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Abstract. This paper is devoted to study a computation scheme to ap-
proximate solution of fractional differential equations (FDEs) and cou-
pled system of FDEs with variable coefficients. We study some interest-
ing properties of shifted Legendre polynomials and develop a new opera-
tional matrix. The new matrix is used along with some previously derived
results to provide a theoretical treatment to approximate the solution of
a generalized class of FDEs with variable coefficients. The new method
have ability to convert fractional order differential equations having vari-
able coefficients to system of easily solvable algebraic equations. We
gave some details to show the convergence of the scheme. The efficiency
and applicability of the method is shown by solving some test problems.
To show high accuracy of proposed method we compare out results with
81
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some other results available in the literature. The proposed method is
computer oriented. We usd atLab to carry out necessary calculations.

AMS (MOS) Subject Classification Codes: 65N35; 65M70; 35C11
Key Words: Legendre polynomials, Approximation theory, Fractional differential equa-

tions.

1. INTRODUCTION

In recent years considerable interest in fractional differential equations (FDE) has been
stimulated due to their numerous applications in the areas of physics and engineering see
for example [36, 33, 21, 28]. After the discovery of fractional calculus ( derivative and
integral of non integer order) it is shown that fractional order differential equations (FDES)
can provide a more real insight in the phenomena as compared to the ordinary differential
equations (see for example [23]). The exact analytic solution of FDEs is available only for
a considerable small class of FDEs. Some time it is very difficult to obtain the exact ana-
lytic solutions of fractional differential equations. In some cases it becomes impossible to
arrive at the exact analytic solution. The reason of this difficulty is the great computational
complexities of fractional calculus involving in these equations.

This paper deals with the approximate solution of generalized classes of multi term
fractional differential equations with variable coefficients of the form

atg Z«m atz N0} (2. 1)

with initial conditions
U'0)=wu;,i=0,1,---a
Whereu; are all real constants, < o < a+ 1, t € [0, 7], U(¢) is the unknown solution

to be determinedf (¢) is the given source term arg(t) for : = 0,1 - - - a are coefficients
depends om and are well defined o, 7].

8tff Z@ 6# Zwl 6t7 + 1),

80&5 ) _ Z%( )82%1( ) +Z@i(t)alat§ ) + g(t),

i= i=0

1. 2)

with initial conditions
UY0) =wu;, i =0,1,2---n
Vi) =wv;,i=0,1,2---n

Heren < o < n + 1, u; andv; are real constantsy (t), ¢;(t), ¢:(t) and p;(t) are given
variable coefficients and are continuously differentiable and well defind@,ef U (¢)
andV (t) are the unknown solutions to be determined wiji(¢) andg(t) are the given
source terms.

Many important differential equations which are of basic importance especially in mod-
eling the real world problems belong generalized class of differential equations defined in
(1. 1) see for example [28, 22, 34]. In [23] A. Monje, use such type of differential equa-
tions to model behavior of immersed plate in fluid. In [2BD” —controler is modeled
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using such types of equations and it is shown that using fractional order differential equa-
tions we can get a more real insight in the phenomena as compared to the ordinary case.

Many authors existence of solution of such problems. Among others Yi Chen et al [2]
study the existence results of the solution of the problem and provide sufficient conditions
under which the solution of the problem exists. They use Leggett-Williams fixed point
theorem to prove the existence of positive solutions of the corresponding problems. In
this paper we assume thétt) satisfy all the necessary conditions for existence of unique
solution.

Various attempts were made to approximate solution of such type of problems. Yildiray
Keskin [10] proposed a new technique based of generalized Taylor polynomials for the nu-
merical solution of such types of equations. In [25, 38] an approach is made to approximate
solution of such problems, their approach is based on rationalized Chebeshev polynomi-
als combined with tau method. In [37] the author use collocation approach to solve such
type of problems. In [29] the author study improve Chebeshev collocation method for
solution of such problems. More recently J. Liu et al [20] use the Legendre spectral Tau
method to obtain the solution of fractional order partial differential equations with variable
coefficients. Kilbas et al [17], investigate solutions around an ordinary point for linear ho-
mogeneous Caputo fractional differential equations with sequential fractional derivatives
of orderka(0 < a = 1) having variable coefficients. In [18], the authors studied on
explicit representations of Greens function for linear (Riemann-Liouvilles) fractional dif-
ferential operators with variable coefficients continuoufimo) and applied it to obtain
explicit representations for solution of non-homogeneous fractional differential equation
with variable coefficients of general type.

Recently the operational matrix method got attention of many mathematicians. The
reason is high simplicity and efficiency of the method. Different kinds of differential
and partial differential equations are efficiently solved using this method see for exam-
ple [32, 35, 26, 3, 4, 5, 30, 31, 11, 12, 13] and the references quoted there. The operational
matrix method is based on various orthogonal polynomials and wavelets. A deep insightin
the method shows that the method is really very simple and accurate. But up to know to the
best of our knowledge the method is only used to find the approximate solution of differen-
tial equations, partial differential equation (including fractional order) only with constant
coefficients. Up to know this method is not able to solve fractional differential equations
with variable coefficients, due to non availability of necessary operational matrices.

We generalize the operational matrix method to solve fractional differential equations
with variable coefficients. We develop some new operational matrices. These new matrices
are used to convert the generalize class of FDEs to a system of easily solvable algebraic
equations. We also apply the new matrices to solve coupled system of FDEs with variable
coefficients. For detailed study on spectral approximation and fractional calculus we refer
the reader to studies [14, 7, 19].

The rest of the article is organized as follows: In sectiomwe provide some prelimi-
naries of fractional calculus, Legendre polynomials and some basic results from approxi-
mation theory. In sectiofl, we recall some other operational matrices of integration and
differentiation for shifted Legendre polynomials and derive some new operational matri-
ces. In sectiod operational matrices are used to establish a new scheme for solution of a
generalized class of FDEs with variable coefficients and coupled FDEs with variable coef-
ficients. In sectiord the we derive some relation for convergence of proposed method and
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obtain some upper bound for the error of approximate solution. In seg&tEyme numer-
ical experiments is performed to show the efficiency of the new technique. And finally in
section7 a short conclusions is made.

2. PRELIMINARIES

In this section we recall some basic definitions and concepts from open literature which
are of basic importance in further development in this paper.

Definition 1: [27, 16] According to Riemann-Liouville the fractional order integral of
ordera € R of a functiong € (L'[a, b], R) oninterval[a, b] C R, is defined by

I3 00) = iy [ (o= 9" 0ol 2.3)

provided that the integral on right hand side exists.
Definition 2: For a given functions(t) € C"[a, b], the Caputo fractional order deriva-
tive of order« is defined as

o 1 T 9(s)
D¢($)=F(n_a)/a (x_s)a+17nds,n—1§a<n,n€N, (2. 4)

provided that the right side is point wise defined(aensc), wheren = [a] + 1.
From (2. 3),(2. 4) itis easily deduced that

F(l + k) xk—a I(xxk: _ P(]‘ + k)

k+a o _
_— and D*C = 0, for a constant.
I'l+k+a) v

(2.5)

D k _
* Irl+k—a)

2.1. The shifted Legendre polynomials: The Legendre polynomials defined pnl, 1]
are given by the following recurrence relation (see [13])

2i+1 i
Liy1(2) = i+ 1 zLi(z) — it1

The transformationt = @ transforms the interval-1,1] to [0, 7] and the shifted
Legendre polynomials are given by

Li_l(z), = 172 WhereLo(Z) = 07 Ll(Z) =Zz.

Li(t) =Y Tixthi=0,1,2,3.., (2. 6)
k=0

(=) + k)!

= 2.7
6w = TR @7
These polynomials are orthogonal and the orthogonality condition is
T =, ifi=7
T T = ¢ 2i+D ’
/0 Ly ()L (t)dt { 0 it i j. (2. 8)

By the use of orthogonality condition (2. 8) arfyt) € C([0,7]) can be approximated
with Legendre polynomials ie

m

ft) = > alLi(t), where o= (217;1) /0 ’ F(H)LT (t)dt. (2. 9)

=0
As [ — oo the approximation becomes equal to the exact function.
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In vector notation, we write

F(t) = Ch AL (1), (2. 10)
where
w=[ L3 LI -+ LI - Ln@) ] (2.11)
and
CM:[CO cL G o Cm ]T. (2.12)

M = m + 1is the scale level of the approximation.
The following lemma is very important for our further analysis.

LEMMA 2.1 The definite integral of product of any three Legendre polynomials on the
domain|0, 7] is a constant and the value of that constarﬂ?%’frﬂ) ie

| mronomee =4, 2. 13)

where

( ) e

igk)

@(z,:n,n) = Z Z A0 m)Aan) L amn) -
=0 m=0n=0
J(.,.) are as defined iff2. 7 )and
T(l+m+n+1)

T mm) — 77 1 . 1\°
Gmm) = T m+n+1)
Proof. The proof of this lemma is straight forward.Consider

0

T i J k T
/ LML OLEdt =Y g > Igm) O Jkm) /0 tEmEn) g (2. 14)
=0 m=0 n=0

The integral in the above equation is equal to

T 7_(l-l—n%-i—n-i—l)
/ gdmtn)gy — (2. 15)
0 (+m+n+1)
. F+mtnt1)
- ik
/0 L;(t)L;(t)LZ(t)dt = Z Z Zj(i,l)j(j,m):l(k,n)T(l,m,n)- (2. 16)
=0 m=0n=0
Let suppose
(#,5,k) ~ o
ik
Q(;,in,n) = Z ZJ(i,l)J(j,m)j(k,n)T(l,m,n)' (2 17)
=0 m=0n=0
And hence the proof is complete. O

The constant defined in the above lemma plays (very)important role in the development
of the new matrix.
The following theorem is important for the convergence of the scheme.
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THEOREM 2.1 Let]],, be the space o/ terms Legendre polynomials and left)
C™[0,1], thenu,, (t) is in spac€ [ ,,. Then we have

u(t) = aLi(t), (2. 18)
1=0
then
Cr <@ [l (2. 19)
A
and
lu(t) =Y aLI@I* < Y Awei, (2. 20)
=0 k=m+1
where
2%k+1 [T
o= 2 F / w(t) L (t)dt, A = k(k +1). 2. 21)
T 0

C is constant and can be chosen in such a way &t belong to[],, . Whereu (™
is defined as

u(m) — L(u(m—l)) — Lm(u(O)) (2_ 22)
whereL is storm livoli operator of legendre polynomials with?) = (t).

Proof. Proof of this theorem is analogous as in [13] and references therein. O

2.1.1. Numerical verification of Convergenc&/e approximate three test functiolis =

2%, fo = 21 and f3 = sin(nz) and observe the value of spectral coefficients.We ob-
serve that for first two function the spectral coefficients with index greater than the degree
of the polynomials are zero.For the third function the coefficients also decay to zero.The
spectral coefficients of all the three functions is given in BigWe approximate the ab-
solute error for the third function at different scale level and observe that the error of
approximation decreases as the scale level increases.The results are displayd@)in Fig

T T T T
Spectral coef ficients of fy = =° ‘

J Spectral coef ficientsof f = x'° ‘
.
° ./

Spectral coe [ ficients of f = sin(rz)

.%-

Fig(1):Spectral decay of the Legendre coefficients of three test functions .
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x10° x10° x107°

— Error at M=7 — Error at M=8 ‘ — Error at M=9
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Fig(2):Absolute amount of error fof; = sin(nx) at different scale level.

Itis concluded that the Legendre polynomials provide a good approximation to continuous
function.The error of approximation decreases rapidly with the increase of scale level.For
example (Fig(2) )the error is less thah0~* at scale level M=7 and as we increase the
scale level the error is less thad—6 and10~8.

3. MAIN RESULT:NEW OPERATIONAL MATRIX

First of all we recall some existent results which are of basic importance in the formu-
lation of our result.

LEMMA 3.1 let A7, (¢) be the function vector as defined(l 11 )then the integration of
order e of A7, (¢) is generalized as

1 (A3 (8) > H S A (1), (3.23)

whereH " ,, is the operational matrix of integration of orderand is defined as

©00r ©01r -+ Oojr 0 Oom,r
@17077' @1,1,7 e 91,]’,7 e @l,m,r
ra : : : : : :
HJWXM 9i,().,'r @i,l,'r e @i,j,T e ei,m,'r ’ (3 24)
L Gm,O,T @m,l,'r e (—)m,j,'r T @m,mﬂ' |
where
(k+1
,JT Zsk,j ik k—i—a—l—)l) (3 25)
Also]; j, is similar as defined iif2. 7 )and
2 4 1 J J+l i D)I(r)ktetl

— ]—l Ok (k+l+a+1)'
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Proof. Using (2. 5) along with (2. 6 ) we have

I°LT(t Z:Z WOtk

(3.27)
'k+1)
=>» 1 it
Z "T(k+a+1)
Approximatingt*+® with m 4+ 1 terms of Legendre polynomial we get
e~y "y LT (L), (3. 28)

we can easily calculate the valuef; by using the orthogonality condition ie

23 +1) J J+l (G +DI(r )k+l+a+1
;= . 3.29
kg = ;rl )G — D2k +1+a+1) (3-29)
Employing (3. 27 ), and (3. 29 ) we get
U T(k+1)
IPLI(6) =YY sedin=r———Lj(t).
§=0 k=0 P(k+a+1)
Setting
: T(k+1)
i = i — 3.30
O k=0 oo L(k+a+1) ( )
we get
ICLT(t Z 0, L (3. 31)
or evaluating for different we get the deswed result. O

Corollary 1: The error|Ey| = [I°U(t) — K3 Hy o A3, (t)] in approximating
I1+U(t) with operational matrix of fractional integration is bounded by the following.

oo

Exl <] D add 0ijrl. (3.32)

k=m+1 =0

Proof. Consider
()= erLi(1). (3. 33)

Then using relation (3. 31 ) we get

m

°U Z kY Okl (3. 34)

k=0 7=0
Truncating the sum and writing in modified form we get

o0

v chZem = > oY Ori.Li(t) (3. 35)

k= k=m+1 7=0
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We can also write it in matrix form as

IU(t) = KGHS A () = Y e > Ok L3 (1), (3. 36)
k=m+1 7=0

But L7 (t) < 1fort € [0, 1] therefore we can write

o0 m
[1U(t) = K HSo A (D1 <1 Y e ) Onrl- (3. 37)
k=m+1 j=0
And hence the proof is complete. O

LEMMA 3.2 let A7,(t) be the function vector as defined(ix 11 )then the derivative of
order « of A7, (¢) is generalized as

D (A3 (1) = Ghrar A (1), (3. 38)
whereG} ", ,, is the operational matrix of derivatives of orderand is defined as
[ ®00- Poir o Poyr o Pomr |
(I)LO,T (I)l,l,T e (I)l,j,‘r e (I)l,m,‘r
GA?IX]M B (Pi,O,'r (Pi,l,'r e (I)i,j,'r e q)i,m,r ' (3 39)
L (I)m,(),'r <1)777,,1,7' e (bm,j,'r e (Pm,m,r _
Where ‘
. L(k+1)
D, ., = i g 3. 40
9 kz& k.3 FTk—at1) (3. 40)

with ®; ; - = 0if i < [«]. Alsol; . is similar as defined if2. 7 )and

27 +1 J —1)IH( 4 D) (r)ktH—e+1
oy = D §~ O+ i) | 3. 41)
T = (MG -DIN2(k+1l—a+1)
Proof. The proof of this lemma is similar as above Lemma. O
Corollary 2: The error|Ey| = |[D*U(t) — K1,G3f A% (1) in approximating
D=U (t) with operational matrix of derivative is bounded by the following.
Bul <1 D al ) @il (3. 42)
k=m+1  i=[a]
Proof. The proof of this corollary is similar as Corollary 1. O
LEmmA 3.3, LetU(t) and ¢, (t) be any function defined df, 7]. Then
0°U(t o Ar
6070 _wtiag A3, (3. 43)
WhereW 7, is the Legendre coefficient vectorldft) as defined ir{2. 10 )and
@3, = G;/’IaxMR;fx"Jw (3. 44)

The matrixG};/, ,, (defined in Lemma 3.2) is the operational matrix of derivative of order
o and
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©0 ©01 -+ Ogs - Oom
©10 ©11 - O 0 Oy
O
Rifn=1 o, 6 - 60, - 0. | G4
L @m,() ®m,1 e @m,s e @m,m |
Where
2s+1 i,m,8)
O = Z GO (3. 46)
=0
Wherec; = [ ¢n(t)L7 (t)dt, and@ L f) ) i as defined in Lemma 2.2.1.
Proof. ConsiderU (t) ~ WA:ZMM(t), then by use of Lemma 3.2 we can easily write
o0°U(t o -
bu(t) 8t”( ) OWEGTT AL (). (3. 47)
The above equation can also be written in the following form
0°U(t T AN
on0 T Wt B0 (3. 48)
Where
= T
Ay =[ onML5(t) Su(OLIE) -+ u(OLI(E) -+ du(t)LT,(t) ] .
(3.49)
Approximatinge,, (¢) with M terms of Legendre polynomials we get
t) = > GLi(t). (3. 50)
=0
Using (3. 50) in (3. 49 ) we can get
—N T
A}\h(t) = [ No(t) Ny (t) Nr(t) o Nm(t) ] ) (3 51)
where
=> aLi(t)L7(t),r=0,1---m. (3. 52)

We can approximate the general teNn(¢) with M terms of Legendre polynomials as
follows

ZMLT (3. 53)
where
2s+1 [T
pr= 2 / R, () L7 (t)dt. (3. 54)
T 0

Using (3. 52)in (3. 54 ) we get

T 28+1 . T T T T
W= Zci /0 LT(#)LT(t)LT(t)dt. (3. 55)
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Know using lemma 2.1 and (3. 55 ) we get

, 2s+1 )
h= = Z; AV (3. 56)
Let suppose
28 + 1 9,7,8)
Z O (3.57)
Then repeating the procedure fore= 0,1, ---m ands = 0, 1, - - - m we can write
[ ©00 ©01 -+ Oos - Ogm | [ LiE) T
No(?) ©10 ©11 -+ O15 - O Li(t)
Ri() S ;
Nr(t) - @T,O @7‘,1 T @r,s e (_)T,m L;— (t) ’ (3 58)
Nm<t) L em,O @m71 T @m,s o em,m 4 L L;’L(t) _
We may write the above equation as
/_‘rM _t .
NG (t) = Ry sy (0): (3. 59)
Using (3. 59)in (3. 48 ) we get
aJU 3 T,0 T,Pn T
Pn(t) 8t‘7( ) WG B i N (1), (3. 60)
Let G737 ar Rt = QF, . Then we have
o0°U
60700 _ytag A3,(0). (3. 61)
And hence the proof is complete. d

4. APPLICATION OF THE NEW MATRIX

In this section we apply the new matrix to approximate the solution of fractional order
differential equations.

4.1. FDEs with variable equations. Consider the following generalized class of FDEs
with variable coefficients

aﬂ, ng ay o) (4. 62)

subject to initial conditions
U'0) =wu4, i=0,1,---n.

Whereu, are all real constant, < o <n+ 1, t € [0, 7], U(¢) is the unknown solution to
be determinedf(t) is the given source term angj(¢) for ¢ = 0,1---n are coefficients
depends ont and are well defined oft, 7]. The solution of the above problem can be
written in terms of shifted Legendre series such that

U (t)
ato

= WAL, (t). (4. 63)
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Applying fractional integral of ordes and by using the given initial conditions we get
=Dty = WHHE AR (8). (4. 64)

Which can be simplified as
U(t) = Wi Hy o Ady (1) + FF AR (1), (4. 65)

whereF' A7, (1) = > o tuj. We can also write it as

U(t) = WiHAT (1), (4. 66)
where
Wi = WL HD A\ + FL (4. 67)
Using (4. 66 ) along with Lemma 3.3 we can write
o (t a s
o708 Qs A5, (4. 689
Approximating f(t) = F»A},(t) and using (4. 68 ) in (4. 62 ) we get
WALt Z Wi QL ALy () + FaAl,(t). (4. 69)
1=0

On further simplification we get

(Wi = Wi > Qh, — Fa}Aj,(t) =0. (4. 70)
=0
Or
(Wi — Wi Z Qi — B} =0. (4. 71)
1=0

Now using (4. 67 ) we can write the above equation as

(Wi —wi Z HY 0@, = FiQL, — Fa} =0. (4.72)
=0 ]
Equation (4. 72) is easily solvable algebraic equation and can be easily solved for the
unknown coefficient vectdiv’Z;.Using the value ofV}; in equation (4. 65 ) will arrive us
to the approximate solution of the problem.

4.2. Coupled system of FDEs with variable equations.The Q-Matrix is also helpful
when we want to approximate the solution of coupled system of fractional order differential
equations having variable coefficients. Consider the generalize class of system

27U (t "
ata():,z Zwl aﬁ +f()

v o) =0 , 0 v (4. 73)
ate 227 atz Z 8# +9(t),

1=0 1=0

with initial conditions
U'0) =wu;, i =0,1,2---n
Vi) =w;,i=0,1,2---n
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Heren < o < n + 1, u; andv; are real constantsy, (t), ¢ (t), ¢:(t) and g;(t) are given
variable coefficients and are continuously differentiable and well defind@,ef U (t)
andV(t) are the unknown solutions to be determined wifi(¢) andg(t) are the given
source terms. We seek the solutions of above equations in terms of shifted Legendre poly-
nomials such that

07U (t) 077 (x)
ote ox°®

By the application of fractional integration of orderon both equations and using initial
conditions allows us to write (4. 74 ) as

= Wi A3 (), = By Aq (). (4.74)

Ut) =WiAh(t), V()= EGAL@. (4.75)
Where
Wi = WELH .y + FL El, = ELH v+ FY. (4. 76)

Note here thatF{ A7, (t) = >, u;t" and F¥ A7, (1) = >, vt'. Using equation
(4. 75) along with Lemma 3.3 we may write

62
Z@ o — WY @) AR sz e — B QLA

=0 =0

ZSDZ 3# VVMZQZ M Zgz 8# —EMZQ’ M

4.77)

Approximating the source termg(t) and g(¢) with shifted Legendre polynomials and
using (4. 77),(4. 74) in (4. 73 ) and writing in vector notation we get

Wi i Q3 ATy (1) ] | B S Qi A () ] . { ExAg (1) } |

WA (1) ] |V -
[ B 300 Qo A3 (1) Wi im0 Q4 AR (1)

EXrAG (1)

By taking the transpose of the (4. 78 ) and after a short manipulation we get

T T _ T T Z?:()Qii OM><M
[ Wi By JA=[ Wi EY ] [ Onxnt X0 Q ]A

- - Omxm Do QZT . .
+ [ wi, EL, } [ Z?:onfpi OMoxM [ Fy Gy ]A.
(4.79)

A7 (t) Oum
Where A = M .
[ O Ay (1) o
order M respectively. Canceling out the common terms and after a short simplification we
get

, Oy and Oy« s IS zero vector and zero matrix of

(wh e )-(w e[ g B |- [hr Gu -0
S (4. 80)
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Using (4. 76 ) in (4. 80 ) we get

WT ET _ WT ET |: 17\'4z;<M % 0 Z_dh T3<M 1= O i
[ Wi Ba [ = Wi Bl ] Hpfon Xizo @y, Hiren Xizo Qo
_ FT FT Zz OQ¢L ZZL:O Qll :| — ﬁ' é =0
[ ! 2 ] |: Zz OQ,L Zi:O in [ M M ]

Which is easily solvable generalized sylvester type matrix equation and can be easily
solved for the unknown W7, EZ, ]. Using these values in (4. 75 ) along with (4. 76 )
will lead us to the approximate solutions to the problem.

5. ERROR BOUND OF THE APPROXIMATE SOLUTION

In this section we calculate a bound for error of approximation of solution with the
proposed method. From Lemma 2.2 we conclude that Legendre polynomials are well
suited to approximate a sufficiently continuous function on the bounded domain. We can
also see that, — 0 faster than any algebraic sequence\pf Which means that as the
scale level increase coefficients decreases and approaches to zero. Consider the following
fractional differential equation.

at(, Z@ W N0} (5. 81)

Our aim is to derive upper bound for proposed method. We have to calthlgtedefined
as
Ut
24yl =1 Z00
As in previous section we initially assume the highest derivative in terms of legender poly-
nomials and then we use operational matrices to convert differential equation to system of
algebraic equations. In last we get the initial assumption we made and then using opera-
tional matrix of integration we get the approximate solution. Therefore to obtain the upper
bound for approximate solution we follow the same route.

Consider the following generalized class of FDEs with variable coefficients

— K3;A%, (1)) (5. 82)

Al Zdn L) (5. 83)

subject to initial conditions
U'0) =wus,i=0,1,---n.

The solution of the above problem can be written in terms of shifted Legendre series such
that

o°U(t >
ato( ) _ WILAT (1) + Z e LT (t). (5. 84)
k=m+1
Applying fractional integral of ordes, using operational matrix of integration and using
corollary 1 we can write

oo

= Huy = WHH A+ Y ek Y Ok Li(t). (5. 85)
j= k=m+1 =0
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Which can be simplified as

(oo}

U(t) = Wi Hi oA (8) + FEAL (D + ) ckZG)“”Lk (5. 86)
k=m+1 =0

Assume as in section 4 = WL H ., + FT
Using Lemma 3.3 and Corollary 2 we may write we can write

O'U(t o =
0) 81&5 ) = WiHQh ARy (t) + ¢it) > %ZZ@W vk LE(t). (5. 87)
k=m+1 =0 i'=0
Approximating f (t) = FoAf,(t) + > 0 _,.,1 frLj(t) and using (5. 87 ) in (5. 83) we
get

WAL ZWMQ¢ AT, () — FoAT, () = Ry (2). (5. 88)
=0

WhereR),(t) is defined by relation

m m

RJ\I( Z CkZZ@ZkT szZ¢5LT T )

k=m+1 1=01'=0

. (5. 89)
- > alLi®) Z Frli(t)
k=m+1 k’'=m+1

The proposed scheme works under assumption (see section 4. Biifat = 0. Now
as we observe that7(¢) < 1 for ¢ € [0, 7] therefore using this property of Legendre
polynomials we get upper bound of approximate solution as

o0 m m n o0 o0
Rl < D0 e D YD Oine®ikrds— >, cu+ o fil  (5.90)
k=m+41 =0 i'=0 s=0 k=m+1 [ ——l

In view of Theorem 2.1 we see that decays to zero, as the index of truncation in-
creases. Therefore it is evident that proposed algorithm converges to the approximate
solution as we increase the scale level. Using the similar procedure we may also obtain
the upper bound for error of approximation of coupled system of fractional differential
equations. As the proof is analogous therefore we skip it and proceed to further analysis.

6. TESTPROBLEMS

To show the efficiency and applicability of proposed method, we solve some test prob-
lems. Where possible we compare our results with some of results available. For illustra-
tion purpose we show results graphically.

Example 1: Consider the following fractional differential equation

0°U(t) 8U( )
ot Ot
with initial conditionU (0) = 0 andU’(0) = .
Wherel < o < 2,t € [0, 3] and the source term is defines as

F(t) = e 'sin(nt)(1 — ©%) — e ‘cos(mt)(sin(rt) + 2m) + sin(nt) — wcos(nt).

+cos (YU (L) + F(b), (6. 91)
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The solution of this problem at = 2 is Y (¢t) = e~ !sin(nt). However solution at
fractional value ofr is not known. It is well known that solution of fractional differential
equations approaches to solution of classical integer order differential equation as the or-
der of derivative approaches from fractional to integer. Using this property of fractional
differential equations we show that the solution of our problem approaches to solution at
o=1asc — 2.

At first we fix 0 = 2 and approximate the solution at different scale level. We observe
that the accuracy of the solution depends solely on scale level. As scaldlenereases
the solution become more and more accurate. Fig (3) shows the comparison of exact
solution with approximate solution at different scale level.One can easily see that at scale
level M = 8, the approximate solution just matches the exact solution. One can see
from Fig (5) that the absolute amount of error decrease as the scale level increases and at
M = 8 the error is much more less theE@—2. Which is much more acceptable number
for such hard problems. We also approximate the solution at some fractional vatue of
and observe that as — 2 (see Fig (4))the solution approaches to the exact solution at
o = 2. Which guarantees the accuracy of the scheme for fractional differential equations.

07k
0.6
05F
oar
0.3F 4

i
027

0.1/
0% e

«
01}l \ L
%

-0.2

-0.3F L | I I L

Fig(3):Comparison of exact and approximate solution of exarh@escale level
M = 7,8.The Dots represents the exact solutions while the lines represents the
approximate solutions.
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TABLE 1. Comparison of Exact and approximate solution of Example 2.

t\M  Exact U(t) M=8 M=9 M=10
t=0.0 0 -0.0000007347 -0.0000000295 0.0000000082
t=0.1 0.1124629159 0.1124629232 0.1124629114 0.1124629184
t=0.2 0.2227025889 0.2227024418 0.2227025889 0.2227025872
t=0.3 0.3286267591 0.3286269538 0.3286267673 0.3286267603
t=0.4 0.4283923546 0.4283923701 0.4283923466 0.4283923559
t=0.5 0.5204998773 0.5204996851 0.5204998761 0.5204998759
t=0.6 0.6038560903 0.6038561360 0.6038561011 0.6038560920
t=0.7 0.6778011933 0.6778013735 0.6778011869 0.6778011943
t=0.8 0.7421009642 0.7421008017 0.7421009616 0.7421009629
t=0.9 0.7969082119 0.7969082438 0.7969082215 0.7969082145

Fig(4):Approximate solution of example 1 at fractional valuer@nd its comparison
with the exact solution at = 2.The red dots represents the exact solution at 2.
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Fig(5):Absolute error in U(t) of example 1 at different scale levelMie= 7 and M = 8.

Example 2:
As a second example we solve the following integer order differential equation [29].

D2U(t) +2tDU(T) = 0,

2 (6. 92)
I
The exact solution of the problem i5(¢t) = % fot e~ dz. We approximate solution to
this problem using different scale level. And observe that the approximate solution very
accurate. The comparison of exact solution with the solution obtained with this method
at different scale level is displayed in Table 1. This problem is also solved by other au-
thors. We compare absolute error obtained using proposed method with the absolute error
reported in [25, 38, 37, 29]. Itis clear that solution obtained with the proposed method is
more accurate than the error reported in previous references. The results are displayed in

Table 2.
Example 3:Consider the following fractional differential equation

DUt) = (t* —t* + 2t + 1)DU(t) + (t* + > — 4t + 2)U(t) + g(t),

U(0) =0, U'(0) =

(6. 93)
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TABLE 2. Comparison of absolute error of Example 2 with other methods.

t Tau [25] Haar [38] Collocation [37] Chebyshev [29] Presgéht=11

0.1 84.09x 1079 2291x10"% 24.31 x 10~ 213 x 10712 275.24 x 10712
0.2 11.00x 1079 2258 x 1076 187.51 x 10~6 5.70 x 10~° 75.3 x 10712

0.3 140.85x 1079 16.75 x 1075  61.35 x 106 9.63 x 1079  452.20 x 10~12
0.4 14533 x 1079 2235x 1076 23.55 x 106 12.05 x 1072 289.06 x 10~ 12
05 7737x1079 29.87x10"% 76.37 x 106 13.54 x 1079 427.22 x 1012
06 9.62x1072 16.09x107% 40.39x10°% 32.87x 1079 588.85 x 10~!2
0.7 6.64x107° 11.19x107% 129.99 x 1076 228.99 x 1072 324.38 x 10~!2
0.8 135.76 x 1079 20.96 x 1079 136.53 x 10~ 1.07 x 107 630.16 x 10~12
0.9 288.02x 1079 1821 x 1076 87.11 x10°© 2.82x 1076  257.18 x 10~12

with initial conditionsU (0) = 0 andU’(0) = 0.
Where the source term is defined as

g(t) = —eWcos(t){2+t—8t2+t* —1°+15} —e® sin(t) {1—11t+8° —6t* +26°+1+17}.

The order of derivativd < o < 2. One can easily check that the exact solution of the
problem atv = 2 is

U(t) = —e' sin(t) (t —t7).

We approximate solution of this problem with proposed technique. For comparison we
fix o = 2, and approximate solution at different scale level. As expected we get a high
accurate estimate of the solution. We compare the exact solution with the approximate
solution obtained at different scale level (see Fig (6)). We observe Fig (6) that the accuracy
of the solution increases with the increase of scale level. And the absolute amount of error
is less tharl0—3 at M = 5. Fig (7) shows the absolute amount of error at different scale
level. The same conclusion is made about the solution at fractional vadueltie solution
approaches uniformly to the exact solutiorvas- 2. Fig (8) shows this phenomena. Note
that here we fix scale leveh = 5.

Approvimate U(t) at M = 4

Exact U(f)

-0.3F

-0.4F

I I I I I I I I I )
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
x

Fig(6):Comparison of exact and approximate solution of exarBlescale level
M = 5,6.The Dots represents the exact solutions while the lines represents the
approximate solutions.
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x10°

Absolute error at M = 4

Absoluteerrorat M =5

O B N W A O O N ® ©
T T T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig(7):Absolute error in U(t) of example 3 at different scale level.

Approzimate U(L)alo = 2.0

EzactU(t)ato =2

-1 T=I8L >
;
-1.2F ~ /
-1.4f R
-16 :
01 02 03 04 05 06 07 08 09 1

Fig(8):Approximate solution of example 3 at fractional valuer@nd its comparison
with the exact solution at = 2,M = 5.

Example 4:Consider the following coupled system of FDEs

(6. 94)
aav(t) 9 8U(t) 8V(t)
g = (DT (T R0,

where the source terms are defined as
Fi(t) = 12t + (3t2 4 2t) (— 4% + 3t2 4+ 4t) + (—26° + ) (5¢* — 4> + 6t%) — 12¢2 + 20¢°,
and

f2(t) = (3 + 4)(—4t3 + 32 + 4t) — 6t + 12t% — (462 + 1)(5t* — 4® + 6t%) — 4.

Note thatl < ¢ < 2 and¢ € [0, 1].The exact solutions of the coupled systenwat 2

isU(t) = (t° —t*) + 23 and V (¢) = (t* — ¢3) — 2¢2. We analyze this problem with

the new technique, and as expected we get the high accuracy of the solution. As the
previous examples we first fix = 2 and simulate the algorithm at different scale level.
The results are displayed in Fig (9) and Fig (10). In these figures we show comparison of
exact solutions with approximaté(t) andV (¢) respectively. One can easily note that the
approximate solution becomes more and more accurate with the increase of scale level. At
scale leveln = 6 the absolute amount of error is less thaT 4, unbelievable accuracy.

Fig (13) shows absolute error {i(¢) andV (t) at scale levelM = 6. We also approximate
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the solution of the above problem at fractional value @ind the same conclusion is made.
See Fig (11) and Fig (12) for the approximate solution at fractional valae of

Fig(9):Comparison of exact and approximate U(t) of exanipde scale level
M = 4,5,6.The Dots represents the exact solutions while the lines represents the
approximate solutions.

[Eract V()

-1k

Fig(10):Comparison of exact and approximate V(t) of exardpt scale level
M = 4,5,6.The Dots represents the exact solutions while the lines represents the
approximate solutions.
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Fig(11):Approximate U(t) of example 4 at fractional valuesgfie o = 1.6 : .1 : 2 and its
comparison with exact U(t) at = 2.
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2% o1 02 03 04 05 06 07 08 09 1

X

Fig(12):Approximate V(t)of example 4 at fractional valueoies = 1.6 : .1 : 2 and its
comparison with exact V(t) at = 2.

x 107
)

161

14

12r
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‘ Absolute errorinU(t)at M = 6

‘ Absolute errorin V(t)at M = 6

Fig(13):Absolute error in U(t) and V(t) at scale lev&él = 6.

7. CONCLUSION AND FUTURE WORK

From analysis and experimental work we conclude that the proposed method works
very well for approximating the solution of FDEs with variable coefficients. The results
obtained are satisfactory. The method can be easily modified to solve some other types
of FDEs under different types of boundary condition. It is also expected that the method
yield more accurate solution by using some other orthogonal polynomials or wavelets. Our
future work is related to the extension of the method to solve partial differential equations
with variable coefficients.
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