
about the proof we can see [6]):

PROPOSITION5.1. Let X be an analytic subset of∆n andm be its complex dimension.
Then the following statements hold:

• if m < k thenπ(X) is contained in a countable union of analytic subsets of∆k

of dimensions≤ m.
• If m ≥ k then the setZ = {a ∈ ∆k / dimC(X ∩ π−1(X)) ≥ m − k + 1} is

contained in a countable union of analytic subsets of∆k of dimension≤ k − 1.
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PROPOSITION5.2. Let X be an analytic subset of∆n of complex dimensionp ≥ k and
let ϕ(z′) be a smooth and strictly plurisubharmonic function on∆n. Then, there exists a
subsetZ contained in a countable union of analytic subsets of∆k of dimensions≤ k − 1
such that for alla ∈ ∆k, X ∩ π−1(a) is an analytic set of dimensionp− k (otherwise is
empty) and〈[X], π, a〉ϕ = [X ∩ π−1(a)].

Proof. Let Xreg be the set of regular points ofX. We may assume that0 ∈ Xreg. Put
Z1 = {a ∈ ∆k / dimC(X ∩ π−1(X)) > p − k}; by Proposition 5.1,Z1 is contained
in a countable union of analytic subsets of∆k of dimensions≤ k − 1. As the dimension
m of the setXsing of singular points, satisfiesm ≤ p − 1, then, by Proposition 5.1, there
exists a setZ2 contained in a countable union of analytic subsets of∆k of dimensions
≤ k − 1, such that for alla ∈ ∆k r Z2, Xsing ∩ π−1(a) is an analytic subset of∆k of
dimensionm − k (otherwise is empty). PutZ = Z1 ∪ Z2 and denotēπ := π|Xreg

. Let
Ψ ∈ D(p−k,p−k)(∆n) of the formf(z)βp−k, takea ∈ ∆k r Z and set

Γε :=
1

µϕ(Bk(a, ε))

∫

Bk(a,ε)×Cn−k

[X] ∧ (ddcϕ)k ∧Ψ. (5. 27)

Sinceϕ is smooth, then by the definition of the current of integration overX, the equality
( 5. 27 ) can be written as

Γε =
1

µϕ(Bk(a, ε))

∫

Xregr(π̄−1(Z))∩(Bk(a,ε)×Cn−k)

π̄∗[(ddcϕ)k ∧Ψ]. (5. 28)

For smallε > 0, we can find local coordinates(z1, . . . , zk, w1, . . . , wn−k) such that

Xreg r (π̄−1(Z)) ∩ (Bk(a, ε)× Cn−k) = Bk(a, ε)× Cp−k × {0}Cn−p .

Sinceµϕ(Bk(a, ε)) ∼ ω2kε2kµϕ(a) as ε → 0, then by an application of Fubini’s the-
orem and by the change of variablez′ ↔ z′−a

ε , whenε is small enough(ε → 0), the
equality ( 5. 28 ) can be transformed to the following

Γε =
1

ω2kµϕ(a)

∫

Cp−k

∫

Bk(0,1)

µϕ(a + εt)f(a + εt, w)dλk(t)dλp−k(w). (5. 29)

By lettingε → 0 in ( 5. 29 ), we get

limε→0 Γε =
∫

Cp−k

f(a,w)dλp−k(w)

=
∫

Xreg∩π−1(a)

j∗a(Ψ)

= 〈[X ∩ π−1(a)], j∗a(Ψ)〉

the last equality holds since the setXsing ∩ π−1(a) has dimension< p− k, this achieves
the proof of the Proposition. ¤
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