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1. INTRODUCTION

Any paper on Hermite-Hadamard type inequalities seems to be incomplete without men-
tioning the famous Hermite-Hadamard inequality, which states as follows:
57
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Letg : I C R — R be a convex mapping of one variable ang € I with e < j. Then

. y .

g(e“)<.1/ gwydu < LTI (L 1)
2 Jj—eJe 2

The inequalities in ( 1. 1) are turned overipossesses concavity property. Inequalities

(1.1) are distinguished in mathematical analysis due to its intense geometrical importance

and usefulness (see [26]).

A number of papers have been written during the past few years which generalize,
enrich and extend the inequalities ( 1. 1 ). For numerous results on Hermite-Hadamard
type inequalities, the interested reader is suggested to read [1], [6], [7], [9]-[13], [17], [18],
[25], [28]-[29], [31]-[32], [36], [38] and the references therein.

Approximation of the difference between the middle and the leftmost termsin (1. 1)
has been a notable question in mathematical analysis see for instance [12, 13, 25, 38]. The
most expressive work to give the answer of the above raised question are the articles of
Kirmaci [12] and Pearce and Baric [25].

Now, we evoke that the concept of quasi-convex functions generalizes the concept of
convex functions. More accurately, a functign [e, j] — R is said quasi-convex ofa, j]
if

g (ua+ (1 —u)pB) <max{g(a),g(8)}

for u € [0,1] andVa, 8 € [e,j]. Evidently, the class of quasi-convex functions
is broader than the class of convex functions (see [11]). For more results on Hermite-
Hadamard type inequalities for quasi-convex functions we want to mention the concerned
reader to [1], [9]-[11], [27] and the references stated in them.

Hwang [10], ascertained results for convex and quasi-convex functions, those results
provide a weighted version of the findings given in [12] and [25].

The convex functions and convex sets have been generalized and extended in several
directions using different technigues. Hanson [8], introduced the convex of invex functions
which inspired its applications in optimization and related fields. Mond and Israel [5],
introduced the concept of the preinvex functions and showed that preinvex implies invexity.
Noor [22], proved that the minimum of the differentiable preinvex functions on the invex
sets can be characterized by a class of variational inequalities which are called variational-
like inequalities.

Let us recall the definitions of preinvexity and quasi preinvexity which are substantial
generalizations of the notions of convexity and quasi-convexity respectively.

Definition 1. [35] Let® # V C R*and¢ : V x V — R". Leta € V, thenV is
exclaimed to be invex at with regard tog (-, -), if

a+ug(B,a) € V,Va,B € Vu e 0,1].

The setl is known to be an invex set in connectiongdf V' is invex at everyy € V. The
invex setV is also renamed as aRconnected set.

Remark2. [2] The Definition 1 of an invex set has a clear geometric interpretation. This
definition essentially says that there is a path starting from a poivtiich is contained in

V. We do not require that the poipt should be one of the end points of the path. This
observation plays an important role in our analysis. Note that, if we demangd #tnetuld

be an end point of the path for every pair of pointss € V theno(5,a) = 5 — a, and
consequently invexity reduces to convexity. Thus, it is true that every convex set is also
an invex set with respect 13, «) = 8 — «, but the converse is not necessarily true, see
[20, 37] and the references therein.
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Definition 3. [35] A functiong : V' — R on aninvex set C R" is defined to be preinvex
with regard tog, if

gla+ugp(B,a)) < (1 —u)g(a) +ug(B),Va,8 € V,u € [0,1].
The functiong is said to be preincave iff g is preinvex.

Definition 4. [3] A functiong : V — R on an invex seV’ C R" is considered to be quasi
preinvex with respect tg, if

gla+ud(f,a)) < max{g(a),g(B)},Ve, B € V,u € [0,1].

The concept of quasi preinvexity is more general than the concept of quasi-convexity,
see for example [3].

Noor [21] has shown that the functignis preinvex function ore, e + ¢(j, e)] if and
only if the following inequalities holds:

2¢ + ¢(jy €) 1 [eroue g(e) +9()
g( 5 > < ¢(j,e)/e g(x)dr < 5 : 1.2

The inequality (1. 2) is called the Hermite-Hadamard-Noor type inequalities for prein-
vex functions. This result is basic and is analogous to the original Hermite-Hadamard
inequalities.

Note that if¢(j, e) = j — e, then the inequality ( 1. 2 ) reduces to inequalities (1. 1).

The result given by (1. 2) has been extended and generalized in several directions, see
for instance [3], [4], [14]-[16], [19], [21], [23], [24], [30], [33], [34] and the references
therein.

The current paper is about new weighted integral inequalities of Hermite-Hadamard-
Noor type in which preinvex and quasi preinvex functions are involved. Our findings take
a broad view of those results appeared in a very fresh article of Hwang [10] and also
provide weighted version of those results for preinvex and quasi preinvex functions which
gives new bounds of the deference between the middle and the leftmost terms in Hermite-
Hadamard-Noor type inequalities for the preinvex functions given above by (1. 2).

2. MAIN RESULTS

The results of this sections depends entirely on the following lemma and throughout in
this section we will use the notation¥: C R an invex set with respect to the mapping
¢:VxV =R, Leju)=e+ (154)o(j,e) andU (e, j,u) = e+ (F%) ¢ (4, ),
wheree, j € V° (the interior ofV) with ¢ (j,¢) > 0.

Lemmas. Letg : V — R be a differentiable mapping di° andg’ € L, ([ese + o(4,€)]),
wheree, j € V° with ¢ (4,e) > 0. If h: [e,e + &(j, e)] — [0, 00) be a differentiable map-
ping. Then

h(e)
2

9(6) + e+ 6 Gl = e+ o el g (e + 500.0))

+¢(i,e)/01 [g <e+ (H)qs(j,e)) +g(e+ 1;u)¢(j7e)>}

2
x {h/ <e+ (1;“>¢(; e)> +h (e+ (1—;”)(;5(]',6))] du
[ (Foon) o ()00




2. 3)

1+u

1+u

14+u

+h(e+ ¢ (j,e '

Proof. We note that

holds.

A )
S~— /I\

+
+h(e+(je
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Thus from (2. 4) and (2. 5), we have

X g (e+ (1;“) ¢>(j,e)> du. (2. 5)
¢ (j,e)

29141 =M g @+ g e+ oG - e+ 6 Gielg (e + 3010
2 (o) o ()
G (5o 5 (500

which is the required result. O

Remark6. Suppose) (j,e) = j — e, then Lemma 5 becomes Lemma 2.1 from [10].

Now using Lemma 5, we shall intend to prove new upper bounds for the difference
between the leftmost and the middle terms of weighted version of the Hermite-Hadamard-
Noor type inequality from [21] using preinvex and qusi preinvex mappings.

Theorem 7. Letg : V — R is a differentiable mapping oli® andz : [e,e + ¢(j,€)] —
[0, 00) be continuous and symmetricde+ %q&(j, e), wheree, j € V° with ¢ (j,e) > 0. If

’g" is preinvex orfe, e + ¢(j, e)],

) ! et+(j,e)
[ @@ g (expot0) [ s

¢(12}e) {

’

< g (6)‘+

0 [0 Gesna @6

holds, where\l (z;e, j,u) = [* 7™ 2 (2) dz for all u € [0, 1].

e

Proof. Leth (u) = [z (z) dz forall u € [e,e + ¢ (j, €)] in Lemma 5, we have

e+(j,e)
_g<e+;¢(j,e))/e ’ 2 (z)dz

<
—
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o
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Q\
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and
L' (e.j,u) e+o(je)
/ z(z)dx = / z (x) dx (2.9)
e U’ (e,j,u)
for all u € [0, 1]. Hence by using ( 2. 8 ), we have

[9(%(““) i) vofer (5) 000)

H (7)) v (e (55 o)
)/01< (7)) (o () etia) o
2 [lo(en (5]« (e (452 )

e+2¢(J76) e+d(j,e) e+¢(j,e)
:/ g(w)z(w)dm—i—/ g(x)z(x)dw-/ g (x) z (z) de.
e e+3¢(j.e) e
(2. 10)

Using (2.9)and (2.10)in (2. 7), we get

et+(j,e) 1 e+¢(j,e)
[ @@ g (e+po60) [ s

<557 [ M G
x Hg’ <e+ (1 ; ”) o (4, e)) ’ + ‘g’ (e+ (142”‘) ¢ (4, e)> H du. (2.11)
Now by using the preinvexity C{fg/ ‘ onle, e+ ¢(j, e)], we obtain
’ 1 - ’ 1
g (e+ (2“> ¢(y}e)>’+ ‘g <e+ ( ;“) ¢(j,e))‘
<lg @+l )| @12
forallu € [0,1]. From (2. 11) and (2. 12 ) we get the the required inequality ( 2. &).

Remark8. In Theorem 7, if we take (z) = ¢(J g forallz € [e,e + ¢ (j, ¢)], then (2.6)
becomes the inequality proved in Corollary 3.2 from [33].

Remark9. If ¢ (j,e) = j — e in Theorem 7, then ( 2. 6 ) reduces to the result from [10,
Theorem 2.2, page 70].

RemarklO. If ¢ (j,e) = j —eandz (r) = =X forallz € [e, j] in Theorem 7, we get the
inequality proved in Theorem 2.2, page 138 from [12].

Theorem 11. Letg : V — R is a differentiable mapping ol° andz : [e,e + ¢(j,¢e)] —
[0, 00) be continuous and symmetricder+ %q&(j, e), wheree, j € V° with ¢ (j,e) > 0. If

9. :
’g ‘ is preinvex orfe, e + ¢(j, e)] for ¢ > 1, we have
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e+(jie) 1 et+o(jie)
[ @@ g (e pot0) [ s

g¢(j,e>pg © - (j)’] (/01 o Ged] ) @13)

wherel +1 =1 and M’ (z;e, j,u) is defined as in Theorem 7.

Proof. From the inequality ( 2. 11 ) in the proof of Theorem 7 and using tiéléet’s
integral inequality, we have

/ee+¢(j’6)g($)2’($) do—g <e+ %qs@, e)) /ee+¢(j,e)z($) "
¢(]2}€) </01 [M/ (z;e,j}u)}pdu>; [(/01 g (6+ <1;u> ¢(J}6)) qdu);
. (/01 J (e+ (1;“) ¢>(j,e)) qduf} (2 14)

By applying the power-mean inequality + s” < 2" (¢t +s)" fort > 0, s > 0 and
r < 1 and by the the preinvexity 4@' ’q onle,e + ¢(j,¢e)] for ¢ > 1, we observe that the

following inequality
1 ) 1 q %
g (et (F5)0t0)| a)

(/01 J <e+(12u)¢(j,e)>qdu>q+</ol

<2'7s [/01 g <e+ (1;u)¢(j,e)) qdqu/O1 g (e+ (1;u>q§(j,e)) qdur
<ol=% [/01{<142ru> q+<1;u>

e Lol - el o

(2. 15)

holds. Application of the inequality (2. 15) in ( 2. 14 ), we get the needed inequality.

IN

g (e)

Q

+

’ ‘ q

Remarkl2. In Theorem 11, if we take (z) = @ forall z € [e,e + ¢ (j,e)] with

¢ (j,e) > 0, then (2. 13) becomes the inequality stated below

1 e+¢(j,e)
‘m)/ g(x)dx—g(e+§¢<j,e>)|

1 1 _
whereg +5 = 1.
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Remarkl3. If we take¢ (j,e) = j—ein Theorem 11, then (2. 13 ) becomes the following
inequality

/ejg(m)z(m)dx—g<6;—j>/ejz(x)da:
<(—e) [g © ; g (j)‘q] ' (/01 [M(z;e,j,u)]pdu>;, (2.17)

whereM (z;e,j,u) = feL(e’j’u) z(z)dw, L(e, j,u) = (%) e+ (52) jforallu € [0, 1]
and; + ¢ =1

A comparable result may be asserted in the following theorem.

Theorem 14. Letg : V — R is a differentiable mapping oi° andz : [e,e + ¢(j,¢)] —
[0, 00) be continuous and symmetricder 26 (j, €), wheree, j € V° with ¢ (j, e) > 0. If

9. .
’g ‘ is preinvex orle, e + ¢(j, e)] for ¢ > 1, we have

) ] eto(ie)
[ awswar-g (e go6.0) [T swa

q

/

g (e)

g (j)

+ qél,
<60ie) ; [ M Gedwde @18

whereM’ (w;e, j,u) is defined as in Theorem 7.

Proof. Resuming from inequality ( 2. 11 ) in the proof of Theorem 7 and using the well-
known Holder’s integral inequality, we have

) ) et+d(j,e)
[ @@ g (e poi0) [ s

1—1

§¢(‘£’e)(/olM/(z;e,j,u)du) '
x {[/OIM’ (zie,5,u) |g <e+(1;u)¢(j,e)) qdur
+U01M/(z;e,j,u) J <e+(1;“>¢(j7e)>qdur}. 2. 19)

A usage of the power-mean inequalityt- s” < 2'=" (¢t +s) " fort > 0,5 > 0,7 < 1, and
/|4 . .
by the the preinvexity ng ’ onle,e+ ¢(j,e)] for ¢ > 1, we notice that the following

inequality
_ a 1q
o (e (F51) 0G0)| a

[ e
g <e ¥ (1;“) qﬁ(yye))

1
+ [/ M’ (ze,j,u)
0

qd4;}
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’

1-1 1 ’ . % ’ q NE %
<27a / M (ze,j,u)du [g (e)‘ +19 (J)H (2. 20)
0
holds. Applying the inequality (2. 20) in ( 2. 19), we get the inequality (2. 18). O

Corollary 15. Suppose all the assumptions of Theorem 14 are satisfied an@)f =
A forall z € [e,e + & (j,e)] with ¢ (j,€) > 0. Then

o(j.e)
et¢(j.e)
‘qsul',e)/e g(x)dx‘g(e+;¢(j’e)>’
’ q / 99 q
<269 [9 ©| v (J)\] @21

Remark16. Assume that (j,e) = j — e in Theorem 14, then ( 2. 18 ) diminishes to a
result stated in Theorem 2.4 from [10, page 70].

Remarkl?. Forq = 1, (2. 21) becomes the inequality proved in [33, Corollary 3.2]. If
q= 3% (p > 1), we have2? > p + 1 forp > 1, consequently

1 1
4 2pt1)r
This shows that the inequality ( 2. 21 ) is better estimate than the one given by (2.16).
Moreover, fore (j,e) = j — e the inequality ( 2. 21 ) takes the form of the inequality
proved in [25, Theorem 2, page 53].

The subsequent results are about quasi preinvex functions.

Theorem 18. Letg : V — R is a differentiable mapping ol° andz : [e, e + ¢(j,e)] —
[0, 00) be continuous and symmetricder 26 (j, €), wheree, j € V° with ¢ (j, e) > 0. If

’g/‘ is quasi preinvex offe, e + ¢(j, e)], we have

e+o(j,e) 1 ct+é(4,e)
/ g(a:)z(a:)dx—g(e+2¢(j,e))/ z (z) dx

Lo (5 ] o 1000))
+max<‘g’ <6+;¢(j,6)> g'(e+¢(j,e))’)}/(;lMl(z;e,j,u)du 2. 22)

holds, wherel!’ (z; e, j, u) is defined as in Theorem 7.

’

g (e)

IN

)

)

Proof. We start from the inequality ( 2. 11) given in the proof of Theorem 7. S’qus
quasi preinvexity offe, e + ¢(j, €)], hence for every. € [0, 1], we obtain

g (et (5 )@60))| < max g (et 5000 (2. 23)
1 1
J (c+ (552) 00| < max(|o (e + 5006.0)

/

g (e)

)

and

)

et ot.o)).
(2. 24)
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Combining the inequalities (2. 11), (2. 23) and ( 2. 24 ) produces the asserted inequality
(2.22). O

Corollary 19. If all the assumptions of Theorem 18 are met. Moreover,

) If ‘g/’ is non-decreasing ofe, e + ¢(j, ¢)], we have that

) ) et+(j,e)
[ @@ g (e poi0) [ s

< 2Ue) {

- 2
holds and

) If ‘g/’ is non-increasing offe, e + ¢(j, e)], we have that

e+6(e) . )
/ g(m)z(m)dm—g<e+2¢(j76))/ z (z) dx

g (e+;¢<j,e))‘+\g’ (e+¢<j,e>)\] /OlM’ (1,5, u) du (2. 25)

] ’ ’ 1 1 ’
< d)(;’e) [9 (6)’4- g <6+2¢(J}6)>H M (ze,j,u)du (2. 26)
0
holds true.
Remark20. If in Theorem 18, we take (z) = 7 forallz € [e,e + ¢ (j,¢)] with

¢ (4,¢e) > 0, then the inequality

et¢(j.e)
‘ — g(sc)dx—g(e+;¢<j7e>)’

¢ (je)
£ (] )

+max<g’ <e+ észs(j,e)) o <e+<z>(j,e>>\)} (2. 27)

holds. The inequality ( 2. 27 ) stands for a new improvement of the bound

1 e+o(j.e) 1 ‘
¢(ja€)/e Q(I)d$9(€+2¢(]ae))

for quasi preinvex functions and hence for preinvex functions. Moreover,

’

g

@),

@) Iif ’g" is non-decreasinf, ¢ + ¢(j, ¢)|, observe that

1 e+¢(j,e) 1
| — | g(x)dzg(e+2¢<j7e>>|

¢ (j,e)
¢ (j,e)
8

<

o (c+300:0) [ +]s ot @20

holds and
) If ’g" is non-increasinde, e + ¢(j, e)], we notice that
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1 ) /:W(M)g(x) oy (6 . %gb(j, 6)>|

i .
¢(é7e){

’

g (0] + ’g’ (e - ;qb(j,e)) H (2. 29)

holds valid.

Remarkl. If ¢ (j,e) = j—ein Theorem 18, then (2. 22) takes the form of the inequality
established in Theorem 2.8 from [10] and the inequalities ( 2. 28 ) and ( 2. 29 ) recapture
the inequalities given in the corollaries and remarks related to Theorem 2.8 from [10].

Remark22. If ¢ (j,e) = j — e in Remark 20, then (2. 27 ), we get the following new
results

o)
o (1)) o

Moreover,
1) If ’g" is non-decreasing, j], we have that

[ ()| < o ()4l o] e

holds and
(2) If ‘g" is non-increasinge, j]. Then

’j;/:gu)dxg(e;j)‘gjge{ g<;J>H 0. 3

Theorem 23. Letg : V — R is a differentiable mapping ol° andz : [e, e + ¢(j,¢)] —
[0, 00) be continuous and symmetricder 26 (j, €), wheree, j € V° with ¢ (j,e) > 0. If

/()| e w))}- e

/

g (e)

+

’g' ‘q is quasi preinvex ofe, e + ¢(j, e)] for ¢ > 1. Then

e+o(j,e) 1 et+é(j,e)
/ g(a:)z(a:)dx—g<6+2¢(j,e))/ z (z) dx

< ([ sl o) { s (0] | e o) )]

[ ([ (4 300.0) | Js e +o0 e))ﬂq)];}, @.33)

Proof. We begin with the inequality ( 2. 14 ) in the proof of Theorem 11. By the quasi
/|4
preinvexity Of‘g ’ onle, e+ ¢(j,e)] for ¢ > 1, we have for every, € [0, 1]

o (c+ (F52) 060)| <mac{]s @ o (e+ 3060

’

o

7

)

1 1 _
Where]; +5= 1.

’

g(e)q,

q} (2. 34)
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and

(o0 (152 000)
<mac{ls (e 300.0) [ Jo ot} @39
Ausage of (2. 14), (2. 34) and ( 2. 35) gives us the required inequality ( 2. 33 ).

q

q

)

Corollary 24. Suppose all the conditions of Theorem 23 are satisfied. Moreover

) If ‘g' ’q is non-decreasing ofe, e + ¢(4, )], we notice that

) ! et+(j,e)
[ @@ g (e pot0) [ s

< 2.9 Hg (e + }mye))’ +]g e+ 00 e))” (/01 M (z:e.d, u)}”du) ;
(2. 36)

holds(,l and
(2) If ‘g’ is non-increasing offe, e + ¢(7, ¢)], we get that

e+o(j,e) e+ (4, 6)
/ g(x)z(x)dm—g(e+ Lstie) )/

<42 | (o)
1

holds true, where}) 4 E =

(z5e,4,u )} du)p (2. 37)

Remark25. If in Theorem 23, we take (z) = W 5 forallz € le,e+ ¢ (4, e)] with

¢ (j,e) > 0, then we have the following inequality:

@ /:+¢>(j,e) g(z)dz—g <e + %¢> (J, 6)> ‘
< ‘15(16)) [max( ,’g’ (e+ %cb(J} e)> D

4(p+1
i/ (e+506.0) . Jd erotian])]. @

The inequality ( 2. 38) signifies as a new enhancement of the bound

m /:M(jﬁe) g(z)dz—g (e + %(b (7 6))

for quasi preinvex functions and hence for preinvex functions. Moreover,

/

g (e)

)

+ max (

) If ’g" is non-decreasing o, e + ¢(j, e)]. Then

e+¢(j.e)
‘mj’,e)/@ g(””)dx‘g<e+§¢(j’e))‘
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< i (e+ 3060) |+l x| @39

is valid and
) If 'g" is non-increasing ofe, e + ¢(j, €)]. Then

| oo | @ (e+ do0) |
)

< 4;;(1; o @] +]s (c+500.0)||. @

1 1 _
Where; +,= 1.

Remark26. If we take¢ (j,e) = j — e in Remark 25, we get the results for quasi-convex
functions.

Theorem 27. Letg : V — R is a differentiable mapping oi° andz : [e,e + ¢(j, )] —
[0, 00) be continuous and symmetricder 26 (j, €), wheree, j € V° with ¢ (j,€) > 0. If

’g/ ‘q is quasi preinvex offe, e + ¢(j, e)] for ¢ > 1. Then

/H(b(jﬁ) g(x)z(z)dx —g <6 + %¢ (4 6)) /eﬂﬁ(j)e} z(z)dzx

€ €

<4 o e i) s )]
g (e+;¢(j,e)) q)r}/ol M (ze,j,u)du, (2.41)

whereM’ (z;€,7,u) is defined as in Theorem 7.

g (e+6(j.e))

)

)

+ [max ()g’ @)

Proof. Beginning with the inequality ( 2. 19 ) in the proof of Theorem 14 and using the
/|4
guasi preinvexity o*g ’ onle,e + ¢(j,e)] for ¢ > 1, we have

o (c+ (F52) 060)| < mafla @ o (e+ 360

and
7 (e+ (F5) 00| <max{ls (e+ Jo60)[ [ e+ ot}
(2.43)

for everyu € [0,1]. Taking (2. 19), (2. 42) ( 2. 43) into consideration, we get the
required inequality ( 2. 41). O

q

)

’

g (e)

q} (2. 42)

)

Corollary 28. Suppose all the conditions of Theorem 27 are satisfied. Moreover

Q) If ‘g' ’q is non-decreasing ofe, e + ¢(j,e)]. Then

e+¢(4,e) 1 et+d(j,e)
/ g(m)z(m)dw—g<e+2¢(j,e))/ z (z) dx
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¢ (4, €) [

’

<
= 9 g

and
(2) If ‘g' ’q is non-increasing offe, e + ¢(j, e)]. Then

e+6(e) . )
/ g(m)z(m)dm—g<e+2¢(j76))/ z (z) dx

<e+ ;¢(j’e)>’+ ‘gl (e+¢(j’6))‘} /OIMI (zie,5,u)du. (2. 44)

1 ’ ’ 1 1 ’
< 209 [g ()| + ]g <e+ 500 e)) H M (z:e.j,u) du. (2. 45)
0
Remark29. If in Theorem 27, we take (z) = m forall z € [e,e + ¢ (j,e)] with

o (j,e) > 0, the following inequality

1 )/ee+¢(j’e)g(x)dw—g<e+;¢(j’e)>’

o (j.e)
< 60 { [max ( g ( + ;m‘,e)) g (e+00, SW ;
g (e—|— ;cb(j,e)> %

o ] } 2. 49)

Q) If 'g' ‘q is non-decreasing d, e + ¢(4, ¢)], the inequality ( 2. 28 ) holds
ang
2) If 'g" is non-increasing ofe, e + ¢(j, ¢)], the inequality ( 2. 29 ) holds.

q

i

q

3

’

g (e)

holds. Moreover,

Remark30. If ¢ (j,e) = j — e in Theorem 27, then ( 2. 41 ) reduces to the inequality
proved in Theorem 2.12 from [9] and the inequalities ( 2. 44 ) and ( 2. 45 ) takes the the
form of the related inequalities mentioned in the remark followed by Theorem 2.12 from
[10].

Remark3l If ¢ (j,e) = j — e in Remark 29, we get results for qusi-convex functions.
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