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Abstract. In this paper, we extend the idea of pseudo spectral method
to approximate solution of time fractional order three-dimensional heat
conduction equations on a cubic domain. We study shifted Jacobi poly-
nomials and provide a simple scheme to approximate function of multi
variables in terms of these polynomials. We develop new operational ma-
trices for arbitrary order integrations as well as for arbitrary order deriv-
atives. Based on these new matrices, we develop simple technique to
obtain numerical solution of fractional order heat conduction equations.
The new scheme is simple and can be easily simulated with any compu-
tational software. We develop codes for our results using MatLab. The
results are displayed graphically.
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1. INTRODUCTION

In literature, diffusion equations play basic and important role in mathematical model-
ing of large variety of engineering problems. Some of the important problems in which
diffusion equation plays a basic role are: cyclic heating of the cylindrical surface of in-
ternal combustion engines, heating and cooling of building structures, heating lakes and
water reservoirs by radiation, the heating of solid surfaces in materials processing, the
cyclic heating of laminated steel during pickling, heating and cooling of vials contained
DNA for polimerise-chain-reaction activation, the heating of electronics and many more
see for example [12, 11, 1, 35, 3, 25]. In this study we consider the following generalized
time fractional heat conduction problem

χt
∂σu(t, x, y, z)

∂tσ
= λx

∂2u(t, x, y, z)
∂x2

+ λy
∂2u(t, x, y, z)

∂y2
+

λz
∂2u(t, x, y, z)

∂z2
+ I(t, x, y, z), u(0, x, y, z) = f(x, y, z),

(1. 1)

whereχt is the volumetric heat capacity andλx, λy andλz are the thermal conductivities
in thex, y andz directions,0 < σ ≤ 1 is the order of the derivative,t ∈ [0, τ ], x ∈ [0, a],
y ∈ [0, b] andz ∈ [0, c]. I(t, x, y, z) is the internal source term andf(x, y, z) is the initial
heat distribution in the space.

Exact analytical solution of time fractional order diffusion equations are generally very
difficult to obtain. The reason behind this difficulty is the higher computational complex-
ities of fractional calculus involved in solving diffusion equations. This phenomena is
recently been reported by many authors. We refer to Poulikakos [28], Arpaci [4], O zisik
[26], Kakac and Yener [15], and Carslaw and Jaeger [5] for some of the renowned results
in this aspect. Different aspects of solution of the problem such as existence and unique-
ness of positive solutions, analytical properties of solution and the correctness of initial
and boundary conditions have already been studied by many authors. We refer to study
[38, 34, 22, 23, 13, 14, 9, 21].

In the literature, many attempts were made to approximate solution of fractional diffu-
sion equations. V. V. Kulish [20] provide a very efficient way for approximate solution of
such problems using laplace transform. M. Akbarzade [2] studied approximate solution
of integer order three dimensional transient state heat conduction equation by Homotopy
analysis method. However, for fractional order equations, the method used in [2] will re-
sults very complex algorithms. Ting-Hui Ning [24] provided some results based on spheri-
cal coordinates and the method of separation of variables for approximate solution of such
type of problems. Y. Z. Povstenko [29] provided axisymmetric solutions to time-fractional
heat conduction equation in a half-space subject to Robin boundary conditions by the use
of integral transform method. Recently G.C. Wu [36, 37] studied approximate solution to
fractional diffusion equation by variational iteration technique.

One of the most powerful method for numerical solutions of differential equations is the
well known spectral method. This method has already been extensively used for numerical
solutions of fractional order differential equations and partial differential equations with
different types of boundary conditions, see for example [32, 27, 30, 31]. However, no
generalized version of this method is available in the literature which can be used to deal
with higher dimensional problems.

We provide generalized version of the method to find numerical solutions of higher
dimensional fractional order partial differential equations. The methods is based on oper-
ational matrices of integrations and differentiations. Operational matrices in case of single
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variable are available for different orthogonal polynomials such as Sine-Cosine, Legendre,
Jacobi, Lagurree and hermite polynomials, we refer to [33, 6, 7, 10, 8, 16, 17, 18].

In this paper, we use two parametric shifted Jacobi polynomials and generalize the
operational matrices of fractional order integrations and differentiations. We use these
operational matrices to reduce the differential equation under consideration to a system of
easily solvable algebraic equations.

The rest of the paper is organized as follow, in section2 we provide some basic prop-
erties of fractional calculus and orthogonal polynomials and some relations for approx-
imation of multivariate function. In section3, we develop new operational matrices of
integrations and differentiations, in section4 these operational matrices are used to convert
the corresponding differential equation to a system of algebraic equations. In section5 the
proposed algorithms are applied to several test problems and finally in section6 a short
conclusion is made.

2. PRELIMINARIES

For convenience, this section summarizes some concepts, definitions and basic results
from fractional calculus in the sequel.

DEFINITION 1. Given an interval[0, a] ⊂ R, the Riemann-Liouville fractional order
integral of orderσ ∈ R+ of a functionφ ∈ (L1[0, a],R) is defined by

Iσ
0+φ(t) =

1
Γ (σ)

∫ t

0

(t− s)σ−1φ(s)ds,

provided that the integral on right hand side exists.

DEFINITION 2. For a given functionφ(t) ∈ Cn[0, a], the Caputo fractional order
derivative of orderσ is defined as

Dσφ(t) =
1

Γ(n− σ)

∫ x

0

φ(n)(t)
(x− t)σ+1−n

dt, n− 1 ≤ σ < n , n ∈ N,

provided that the right side is pointwise defined on(0,∞), wheren = [σ] + 1.

Hence, it follows that

Dσtk =
Γ(1 + k)

Γ(1 + k − σ)
tk−σ, Iσtk =

Γ(1 + k)
Γ(1 + k + σ)

tk+σ and DσC = 0, for a constantC.

(2. 2)

2.1. The shifted Jacobi polynomials: [19] The well known two parametric Jacobi poly-
nomials defined on[0, τ ] with parameterξ, ζ is given by the following relation

J
(ξ,ζ)
(τ,i) (t) =

i∑

l=0

fτ
(l,i)t

l, i = 0, 1, 2, 3..., (2. 3)

wherefτ
(l,i) is defined by

fτ
(l,i) =

(−1)i−lΓ(i + ζ + 1)Γ(i + l + ξ + ζ + 1)
Γ(l + ζ + 1)Γ(i + ξ + ζ + 1)(i− l)!l!τ l

. (2. 4)

These polynomials are orthogonal with respect to the weight function

ω(ξ,ζ)
τ (t) = (τ − t)ξtζ .
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The orthogonality condition of these polynomials are given as under
∫ τ

0

ω(ξ,ζ)
τ (t)J (ξ,ζ)

(τ,i) (t)J (ξ,ζ)
(τ,j) (t) = γ

(ξ,ζ)
(τ,j)δi,j , (2. 5)

whereδi,j is the Kroncker delta andγ(ξ,ζ)
(τ,j) is defined as

γ
(ξ,ζ)
(τ,j) =

τ ξ+ζ+1Γ(j + ξ + 1)Γ(j + ζ + 1)
(2j + ξ + ζ + 1)Γ(j + 1)Γ(j + ξ + ζ + 1)

. (2. 6)

The orthogonality relation allows us to approximateu(t) ∈ C([0, τ ] in the form of Jacobi
series as follows

u(t) =
∞∑

i=0

ciJ
(ξ,ζ)
(τ,i) (t), (2. 7)

whereci can be easily calculated by using the orthogonality relation, that is,

ci =
1

γ
(ξ,ζ)
(τ,j)

∫ τ

0

u(t)ω(ξ,ζ)
τ (t)J (ξ,ζ)

(τ,i) (t)dt.

It is clear from Lemma2.2.1 in [19] that the coefficientsci decay faster. In practice, we are
concerned with the truncated series of (2. 7 ). Them terms truncated series can be written
in vector form as

u(t) ' KT
MΛM (t), (2. 8)

whereM = m + 1, KM is the coefficient column vector andΛM (t) is M terms column
vector function defined by

ΛM (t) =
[

J
(ξ,ζ)
(τ,0) (t) J

(ξ,ζ)
(τ,1) (t) · · · J

(ξ,ζ)
(τ,i) (t) · · · J

(ξ,ζ)
(τ,m)(t)

]T

. (2. 9)

2.2. Error Estimate. For sufficiently smooth functionu(t) ∈ ∆, where∆ = [a, b], the
maximum amount of error in the approximation of a function withm terms of Jacobi
polynomials is given as

‖g(x)− g(M)(x)‖2 ≤ (C1
1

MM+1
), (2. 10)

where

C1 =
1
4

max
t∈[0,τ ]

| ∂
M+1

∂tM+1
u(x)|. (2. 11)

For the proof of this relation, we refer the reader to study [19]. In our current paper, we are
concerned with four dimensional problems. Therefore, we must first establish a suitable
approximation method of a function of four variable with Jacobi polynomials. Using the
same procedure as developed in [16], we extend the notion to three-dimensional space and
define three-dimensional Jacobi polynomials of orderM on the domain[0, a]×[0, b]×[0, c]
as a product function of three Jacobi polynomials

J
(a,b,c)
(q,r,s) = J

(ξ,ζ)
(a,q) (x)J (ξ,ζ)

(b,r) (y)J (ξ,ζ)
(c,s) (z). (2. 12)

The orthogonality condition ofJ (a,b,c)
(q,r,s) is found to be

∫ c

0

∫ b

0

∫ a

0

J
(a,b,c)
(q,r,s) J

(a,b,c)
(q′,r′,s′)ω

(ξ,ζ)
a,b,cdxdydz

= δ(q,q′)δ(r,r′)δ(s,s′)γ
(ξ,ζ)
(a,q)γ

(ξ,ζ)
(b,r) γ

(ξ,ζ)
(c,s) ,
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whereω
(ξ,ζ)
a,b,c = ω

(ξ,ζ)
a (x)ω(ξ,ζ)

b (y)ω(ξ,ζ)
c (z) is the weight function regarding three dimen-

sional Jacobi polynomials. Hence, anyu(x, y, z) ∈ C([0, a]× [0, b]× [0, c]) can be easily
approximated with three dimensional Jacobi polynomialsJ

(a,b,c)
(q,r,s) as follows

u(x, y, z) =
m∑

q=0

m∑
r=0

m∑
s=0

cqrsJ
(a,b,c)
(q,r,s) , (2. 13)

wherecqrs can be obtained by using the following relation

cqrs =
1

γ
(ξ,ζ)
(a,q)γ

(ξ,ζ)
(b,r) γ

(ξ,ζ)
(c,s)

∫ c

0

∫ b

0

∫ a

0

u(x, y, z)ω(ξ,ζ)
a,b,cJ

(a,b,c)
(q,r,s) dxdydz. (2. 14)

For simplicity, use the notationcn = cqrs wheren = M2q + Mr + s + 1, and rewrite
(2. 13 ) in vector notation, as follows

u(x, y, z) =
M3∑
n=1

cnJ
(a,b,c)
(n) (x, y, z) = CT

M3Λ(a,b,c)(x, y, z).

WhereCM3 is coefficient column vector of orderM3 andΛ(a,b,c)(x, y, z) is column vector
of functions defined by

Λ(a,b,c)(x, y, z) =
[

J
(a,b,c)
(1) J

(a,b,c)
(2) · · · J (a,b,c)

(n) · · · J
(a,b,c)
(M3)

]T

. (2. 15)

2.3. Four-dimensional Jacobi polynomials.Now, extend the idea to four dimensional
space defined on domain[0, τ ] × [0, a] × [0, b] × [0, c] by the product function of Jacobi
polynomials of orderM as

J
(τ,a,b,c)
(p,q,r,s) = J

(ξ,ζ)
(τ,p) (t)J

(ξ,ζ)
(a,q) (x)J (ξ,ζ)

(b,r) (y)J (ξ,ζ)
(c,s) (z). (2. 16)

The orthogonality condition ofJ (τ,a,b,c)
(p,q,r,s) is found to be

∫ c

0

∫ b

0

∫ a

0

∫ τ

0

J
(τ,a,b,c)
(p,q,r,s) J

(τ,a,b,c)
(p′,q′,r′,s′)ω

(ξ,ζ)
τ,a,b,cdtdxdydz

= δ(p,p′)δ(q,q′)δ(r,r′)δ(s,s′)γ
(ξ,ζ)
(τ,p)γ

(ξ,ζ)
(a,q)γ

(ξ,ζ)
(b,r) γ

(ξ,ζ)
(c,s) ,

whereω
(ξ,ζ)
τ,a,b,c = ω

(ξ,ζ)
τ (t)ω(ξ,ζ)

a (x)ω(ξ,ζ)
b (y)ω(ξ,ζ)

c (z) is the weight function regarding
four-dimensional Jacobi polynomials. Anyu(t, x, y, z) ∈ C([0, τ ]× [0, a]× [0, b]× [0, c])
can be easily approximated with four dimensional Jacobi polynomialsJ

(τ,a,b,c)
(p,q,r,s) as follows

u(t, x, y, z) =
m∑

p=0

m∑
q=0

m∑
r=0

m∑
s=0

dpqrsJ
(τ,a,b,c)
(p,q,r,s) , (2. 17)

wheredpqrs can be obtained by the relation

dpqrs =
1

γ
(ξ,ζ)
(τ,p)γ

(ξ,ζ)
(a,q)γ

(ξ,ζ)
(b,r) γ

(ξ,ζ)
(c,s)

∫ c

0

∫ b

0

∫ a

0

∫ τ

0

u(t, x, y, z)ω(ξ,ζ)
τ,a,b,cJ

(τ,a,b,c)
(p,q,r,s) dtdxdydz.
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For simplicity, we use the notationdp,n = dpqrs wheren = M2q + Mr + s + 1, and
rewrite (2. 17 ) as follows

u(t, x, y, z) =
m∑

p=0

M3∑
n=1

dp,nJτ
p (t)J (a,b,c)

n (x, y, z)

= ΛT
M (t)DM×M3Λ(a,b,c)(x, y, z),

whereΛT
M (t) is the function vector related to variablet and is as defined in (2. 9 ) and

Λ(a,b,c)(x, y, z) is the function vector related to variablex, y, z and is defined in (2. 15 ).

3. OPERATIONAL MATRICES OFINTEGRATION AND DIFFERENTIATIONS

The operational matrices of derivatives and integrations play the role of building blocks
in the establishment of the new pseudo spectral method. In literature, these are used only
for solutions of differential equations including fractional differential with only one vari-
able and partial differential equations with two and three variables [16]. Here we construct
new operational matrices for three variables and use them to convert a generalized class of
PDEs with four variable to a system of easily solvable algebraic equations.

LEMMA 3.1. Let Λ(a,b,c)(x, y, z) be the function vector as defined in(2. 15 ), then the
fractional order partial derivative of orderσ of Λ(a,b,c)(x, y, z) w.r.t x is given by

∂σ

∂xσ
Λ(a,b,c)(x, y, z) = xA

(σ,a,b,c)
M3×M3Λ(a,b,c)(x, y, z),

wherexA
(σ,a,b,c)
M3×M3 is the operational matrix of differentiation of orderσ, and is defined as

xA
(σ,a,b,c)
M3×M3 =




Ω1,1 Ω1,2 · · · Ω1,n′ · · · Ω1,M3

Ω2,1 Ω2,2 · · · Ω2,n′ · · · Ω2,M3

...
...

...
...

...
...

Ωn,1 Ωn,2 · · · Ωn,n′ · · · Ωn,M3

...
...

...
...

...
...

ΩM3,1 ΩM3,2 · · · ΩM3,n′ · · · ΩM3,M3




, (3. 18)

where
n′ = M2h + Mi + j + 1, n = M2q + Mr + s + 1,

i, j, k, q, r, s = 0, 1, 2, ...,m,

and

Ωn,n′ = ĥn
n′ = ĥqrs

ijk =
q∑

l=dσe
hqrs

ijk

︷ ︸︸ ︷
fa

(l,q), (3. 19)

hqrs
ijk =

δ(j,r)δ(k,s)

γ
(ξ,ζ)
(a,i)

i∑

l′=0

fa
(l′,i)

Γ(l′ + ζ + l − σ + 1)Γ(ξ + 1)a(l′+ζ+l−σ+ξ+1)

Γ(l′ + ζ + l − σ + ξ + 1)
,

︷ ︸︸ ︷
fa

(l,q) = fa
(l,q)

1+l
1+l−σ , andfa

(.,.) is as defined in(2. 4 ).

Proof. Consider the general term of the function vector (2. 15 ). Then, in view of (2. 12 ),
we can write

∂σ

∂xσ
J

(a,b,c)
(n) (x, y, z) =

∂σ

∂xσ
J

(a,b,c)
(q,r,s) , (3. 20)
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wheren = M2q + Mr + s + 1. After expansion of the left side we get

∂σ

∂xσ
J

(a,b,c)
(n) (x, y, z) = J

(ξ,ζ)
(b,r) (y)J (ξ,ζ)

(c,s) (z)
∂σ

∂xσ
J

(ξ,ζ)
(a,q) (x). (3. 21)

Using (2. 2 ) and (2. 3 ), and after simplification, we obtain

∂σ

∂xσ
J

(a,b,c)
(n) (x, y, z) = J

(ξ,ζ)
(b,r) (y)J (ξ,ζ)

(c,s) (z)
q∑

l=dσe
fa

(l,q)

1 + l

1 + l − σ
xl−σ, (3. 22)

which can be written in the following form

∂σ

∂xσ
J

(a,b,c)
(n) (x, y, z) =

q∑

l=dσe

︷ ︸︸ ︷
fa

(l,q) J
(ξ,ζ)
(b,r) (y)J (ξ,ζ)

(c,s) (z)xl−σ, (3. 23)

where
︷ ︸︸ ︷
fa

(l,q) = fa
(l,q)

1+l
1+l−σ . ApproximatingJ

(ξ,ζ)
(b,r) (y)J (ξ,ζ)

(c,s) (z)xl−σ with three dimen-
sional Jacobi polynomials as follows

J
(ξ,ζ)
(b,r) (y)J (ξ,ζ)

(c,s) (z)xl−σ =
m∑

i=0

m∑

j=0

m∑

k=0

hqrs
ijkJ

(a,b,c)
(i,j,k) . (3. 24)

The coefficientshqrs
ijk can be easily calculated by using relation (2. 14 ), that is,

hqrs
ijk =

1

γ
(ξ,ζ)
(a,i) γ

(ξ,ζ)
(b,j) γ

(ξ,ζ)
(c,k)

∫ c

0

∫ b

0

∫ a

0

ω
(ξ,ζ)
a,b,cJ

(ξ,ζ)
(b,r) (y)J (ξ,ζ)

(c,s) (z)xl−σJ
(a,b,c)
(i,j,k) dxdydz,

which after simplification yields

hqrs
ijk =

δ(j,r)δ(k,s)

γ
(ξ,ζ)
(a,i)

∫ a

0

ω(ξ,ζ)
a xl−σJ

(ξ,ζ)
(a,i) (x)dx. (3. 25)

Now, we obtain

∫ a

0

ω(ξ,ζ)
a xl−σJ

(ξ,ζ)
(a,i) (x)dx =

i∑

l′=0

fa
(l′,i)

∫ a

0

(a− x)ξxl′+ζ+l−σdx. (3. 26)

By the convolution theorem of Laplace transform, we have

£(
∫ a

0

(a− x)ξxl′+ζ+l−σdx) =
Γ(l′ + ζ + l − σ + 1)Γ(ξ + 1)

s(l′+ζ+l−σ+ξ+2)
,

and by taking the inverse Laplace transform, we obtain

∫ a

0

(a− x)ξxl′+ζ+l−σdx =
Γ(l′ + ζ + l − σ + 1)Γ(ξ + 1)a(l′+ζ+l−σ+ξ+1)

Γ(l′ + ζ + l − σ + ξ + 1)
. (3. 27)

Using the equation (3. 27 ) and (3. 26 ) in (3. 25 ), we get

hqrs
ijk =

δ(j,r)δ(k,s)

γ
(ξ,ζ)
(a,i)

i∑

l′=0

fa
(l′,i)

Γ(l′ + ζ + l − σ + 1)Γ(ξ + 1)a(l′+ζ+l−σ+ξ+1)

Γ(l′ + ζ + l − σ + ξ + 1)
. (3. 28)
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Also by using (3. 24 ) in (3. 23 ) we get

∂σ

∂xσ
J

(a,b,c)
(n) (x, y, z) =

m∑

i=0

m∑

j=0

m∑

k=0

q∑

l=dσe
hqrs

ijk

︷ ︸︸ ︷
fa

(l,q) J
(a,b,c)
(i,j,k)

=
m∑

i=0

m∑

j=0

m∑

k=0

ĥqrs
ijkJ

(a,b,c)
(i,j,k) ,

(3. 29)

whereĥqrs
ijk =

∑q
l=dσe hqrs

ijk

︷ ︸︸ ︷
fa

(l,q). Now using the notationn = M2q + Mr + s + 1,

n′ = M2i + Mj + k + 1, we have

∂σ

∂xσ
J

(a,b,c)
(n) (x, y, z) =

M3∑

n′=0

ĥn
n′J

(a,b,c)
(n′) (x, y, z). (3. 30)

which in view of the notationΩn,n′ = ĥn
n′ for i, j, k, q, r, s = 0, 1, 2, 3, ..m, yields the

desired result. ¤

LEMMA 3.2. Let Λ(a,b,c)(x, y, z) be the function vector as defined in(2. 15 ), then the
fractional order partial derivative of orderσ of Λ(a,b,c)(x, y, z) w.r.t y is given by

∂σ

∂yσ
Λ(a,b,c)(x, y, z) = yA

(σ,a,b,c)
M3×M3Λ(a,b,c)(x, y, z), (3. 31)

whereyA
(σ,a,b,c)
M3×M3 is the operational matrix of differentiation of orderσ, and is given by

yA
(σ,a,b,c)
M3×M3 =




Ω1,1 Ω1,2 · · · Ω1,n′ · · · Ω1,M3

Ω2,1 Ω2,2 · · · Ω2,n′ · · · Ω2,M3

...
...

...
...

...
...

Ωn,1 Ωn,2 · · · Ωn,n′ · · · Ωn,M3

...
...

...
...

...
...

ΩM3,1 ΩM3,2 · · · ΩM3,n′ · · · ΩM3,M3




, (3. 32)

where
n′ = M2h + Mi + j + 1, n = M2q + Mr + s + 1,

i, j, k, q, r, s = 0, 1, 2, ...,m,

and

Ωn,n′ = ĥn
n′ = ĥqrs

ijk =
r∑

l=dσe
hqrs

ijk

︷ ︸︸ ︷
fb

(l,r), (3. 33)

hqrs
ijk =

δ(i,q)δ(k,s)

γ
(ξ,ζ)
(b,j)

j∑

l′=0

fb
(l′,j)

Γ(l′ + ζ + l − σ + 1)Γ(ξ + 1)b(l′+ζ+l−σ+ξ+1)

Γ(l′ + ζ + l − σ + ξ + 1)
,

︷ ︸︸ ︷
fb

(l,r) = fb
(l,r)

1+l
1+l−σ , andfb

(.,.) is as defined in(2. 4 ).

Proof. The proof of this lemma is similar to that of the above lemma. ¤

LEMMA 3.3. Let Λ(a,b,c)(x, y, z) be the function vector as defined in(2. 15 ), then the
fractional order partial derivative of orderσ of Λ(a,b,c)(x, y, z) w.r.t z is given by

∂σ

∂zσ
Λ(a,b,c)(x, y, z) = zA

(σ,a,b,c)
M3×M3Λ(a,b,c)(x, y, z), (3. 34)
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wherezA
(σ,a,b,c)
M3×M3 is the operational matrix of differentiation of orderσ, and is defined by

zA
(σ,a,b,c)
M3×M3 =




Ω1,1 Ω1,2 · · · Ω1,n′ · · · Ω1,M3

Ω2,1 Ω2,2 · · · Ω2,n′ · · · Ω2,M3

...
...

...
...

...
...

Ωn,1 Ωn,2 · · · Ωn,n′ · · · Ωn,M3

...
...

...
...

...
...

ΩM3,1 ΩM3,2 · · · ΩM3,n′ · · · ΩM3,M3




, (3. 35)

where

n′ = M2h + Mi + j + 1, n = M2q + Mr + s + 1,

i, j, k, q, r, s = 0, 1, 2, ...,m,

and

Ωn,n′ = ĥn
n′ = ĥqrs

ijk =
s∑

l=dσe
hqrs

ijk

︷ ︸︸ ︷
fc

(l,s), (3. 36)

hqrs
ijk =

δ(i,q)δ(j,r)

γ
(ξ,ζ)
(c,k)

k∑

l′=0

fc
(l′,k)

Γ(l′ + ζ + l − σ + 1)Γ(ξ + 1)c(l′+ζ+l−σ+ξ+1)

Γ(l′ + ζ + l − σ + ξ + 1)
,

︷ ︸︸ ︷
fc

(l,s) = fc
(l,s)

1+l
1+l−σ andfc

(.,.) is as defined in(2. 4 ).

Proof. The proof of this lemma is similar to that of the above lemma. ¤

LEMMA 3.4. Let ΛM (t) be the function vector as defined in(2. 9 ) then theγ order inte-
gration ofΛM (t) is given by

Iγ(ΛM (t)) ' Hη,γ
M×MΛM (t), (3. 37)

whereHη,γ
M×M is the operational matrix of integration of orderγ and is defined as

Hη,γ
M×M =




Θ0,0,k Θ0,1,k, · · · Θ0,j,k · · · Θ0,m,k

Θ1,0,k Θ1,1,k · · · Θ1,j,k · · · Θ1,m,j

...
...

...
...

...
...

Θi,0,k Θi,1,k · · · Θi,j,k · · · Θi,m,k

...
...

...
...

...
...

Θm,0,k Θm,1,k · · · Θm,j,k · · · Θm,m,k




(3. 38)

where

Θi,j,k =
i∑

k=0

Λi,k,γSj , (3. 39)

Λi,k,γ =
(−1)i−kΓ(i + ζ + 1)Γ(i + k + ξ + ζ + 1)Γ(1 + k)

Γ(k + ζ + 1)Γ(i + ξ + ζ + 1)(i− k)!k!Γ(1 + k + ξ)ηk
, (3. 40)

and
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Sj =
j∑

l=0

(−1)j−lΓ(j + l + ξ + ζ + 1)Γ(k + ξ + l + ζ + 1)
Γ(l + ζ + 1)(j − l)!l!Γ(k + γ + l + ζ + ξ + 2)

× (2j + ξ + ζ + 1)Γ(j + 1)Γ(ξ + 1)ηγ

Γ(j + ξ + 1)
.

Proof. For the proof of this lemma we refer to [19]. ¤

4. APPLICATION OF THE OPERATIONAL MATRICES OF INTEGRATIONS AND

DERIVATIVES TO HEAT CONDUCTION PROBLEM

Consider the following heat conduction problem posed on a cubic region

χt
∂σu(t, x, y, z)

∂tσ
= λx

∂2u(t, x, y, z)
∂x2

+ λy
∂2u(t, x, y, z)

∂y2

+ λz
∂2u(t, x, y, z)

∂z2
+ I(t, x, y, z), u(0, x, y, z) = f(x, y, z),

(4. 41)

whereχt is the volumetric heat capacity(J/(m3K)), λx, λy, λz are thermal conductivities
(W/m.K) in x, y andz direction respectively,0 < α ≤ 1, t ∈ [0, τ ], x ∈ [0, a], y ∈ [0, b]
andz ∈ [0, c]. We seek solution of this problem in terms of shifted Jacobi polynomials
such that the following relation holds

∂σu(t, x, y, z)
∂tσ

= ΛM (t)T KM×M3Λ(a,b,c)(x, y, z). (4. 42)

By the application of fractional integration of orderσ with respect to variablet on equation
(4. 42 ) and making use of Lemma 3.4, we have

Iσ ∂σu(t, x, y, z)
∂tσ

= ΛM (t)T (Hτ,σ
M×M )T KM×M3Λ(a,b,c)(x, y, z),

which implies that

u(t, x, y, z)− c1 = ΛM (t)T (Hτ,σ
M×M )T KM×M3Λ(a,b,c)(x, y, z). (4. 43)

The initial condition yieldsc1 = u(0, x, y, z). Hence, we have

u(t, x, y, z) = ΛM (t)T (Hτ,σ
M×M )T KM×M3Λ(a,b,c)(x, y, z) + f(x, y, z), (4. 44)

which can be rewritten as

u(t, x, y, z) = ΛM (t)T {(Hτ,σ
M×M )T KM×M3 + FM×M3}Λ(a,b,c)(x, y, z). (4. 45)

Using this value ofu(t, x, y, z), we obtain

∂2u(t, x, y, z)
∂x2

= ΛM (t)T {(Hτ,σ
M×M )T KM×M3 + FM×M3} xA

(σ,a,b,c)
M3×M3Λ(a,b,c)(x, y, z),

(4. 46)
∂2u(t, x, y, z)

∂y2
= ΛM (t)T {(Hτ,σ

M×M )T KM×M3 + FM×M3} yA
(σ,a,b,c)
M3×M3Λ(a,b,c)(x, y, z)

(4. 47)
and

∂2u(t, x, y, z)
∂z2

= ΛM (t)T {(Hτ,σ
M×M )T KM×M3 + FM×M3} zA

(σ,a,b,c)
M3×M3Λ(a,b,c)(x, y, z).

(4. 48)
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Using (4. 42 ), (4. 46 ), (4. 47 ) and (4. 48 ) in (4. 41 ), we get

χtΛM (t)T KM×M3Λ(a,b,c)(x, y, z)) = λxΛM (t)T {(Hτ,σ
M×M )T KM×M3 + FM×M3} xA

(σ,a,b,c)
M3×M3

+ λyΛM (t)T {(Hτ,σ
M×M )T KM×M3 + FM×M3} yA

(σ,a,b,c)
M3×M3Λ(a,b,c)(x, y, z)

+ λzΛM (t)T {(Hτ,σ
M×M )T KM×M3 + FM×M3} zA

(σ,a,b,c)
M3×M3Λ(a,b,c)(x, y, z)

+ ΛM (t)T F o
M×M3Λ(a,b,c)(x, y, z),

(4. 49)

whereΛM (t)T F o
M×M3Λ(a,b,c)(x, y, z) = I(t, x, y, z). The above equations can be sim-

plified as

ΛM (t)T [(χtKM×M3 − λx{(Hτ,σ
M×M )T KM×M3 + FM×M3} xA

(σ,a,b,c)
M3×M3−

λy{(Hτ,σ
M×M )T KM×M3 + FM×M3} yA

(σ,a,b,c)
M3×M3−

λz{(Hτ,σ
M×M )T KM×M3 + FM×M3} zA

(σ,a,b,c)
M3×M3 − F o

M×M3 ]Λ(a,b,c)(x, y, z) = 0.

which implies that

[(χtKM×M3 − λx{(Hτ,σ
M×M )T KM×M3 + FM×M3} xA

(σ,a,b,c)
M3×M3−

λy{(Hτ,σ
M×M )T KM×M3 + FM×M3} yA

(σ,a,b,c)
M3×M3−

λz{(Hτ,σ
M×M )T KM×M3 + FM×M3} zA

(σ,a,b,c)
M3×M3 − F o

M×M3 ] = 0.

In generalized form we can write it as

AM×MKM×M3BT
M3×M3 −KM×M3 + CM×M3 = 0. (4. 50)

Where

AM×M = (
λx

χt
IM×M +

λy

χt
IM×M +

λz

χt
IM×M )(Hτ,σ

M×M )T ,

BT
M3×M3 = xA

(2,a,b,c)
M3×M3 + yA

(2,a,b,c)
M3×M3 + zA

(2,a,b,c)
M3×M3 ,

and

CM×M3 = FM×M3{λx

χt

xA
(2,a,b,c)
M3×M3 +

λy

χt

yA
(2,a,b,c)
M3×M3 +

λz

χt

zA
(2,a,b,c)
M3×M3}+ F o

M×M3 .

The resulting equation (4. 50 ) is an algebraic equation of Sylvester type and can be
easily solved for the unknown matrixKM×M3 by using the MatLab commanddlyap. By
using the value of K in (4. 45 ) we can easily obtain the approximate solution of the prob-
lem.

5. ILLUSTRATIVE EXAMPLES

The method mentioned above is the extension of pseudo spectral method. The basic
property of such method is that the accuracy of the solutions depend on the smoothness
of the solutions. If the exact solution of the problem is smooth then the method will yield
more accurate solution at small scale level. However, if the solution is not smooth, it
will be needed to simulate the algorithm at relatively higher scales. As experiment, we
approximate the solution of two different problems. In the first problem the source term is
zero. However for the second problem, we select a suitable source term such that the exact
solution of the problem is known.
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EXAMPLE 1. Consider the following time fractional heat conduction problem

χt
∂σu(t, x, y, z)

∂tσ
= λx

∂2u(t, x, y, z)
∂x2

+ λy
∂2u(t, x, y, z)

∂y2

+ λz
∂2u(t, x, y, z)

∂z2
+ I(t, x, y, z), u(0, x, y, z) = f(x, y, z).

(5. 51)

Chooseχt = λx = λy = λz = 1 , 0 < σ ≤ 1, t ∈ [0, 1], x ∈ [0, 1] ,y ∈ [0, 1]
andz ∈ [0, 1] and the initial conditionu(0, x, y, z) = e(x+y+z). Taking the source term
I(t, x, y, z) = 0, then the exact solution of the problem for fixσ = 1 is u(t, x, y, z) =
e(x+y+z+3t). To check the accuracy of the scheme we fixσ = 1(because the exact solution
at σ = 1 is known) and simulate the algorithm at different scale level. We observe that
the accuracy of the solution increases as the scale level increase. At scale levelM = 10,
we observe that the approximate solution is equal to the exact solution with difference less
than10−3. We compare the exact solution with the approximate solution for different val-
ues oft. In Fig (1), we fixt = 0.3 and compare the exact solution with the approximate
solution for values ofz, that is,z = [0.1, 0.3, 0.7, 0.9]. The surfaces in the Fig(1) rep-
resents the approximate solution at some fixz, while the color dots represents the exact
solution at the corresponding values ofz. Fig (2) and Fig(3) shows the same phenomena
at some other values oft, that is, t = 0.5 and t = 0.9 respectively. The most inter-
esting property of fractional differential equation is that the solution at fractional values
approaches to the solution at integer values as the order of derivative approaches from
fractional to integer simultaneously. We use this property to show that the method provide
accurate solution at fractional values. For this purpose, we approximate the solution at
different value ofσ and observe that asσ → 1 the solution approaches to the exact solu-
tion. In Fig (4) and Fig(5), we show this behavior of the solution at two different points
of yz-plane. One can easily note that the approximate solution approaches to the exact
solution( color dots). We observe that for the current problem the method provide much
more accurate results. We approximate the absolute error at two different points of the
yz-plane, as shown in the Fig(6) and Fig (7) the absolute error is less than10−5 which
is relatively accepted number for such complicated problems. The simulations of this ex-
ample is carried out with selecting the parameter of the Jacobi polynomialsξ = ζ = 1.
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Fig. 1 : The comparison of the exact and approximate solution of example1 at t = 0.3
ξ = ζ = 1, M = 10, a = 1, b = 1, c = 1, τ = 1 and the order of derivativeσ = 1.
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Fig. 4 The approximate solution of example 1 at fractional value ofσ (surface). We fix
z = 0.3, y = 0.3, M = 10,a = 1, b = 1, c = 1, τ = 1.
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Fig. 6 : The absolute error of example 1 atM = 10.Here we fixz = 0.3, t = 0.3, σ = 1,
a = 1, b = 1, c = 1, τ = 1.
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Fig. 7 : The absolute error of example 1 atM = 10.Here we fixz = 0.7, t = 0.7, σ = 1,
a = 1, b = 1, c = 1, τ = 1.

EXAMPLE 2. Consider the time fractional heat conduction problem

χt
∂σu(t, x, y, z)

∂tσ
= λx

∂2u(t, x, y, z)
∂x2

+ λy
∂2u(t, x, y, z)

∂y2
+ λz

∂2u(t, x, y, z)
∂z2

+ I(t, x, y, z),

u(0, x, y, z) = f(x, y, z).
(5. 52)

Also chooseχt = λx = λy = λz = 1 , 0 < σ ≤ 1, t ∈ [0, 1], x ∈ [0, 1], y ∈ [0, 1] and
z ∈ [0, 1].If we let the initial condition

u(0, x, y, z) = x2 y2 z2 − 2 x + y + z

and take the source term

I(t, x, y, z) = 2 x y (t x y + x y z)−2 (t x + x z)2−2 (t y + y z)2−2 x2 y2−6 t3 x z3−
6 t3 x3 z + 3 t2 x3 z3 − 12 t4 x2 y4 z4 − 12 t4 x4 y2 z4 − 12 t4 x4 y4 z2 + 4 t3 x4 y4 z4

then the exact solution of the problem forσ = 1 is

u(t, x, y, z) = y − 2 x + z + (t x y + x y z)2 + t3 x3 z3 + t4 x4 y4 z4.

We approximate the solution of this problem with the new technique and as expected we
get a high accuracy of the approximate solution. We observe that at scale levelM = 6
( which is much more small scale for such problem) the approximate solution is equal to
the exact solution with maximum difference less than10−15 which is highly negligible. We
compare the approximate solution with the exact solution at three different value oft. The
comparison att = 0.3 is displayed in Fig.(8), while att = 0.5 and t = 0.9 is shown in
Fig. (9) and Fig(10).One can easily note that the exact solution matches very well with the
approximate solution.Note that the dots in these figures represents the exact solution and
the surface in these figures represents the approximate solution.We also approximate the
solution for fractional value ofσ, and as expected, the approximate solution approaches
the exact solution as the order of derivativeσ → 1.Fig (11) and Fig (12) shows this
phenomena at some fixed points of the yz-plane. The absolute amount of error is displayed
in Fig (13) and Fig(14) at some point of the yz-plane.One can see that the absolute amount
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of error is less than10−16. This example is analyzed with choosing the parameters of the
Jacobi polynomials asξ = ζ = 0.
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Fig. 8 The comparison of the exact and approximate solution example 2 att = 0.3,
ξ = ζ = 0, M = 6, a = 1, b = 1, c = 1, τ = 1 and the order of derivativeσ = 1.
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Fig. 11 The approximate solution of example 2 at fractional value ofσ (surface). Here we
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Fig. 12 The approximate solution of example 2 at fractional value ofσ (surface). Here we
fix x = 0.7, t = 0.7, M = 6,a = 1, b = 1, c = 1, τ = 1.
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Fig. 13 The absolute error of example 2 atM = 6, we fixz = 0.4, t = 0.4.
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Fig. 14 The absolute error of example 2 atM = 6, we fixz = 0.8, t = 0.8

EXAMPLE 3. Consider the following integer order heat conduction problem

∂U(t, x, y, z)
∂t

=
∂2U(t, x, y, z)

∂x2
+

∂2U(t, x, y, z)
∂y2

+
∂2U(t, x, y, z)

∂z2

u(0, x, y, z) = f(x, y, z).
(5. 53)

where t ∈ [0, 1], x ∈ [0, 1] ,y ∈ [0, 1] and z ∈ [0, 1].If we let the initial condition
U(0, x, y, z) = (1− y)e(x+z), then the exact solution of the problem is

U(t, x, y, z) = (1− y)e(x+z+2t).

This problem is also solved in[2] using homotopy analysis method and variational it-
eration method. We approximate the solution of this problem with our new technique.And
as expected we found that the approximate solution matches very well with the exact so-
lution. The comparison of exact and approximate solution at some fixed value oft,ie t =
0.3, 0.6, 0.9 and at each value oft the solution is displayed at fix value ofz.Fig(15),Fig(16)
andFig(17) shows the comparison of exact and approximate solution att = 0.3, 0.6 and 0.9
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respectively. Note that here we fix the scale levelM = 9. We observe that the method yields
a very high accurate estimate of the solution. And the error of approximation (absolute er-
ror) decreases significantly by the increase of the scale levelM . In order to compare the
accuracy of the method we compare our results with the analytic solution obtained in[2].
We calculate the absolute difference of the exact and approximate solution using the cur-
rent method. We also calculate the difference of exact solution and n-th order analytic
solution reported in[2]. We observe that the error obtained with this new method in much
more less than that reported in[2]. Fig(18) andFig(19) shows comparison of absolute
error at two different points of the space.
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Fig. 15 The approximate solution of example 3 at different value ofz whereσ = 1,
M = 9,t = 0.3.
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Fig. 16 The approximate solution of example 3 at different value ofz whereσ = 1,
M = 9,t = 0.6.
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Fig. 17 The approximate solution of example 3 at different value ofz whereσ = 1,
M = 9,t = 0.9.
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Fig. 19 Comparison of absolute error at(x, y, z) = (0.9, 0.9, 0.9) at M = 10.

6. CONCLUSION

From the above analysis and calculation we concluded that the method provide a very
good approximation to the problems under consideration.This method can efficiently solve
partial differential equation in four variables.The main advantage of the method is its high
accuracy.The method can be easily extended to solve more complicated problems.We be-
lieve that one may obtain a more accurate solution by using some other kinds of orthogonal
polynomials like Bernstein or Laguerre.Our future work is related to the extension of the
method to solve such problems under different kinds of boundary conditions.We expect
that the reader may find the work interesting and useful.
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