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Abstract. This paper is devoted to the concepts of fuzzy upper and fuzzy
lower contra-continuous, contra-irresolute and contra semi-continuous mul-
tifunctions. Several characterizations and properties of these multifunc-
tions along with their mutual relationships are established inL-fuzzy
topological spaces. Later, composition and union between these multi-
functions have been studied.
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1. INTRODUCTION AND PRELIMINARIES

Kubiak [17] and Sostak [28] introduced the notion of (L-)fuzzy topological space as a
generalization ofL-topological spaces (originally called (L-)fuzzy topological spaces by
Chang [8] and Goguen [10]). It is the grade of openness of anL-fuzzy set. A general
approach to the study of topological type structures on fuzzy powersets was developed in
[11-13,17,18,28-30].

Berge [7] introduced the concept multimappingF : X → Y whereX and Y are
topological spaces and Popa [24,25] introduced the notion of irresolute multimapping.
After Chang introduced the concept of fuzzy topology [8], continuity of multifunctions
in fuzzy topological spaces have been defined and studied by many authors from different
view points (e.g. see [3,4,21-23]). Tsiporkova et. al., [31,32] introduced the Continuity
of fuzzy multivalued mappings in the Chang,s fuzzy topology [8]. Later, Abbas et al., [1]
introduced the concepts of fuzzy upper and fuzzy lower semi-continuous multifunctions in
L-fuzzy topological spaces.

105



106 S. E. Abbas, M. A. Hebeshi and I. M. Taha

Throughout this paper, nonempty sets will be denoted byX, Y etc.. Let a complete
latticeL = (L,≤,∨,∧,′) be a complete distributive complete lattice with an order-reversing
involution on it, and with a smallest element⊥ and largest element> (⊥ 6=>). The family
of all L-fuzzy sets inX is denoted byLX andL◦ = L − {0}. Forα ∈ L, α(x) = α for
all x ∈ X. The complement of anL-fuzzy setλ is denoted byλc. This symbol( for a
multifunction. All other notations are standard notations ofL-fuzzy set theory.

Definition 1. 1. [1] Let F : X ( Y , thenF is called a fuzzy multifunction (FM , for
short) iff F (x) ∈ LY for eachx ∈ X. The degree of membership ofy in F (x) is denoted
by F (x)(y) = GF (x, y) for any(x, y) ∈ X × Y .

The domain ofF , denoted bydom(F ) and the range ofF , denoted byrng(F ), for any
x ∈ X andy ∈ Y , are defined by:

dom(F )(x) =
∨

y∈Y

GF (x, y) and rng(F )(y) =
∨

x∈X

GF (x, y).

Definition 1. 2. [1] Let F : X ( Y be aFM . ThenF is called:
(1) Normalized iff for eachx ∈ X, there existsy0 ∈ Y such thatGF (x, y0) = >.
(2) A crisp iff GF (x, y) = > for eachx ∈ X andy ∈ Y .

Definition 1. 3. [1] Let F : X ( Y be aFM . Then,
(1) The image ofλ ∈ LX is anL-fuzzy setF (λ) ∈ LY defined by:

F (λ)(y) =
∨

x∈X

[GF (x, y) ∧ λ(x)].

(2) The lower inverse ofµ ∈ LY is anL-fuzzy setF l(µ) ∈ LX defined by:

F l(µ)(x) =
∨

y∈Y

[GF (x, y) ∧ µ(y)].

(3) The upper inverse ofµ ∈ LY is anL-fuzzy setFu(µ) ∈ LX defined by:

Fu(µ)(x) =
∧

y∈Y

[Gc
F (x, y) ∨ µ(y)].

Theorem 1. 4.[1] Let F : X ( Y be aFM . Then,
(1) F (λ1) ≤ F (λ2) if λ1 ≤ λ2.
(2) F l(µ1) ≤ F l(µ2) andFu(µ1) ≤ Fu(µ2) if µ1 ≤ µ2.
(3) F l(µc) = (Fu(µ))c.
(4) Fu(µc) = (F l(µ))c.
(5) F (Fu(µ)) ≤ µ if F is a crisp.
(6) Fu(F (λ)) ≥ λ if F is a crisp.

Definition 1. 5. [1] Let F : X ( Y andH : Y ( Z be twoFM ,s. Then the
compositionH ◦ F is defined by:((H ◦ F )(x))(z) =

∨
y∈Y [GF (x, y) ∧GH(y, z)].

Theorem 1. 6.[1] Let F : X ( Y andH : Y ( Z be twoFM ,s. Then we have the
following:

(1) (H ◦ F ) = F (H).
(2) (H ◦ F )u = Fu(Hu).
(3) (H ◦ F )l = F l(H l).
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Theorem 1. 7.[1] Let Fi : X ( Y be aFM . Then,
(1) (

⋃
i∈Γ Fi)(λ) =

∨
i∈Γ Fi(λ).

(2) (
⋃

i∈Γ Fi)l(µ) =
∨

i∈Γ F l
i (µ).

(3) (
⋃

i∈Γ Fi)u(µ) =
∧

i∈Γ Fu
i (µ).

Definition 1. 8. [13,17,20,28] AnL-fuzzy topological space (L-fts, in short) is a pair
(X, τ), whereX is a nonempty set andτ : LX → L is a mapping satisfying the following
properties:

(O1) τ(>) = τ(⊥) = >,
(O2) τ(λ1 ∧ λ2) ≥ τ(λ1) ∧ τ(λ2), for anyλ1, λ2 ∈ LX ,
(O3) τ(

∨
i∈Γ λi) ≥

∧
i∈Γ τ(λi), for any{λi}i∈Γ ⊂ LX .

Thenτ is called anL-fuzzy topology onX. For everyλ ∈ LX , τ(λ) is called the degree
of openness of theL-fuzzy setλ.

A mappingf : (X, τ) → (Y, η) is said to be continuous with respect toL-fuzzy topolo-
giesτ andη iff τ(f−1(µ)) ≥ η(µ) for eachµ ∈ LY .

Theorem 1. 9.[9,14,16,20] Let(X, τ) be anL-fts. Then for eachλ ∈ LX , r ∈ L◦ we
defineL-fuzzy operatorsCτ andIτ : LX × L◦ → LX as follows:

Cτ (λ, r) =
∧
{µ ∈ LX : λ ≤ µ, τ(µc) ≥ r}.

Iτ (λ, r) =
∨
{µ ∈ LX : µ ≤ λ, τ(µ) ≥ r}.

Forλ, µ ∈ LX andr, s ∈ L◦ the operatorCτ satisfies the following statements:
(C1)Cτ (⊥, r) = ⊥.
(C2)λ ≤ Cτ (λ, r).
(C3)Cτ (λ, r) ∨ Cτ (µ, r) = Cτ (λ ∨ µ, r).
(C4)Cτ (Cτ (λ, r), r) = Cτ (λ, r).
(C5)Cτ (λ, r) = λ iff τ(λc) ≥ r.
(C6)Cτ (λc, r) = (Iτ (λ, r))c andIτ (λc, r) = (Cτ (λ, r))c .

Definition 1. 10. [6,14,27] Let(X, τ) be anL-fts. Then for eachλ, µ ∈ LX and
r ∈ L◦. Thenλ is called:

(1) r-fuzzy semi-open (r-fso, in short) iff λ ≤ Cτ (Iτ (λ, r), r).
(2) r-fuzzy semi-closed (r-fsc, in short) iff Iτ (Cτ (λ, r), r) ≤ λ.

Theorem 1. 11.[14] Let (X, τ) be anL-fts. Then for eachλ ∈ LX , r ∈ L◦ we define
L-fuzzy operatorsSCτ andSIτ : LX × L◦ → LX as follows:

SCτ (λ, r) =
∧
{µ ∈ LX : λ ≤ µ, µ is r − fsc}.

SIτ (λ, r) =
∨
{µ ∈ LX : µ ≤ λ, µ is r − fso}.

Theorem 1. 12.[1] Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η) and
µ ∈ LY . Then we have the following:

(1) F is FLS-continuous iffτ(F l(µ)) ≥ η(µ).
(2) If F is normalized, thenF is FUS-continuous iffτ(Fu(µ)) ≥ η(µ).
(3) F is FLS-continuous iffτ((Fu(µ))c) ≥ η(µc).
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(4) If F is normalized, thenF is FUS-continuous iffτ((F l(µ))c) ≥ η(µc).

Definition 1. 13. [2] Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η) and
r ∈ L◦. ThenF is called:

(1) FUW -continuous (resp.FLW -continuous) at anL-fuzzy pointxt ∈ dom(F ) iff
xt ∈ Fu(µ) (resp. xt ∈ F l(µ)) for eachµ ∈ LY andη(µ) ≥ r there existsλ ∈ LX ,
τ(λ) ≥ r andxt ∈ λ such thatλ ∧ dom(F ) ≤ Fu(Cη(µ, r)) (resp.λ ≤ F l(Cη(µ, r))).

(2)FUW -continuous (resp.FLW -continuous) iff it isFUW -continuous (resp.FLW -
continuous) at everyxt ∈ dom(F ).

Proposition 1. 14. [2] F is normalized impliesF is FUW -continuous at anL-fuzzy
point xt ∈ dom(F ) iff xt ∈ Fu(µ) for eachµ ∈ LY andη(µ) ≥ r there existsλ ∈ LX ,
τ(λ) ≥ r andxt ∈ λ such thatλ ≤ Fu(Cη(µ, r)).

2. FUZZY UPPER AND LOWER CONTRA-CONTINUOUS MULTIFUNCTIONS

Definition 2. 1. Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η) and
r ∈ L◦. ThenF is called:

(1) Fuzzy upper contra-continuous (FUC-continuous, in short) at anL-fuzzy point
xt ∈ dom(F ) iff xt ∈ Fu(µ) for eachµ ∈ LY andη(µc) ≥ r there existsλ ∈ LX ,
τ(λ) ≥ r andxt ∈ λ such thatλ ∧ dom(F ) ≤ Fu(µ).

(2) Fuzzy lower contra-continuous (FLC-continuous, in short) at anL-fuzzy pointxt ∈
dom(F ) iff xt ∈ F l(µ) for eachµ ∈ LY andη(µc) ≥ r there existsλ ∈ LX , τ(λ) ≥ r
andxt ∈ λ such thatλ ≤ F l(µ).

(3) FUC-continuous (resp.FLC-continuous) iff it isFUC-continuous (resp.FLC-
continuous) at everyxt ∈ dom(F ).

Proposition 2. 2. F is normalized impliesF is FUC-continuous at anL-fuzzy point
xt ∈ dom(F ) iff xt ∈ Fu(µ) for eachµ ∈ LY andη(µc) ≥ r there existsλ ∈ LX ,
τ(λ) ≥ r andxt ∈ λ such thatλ ≤ Fu(µ).

Remark 2. 3. The notions of FUC-continuous multifunctions andFUS-continu
ous multifunctions are independent as shown in the following Examples 2.6 and 2.7.

Theorem 2. 4. Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η) and
µ ∈ LY , then the following are equivalent:

(1) F is FLC-continuous.
(2) τ(F l(µ)) ≥ r, if η(µc) ≥ r.
(3) τ((Fu(µ))c) ≥ r, if η(µ) ≥ r.

Proof. (1)⇒ (2) Let xt ∈ dom(F ), µ ∈ LY , η(µc) ≥ r andxt ∈ F l(µ) then, there
existsλ ∈ LX , τ(λ) ≥ r andxt ∈ λ such thatλ ≤ F l(µ) and hencext ∈ Iτ (F l(µ), r).
Therefore, we obtainF l(µ) ≤ Iτ (F l(µ), r). Thusτ(F l(µ)) ≥ r.

(2)⇒ (3) Letµ ∈ LY andη(µ) ≥ r hence by (2),

τ(F l(µc)) = τ((Fu(µ))c) ≥ r.

(3)⇒ (2) It is similar to that of (2)⇒ (3).
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(2) ⇒ (1) Let xt ∈ dom(F ), µ ∈ LY , η(µc) ≥ r with xt ∈ F l(µ) we have by (2),
τ(F l(µ)) ≥ r. Let F l(µ) = λ (say) then, there existsλ ∈ LX , τ(λ) ≥ r andxt ∈ λ such
thatλ ≤ F l(µ). ThusF is FLC-continuous.

We state the following result without proof in view of above theorem.
Theorem 2. 5.Let F : X ( Y be aFM and normalized between twoL-fts,s (X, τ),

(Y, η) andµ ∈ LY , then the following are equivalent:
(1) F is FUC-continuous.
(2) τ(Fu(µ)) ≥ r, if η(µc) ≥ r.
(3) τ((F l(µ))c) ≥ r, if η(µ) ≥ r.

Example 2. 6. Let X = {x1, x2}, Y = {y1, y2, y3} andF : X ( Y be aFM
defined byGF (x1, y1) = 0.1, GF (x1, y2) = >, GF (x1, y3) = ⊥, GF (x2, y1) =
0.5, GF (x2, y2) = ⊥ andGF (x2, y3) = >. We assume that> = 1 and⊥ = 0. Define
L-fuzzy topologiesτ : LX → L andη : LY → L as follows:

τ(λ) =




>, if λ ∈ {⊥,>},
1
2 , if λ ∈ {0.5, 0.6},
⊥, otherwise,

η(µ) =





>, if µ ∈ {⊥,>},
1
2 , if µ = 0.5,
1
3 , if µ = 0.4,
⊥, otherwise.

(1) F is FUC-continuous but notFUS-continuous becauseη(0.4) = 1
3 in (Y, η),

Fu(0.4) = 0.4 andτ(Fu(0.4)) = ⊥. Hence,τ(Fu(0.4)) � η(0.4).
(2) F is FLC-continuous but notFLS-continuous becauseη(0.4) = 1

3 in (Y, η),
F l(0.4) = 0.4 andτ(F l(0.4)) = ⊥. Hence,τ(F l(0.4)) � η(0.4).

Example 2. 7. Let X = {x1, x2}, Y = {y1, y2, y3} andF : X ( Y be aFM
defined byGF (x1, y1) = 0.1, GF (x1, y2) = >, GF (x1, y3) = ⊥, GF (x2, y1) =
0.5, GF (x2, y2) = ⊥ andGF (x2, y3) = >. We assume that> = 1 and⊥ = 0. Define
L-fuzzy topologiesτ : LX → L andη : LY → L as follows:

τ(λ) =




>, if λ ∈ {⊥,>},
1
2 , if λ ∈ {0.4, 0.5},
⊥, otherwise,

η(µ) =





>, if µ ∈ {⊥,>},
1
2 , if µ = 0.5,
1
3 , if µ = 0.4,
⊥, otherwise.

(1) F is FUS-continuous but notFUC-continuous becauseη(0.4) = 1
3 in (Y, η),

F l(0.4) = 0.4 andτ((F l(0.4))c) = ⊥. Thus,τ((F l(0.4))c) � 1
3 .

(2) F is FLS-continuous but notFLC-continuous becauseη(0.4) = 1
3 in (Y, η),

Fu(0.4) = 0.4 andτ((Fu(0.4))c) = ⊥. Thus,τ((Fu(0.4))c) � 1
3 .
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Definition 2. 8. Let (X, τ) be anL-fts. Then for eachλ ∈ LX andr ∈ L◦ we define
L-fuzzy operatorKerτ : LX × L◦ → LX as follows:

Kerτ (λ, r) =
∧
{µ ∈ LX : λ ≤ µ, τ(µ) ≥ r}.

Lemma 2. 9.Forλ in anL-fts (X, τ), if τ(λ) ≥ r thenλ = Kerτ (λ, r).

Theorem 2. 10.Let F : X ( Y be aFM between twoL-fts,s (X, τ) and(Y, η). If
Cτ (Fu(µ), r) ≤ Fu(Kerη(µ, r)) for anyµ ∈ LY , thenF is FLC-continuous.

Proof. Suppose thatCτ (Fu(µ), r) ≤ Fu(Kerη(µ, r)) for anyµ ∈ LY . Let ν ∈ LY

andη(ν) ≥ r by Lemma 2.9, we haveCτ (Fu(ν), r) ≤ Fu(Kerη(ν, r)) = Fu(ν). This
implies thatCτ (Fu(ν), r) = Fu(ν) and henceτ((Fu(ν))c) ≥ r. Thus, by Theorem
2.4(3),F is FLC-continuous.

Theorem 2. 11. Let F : X ( Y be aFM and normalized between twoL-fts,s
(X, τ) and(Y, η). If Cτ (F l(µ), r) ≤ F l(Kerη(µ, r)) for anyµ ∈ LY , thenF is FUC-
continuous.

Proof. Suppose thatCτ (F l(µ), r) ≤ F l(Kerη(µ, r)) for anyµ ∈ LY . Let ν ∈ LY and
η(ν) ≥ r by Lemma 2.9, we haveCτ (F l(ν), r) ≤ F l(Kerη(ν, r)) = F l(ν). This implies
thatCτ (F l(ν), r) = F l(ν) and henceτ((F l(ν))c) ≥ r. Thus, by Theorem 2.5(3),F is
FUC-continuous.

Theorem 2. 12. Let {Fi}i∈Γ be a family ofFLC-continuous between twoL-fts,s
(X, τ) and(Y, η). Then

⋃
i∈Γ Fi is FLC-continuous.

Proof. Letµ ∈ LY andη(µc) ≥ r then(
⋃

i∈Γ Fi)l(µ) =
∨

i∈Γ(F l
i (µ)) by Theorem

1.7(2). Since{Fi}i∈Γ is a family of FLC-continuous between twoL-fts,s (X, τ) and
(Y, η), thenτ(F l

i (µ)) ≥ r for eachi ∈ Γ. Then for eachµ ∈ LY and η(µc) ≥ r,
we haveτ((

⋃
i∈Γ Fi)l(µ)) = τ(

∨
i∈Γ(F l

i (µ)) ≥ ∧
i∈Γ τ(F l

i (µ)) ≥ r. Hence
⋃

i∈Γ Fi is
FLC-continuous.

Theorem 2. 13. Let F1 andF2 be two normalizedFUC-continuous between two
L-fts,s (X, τ) and(Y, η). ThenF1

⋃
F2 is FUC-continuous.

Proof. Letµ ∈ LY andη(µc) ≥ r then(F1

⋃
F2)u(µ) = Fu

1 (µ) ∧ Fu
2 (µ) by Theorem

1.7(3). SinceF1 andF2 be two normalizedFUC-continuous between twoL-fts,s (X, τ)
and(Y, η), thenτ(Fu

i (µ)) ≥ r for eachi ∈ {1, 2}. Then for eachµ ∈ LY andη(µc) ≥ r,
we haveτ((F1

⋃
F2)u(µ)) = τ(Fu

1 (µ) ∧ Fu
2 (µ)) ≥ τ(Fu

1 (µ)) ∧ τ(Fu
2 (µ)) ≥ r. Hence

F1

⋃
F2 is FUC-continuous.

Theorem 2. 14. Let F : X ( Y andH : Y ( Z be twoFM ,s and let(X, τ),
(Y, η) and(Z, δ) be threeL-fts,s. If F is FLS-continuous andH is FLC-continuous,
thenH ◦ F is FLC-continuous.
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Proof. LetF be FLS-continuous,H be FLC-continuous andγ ∈ LZ , δ(γc) ≥ r.
Then from Theorem 1.12(1) and Theorem 2.4(2), we have(H ◦ F )l(γ) = F l(H l(γ)) and
τ(F l(H l(γ))) ≥ η(H l(γ)) ≥ r. ThusH ◦ F is FLC-continuous.

We state the following result without proof in view of above theorem.

Theorem 2. 15.Let F : X ( Y andH : Y ( Z be twoFM ,s and let(X, τ), (Y, η)
and(Z, δ) be threeL-fts,s. If F andH are normalized,F is FUS-continuous andH is
FUC-continuous, thenH ◦ F is FUC-continuous.

Theorem 2. 16. Let F : X ( Y andH : Y ( Z be twoFM ,s and let(X, τ),
(Y, η) and (Z, δ) be threeL-fts,s. If H is normalized,H is FUS-continuous andF is
FLC-continuous, thenH ◦ F is FLC-continuous.

Proof. LetF be FLC-continuous,H be FUS-continuous andγ ∈ LZ , δ(γ) ≥ r.
Then from Theorem 1.12(2) and Theorem 2.4(3), we have(H ◦ F )u(γ) = Fu(Hu(γ))
andτ([Fu(Hu(γ))]c) ≥ r with η(Hu(γ)) ≥ r. ThusH ◦ F is FLC-continuous.

We state the following result without proof in view of above theorem.

Theorem 2. 17. Let F : X ( Y andH : Y ( Z be twoFM ,s and let(X, τ),
(Y, η) and (Z, δ) be threeL-fts,s. If F is normalized,F is FUC-continuous andH is
FLS-continuous, thenH ◦ F is FUC-continuous.

Definition 2. 18. [5,15,19,26] AnL-fuzzy setλ in an L-fts (X, τ) is calledr-fuzzy
compact iff every family in{µ : τ(µ) > r, µ ∈ LX}, wherer ∈ L◦ coveringλ has a
finite subcover.

Definition 2. 19. An L-fuzzy setλ in an L-fts (X, τ) is calledr-fuzzy stronglyS-
closed iff every family in{µ : τ(µc) > r, µ ∈ LX}, wherer ∈ L◦ coveringλ has a finite
subcover.

Theorem 2. 20. Let F : X ( Y be a crispFUC-continuous between twoL-fts,s
(X, τ) and(Y, η). Suppose thatF (xt) is r-fuzzy stronglyS-closed for eachxt ∈ dom(F ).
If an L-fuzzy setλ in anL-fts (X, τ) is r-fuzzy compact, thenF (λ) is r-fuzzy strongly
S-closed.

Proof. Letλ ber-fuzzy compact set inX and{γi : η(γc
i ) ≥ r, i ∈ Γ} be a family

covering ofF (λ) i.e.,F (λ) ≤ ∨
i∈Γ γi. Sinceλ =

∨
xt∈λ xt, we have

F (λ) = F (
∨

xt∈λ

xt) =
∨

xt∈λ

F (xt) ≤
∨

i∈Γ

γi.

It follows that for eachxt ∈ λ, F (xt) ≤
∨

i∈Γ γi. SinceF (xt) is r-fuzzy stronglyS-
closed for eachxt ∈ dom(F ), then there exists finite subsetΓxt of Γ such thatF (xt) ≤∨

n∈Γxt
γn = γxt . By Theorem 1.4(6), we havext ≤ Fu(F (xt)) ≤ Fu(γxt) and

λ =
∨

xt∈λ

xt ≤
∨

xt∈λ

Fu(γxt).
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From Theorem 2.5(2), we haveτ(Fu(γxt)) ≥ r. Hence{Fu(γxt) : τ(Fu(γxt)) ≥
r, xt ∈ λ} is a family covering the setλ. Sinceλ is compact, then there exists finite index
setN such thatλ ≤ ∨

n∈N Fu(γxtn
). From Theorem 1.4(5), we have

F (λ) ≤ F (
∨

n∈N

Fu(γxtn
)) =

∨

n∈N

F (Fu(γxtn
)) ≤

∨

n∈N

γxtn
.

Then,F (λ) is r-fuzzy stronglyS-closed.

Theorem 2. 21.Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η). If F is
FLC-continuous then,F is FLW -continuous.

Proof. Letxt ∈ dom(F ), µ ∈ LY , η(µ) ≥ r andxt ∈ F l(µ). SinceF is FLC-
continuous,η([Cη(µ, r)]c) ≥ r andxt ∈ F l(Cη(µ, r) then, there existsλ ∈ LX , τ(λ) ≥ r
andxt ∈ λ such thatλ ≤ F l(Cη(µ, r)). HenceFLW -continuous.

We state the following result without proof in view of above theorem.

Theorem 2. 22.Let F : X ( Y be aFM and normalized between twoL-fts,s(X, τ),
(Y, η). If F is FUC-continuous then,F is FUW -continuous.

Remark 2. 23.[4,33] Let(X, τ) and(Y, η) be anL-fts,s . AnL-fuzzy sets of the form
λ × µ with τ(λ) ≥ r andη(µ) ≥ r form a basis for the productL-fuzzy topologyτ × η
onX × Y , where for any(x, y) ∈ X × Y , (λ× µ)(x, y) = min{λ(x), µ(y)}.

Theorem 2. 24.Let (X, τ) and(Xi, τi) beL-fts,s(i ∈ I). If a FM F : X (
∏

i∈I Xi

is FLC-continuous (where
∏

i∈I Xi is the product space), thenPi ◦F is FLC-continuous
for eachi ∈ I, wherePi :

∏
i∈I Xi ( Xi is the projection multifunction which is defined

by Pk((xi)) = {xi} for eachk ∈ I.

Proof. Letµi0 ∈ LXi0 andτi0(µ
c
i0

) ≥ r. Then(Pi0 ◦ F )l(µi0) = F l(P l
i0

(µi0)) =
F l(µi0 ×

∏
i6=i0

Xi). SinceF is FLC-continuous andτi((µi0 ×
∏

i 6=i0
Xi)c) ≥ r, it

follows thatτ(F l(µi0 ×
∏

i 6=i0
Xi)) ≥ r. ThenPi ◦ F is anFLC-continuous.

We state the following result without proof in view of above theorem.

Theorem 2. 25.Let (X, τ) and(Xi, τi) beL-fts,s(i ∈ I). If a FM F : X (
∏

i∈I Xi

is FUC-continuous (where
∏

i∈I Xi is the product space), thenPi◦F is FUC-continuous
for eachi ∈ I, wherePi :

∏
i∈I Xi ( Xi is the projection multifunction which is defined

by Pk((xi)) = {xi} for eachk ∈ I.

Theorem 2. 26.Let (Xi, τi) and(Yi, ηi) beL-fts,s andFi : Xi ( Yi be aFM for
eachi ∈ I. Suppose thatF :

∏
i∈I Xi (

∏
i∈I Yi is defined byF ((xi)) =

∏
i∈I Fi(xi).

If F is FLC-continuous, thenFi is FLC-continuous for eachi ∈ I.

Proof. Letµi ∈ LYi andηi(µc
i ) ≥ r. Thenηi((µi ×

∏
i 6=j Yj)c) ≥ r. SinceF is

FLC-continuous, it follows thatτi(F l(µi ×
∏

i 6=j Yj)) ≥ r andF l(µi ×
∏

i 6=j Yj) =
F l(µi)×

∏
i6=j Xj . Consequently, we obtain thatτi(F l(µi)) ≥ r for eachi ∈ I.

Thus,Fi is FLC-continuous.
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We state the following result without proof in view of above theorem.

Theorem 2. 27.Let (Xi, τi) and(Yi, ηi) beL-fts,s andFi : Xi ( Yi be aFM for
eachi ∈ I. Suppose thatF :

∏
i∈I Xi (

∏
i∈I Yi is defined byF ((xi)) =

∏
i∈I Fi(xi).

If F is FUC-continuous, thenFi is FUC-continuous for eachi ∈ I.

3. FUZZY UPPER AND LOWER CONTRA SEMI-CONTINUOUS MULTIFUNCTIONS

Definition 3. 1. Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η) and
r ∈ L◦. ThenF is called:

(1) Fuzzy upper contra semi-continuous (FUCS-continuous, in short) at anL-fuzzy
pointxt ∈ dom(F ) iff xt ∈ Fu(µ) for eachµ ∈ LY andη(µc) ≥ r there existsr-fso set
λ ∈ LX andxt ∈ λ such thatλ ∧ dom(F ) ≤ Fu(µ).

(2) Fuzzy lower contra semi-continuous (FLCS-continuous, in short) at anL-fuzzy
pointxt ∈ dom(F ) iff xt ∈ F l(µ) for eachµ ∈ LY andη(µc) ≥ r there existsr-fso set
λ ∈ LX andxt ∈ λ such thatλ ≤ F l(µ).

(3) FUCS-continuous (resp.FLCS-continuous) iff it isFUCS-continuous (resp.
FLCS-continuous) at everyxt ∈ dom(F ).

Definition 3. 2. Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η) and
r ∈ L◦. ThenF is called:

(1) Fuzzy upper contra-irresolute (FUC-irresolute, in short) at anL-fuzzy pointxt ∈
dom(F ) iff xt ∈ Fu(µ) for eachµ ∈ LY is r-fsc there existsr-fso setλ ∈ LX and
xt ∈ λ such thatλ ∧ dom(F ) ≤ Fu(µ).

(2) Fuzzy lower contra-irresolute (FLC-irresolute, in short) at anL-fuzzy pointxt ∈
dom(F ) iff xt ∈ F l(µ) for eachµ ∈ LY is r-fsc there existsr-fso setλ ∈ LX and
xt ∈ λ such thatλ ≤ F l(µ).

(3) FUC-irresolute (resp. FLC-irresolute) iff it is FUC-irresolute (resp. FLC-
irresolute) at everyxt ∈ dom(F ).

Proposition 3. 3. F is normalized impliesF is FUCS-continuous (resp.FUC-
irresolute) atxt ∈ dom(F ) iff xt ∈ Fu(µ) for eachµ ∈ LY andη(µc) ≥ r (resp. µ is
r-fsc) there existsr-fso setλ ∈ LX andxt ∈ λ such thatλ ≤ Fu(µ).

Remark 3. 4. The notions ofFUC-continuous multifunctions andFUC-irresolute
multifunctions are independent as shown in the following Examples 3.9 and 3.10.

The following implications hold:
1. FUC-continuous ⇒ FUCS-continuous ⇐ FUC-irresolute.
2. FLC-continuous ⇒ FLCS-continuous ⇐ FLC-irresolute.
In general the converses are not true.

Theorem 3. 5. Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η) and
µ ∈ LY , then the following are equivalent:

(1) F is FLCS-continuous.
(2) F l(µ) is r-fso, if η(µc) ≥ r.
(3) Fu(µ) is r-fsc, if η(µ) ≥ r.
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Proof. (1)⇒ (2) Let xt ∈ dom(F ), µ ∈ LY , η(µc) ≥ r andxt ∈ F l(µ) then, there
existsr-fso setλ ∈ LX andxt ∈ λ such thatλ ≤ F l(µ) and hencext ∈ SIτ (F l(µ), r).
Therefore, we obtainF l(µ) ≤ SIτ (F l(µ), r). Thus,F l(µ) is r-fso.

(2)⇒ (3) Letµ ∈ LY andη(µ) ≥ r hence by (1),F l(µc) = (Fu(µ))c is r-fso. Then,
Fu(µ) is r-fsc.

(3)⇒ (2) It is similar to that of (2)⇒ (3).
(2) ⇒ (1) Let xt ∈ dom(F ), µ ∈ LY , η(µc) ≥ r with xt ∈ F l(µ) we have by (2),

F l(µ) = λ (say) isr-fso then, there existsr-fso setλ ∈ LX andxt ∈ λ such that
λ ≤ F l(µ). Thus,F is FLCS-continuous.

Theorem 3. 6. Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η) and
µ ∈ LY , then the following are equivalent:

(1) F is FLC-irresolute.
(2) F l(µ) is r-fso, for anyµ is r-fsc.
(3) Fu(µ) is r-fsc, for anyµ is r-fso.

Proof. (1)⇒ (2) Let xt ∈ dom(F ), µ ∈ LY , µ ber-fsc andxt ∈ F l(µ) then, there
existsr-fso setλ ∈ LX andxt ∈ λ such thatλ ≤ F l(µ) and hencext ∈ SIτ (F l(µ), r).
Therefore, we obtainF l(µ) ≤ SIτ (F l(µ), r). Thus,F l(µ) is r-fso.

(2) ⇒ (3) Let µ ∈ LY andµ be r-fso hence by (1),F l(µc) = (Fu(µ))c is r-fso.
Then,Fu(µ) is r-fsc.

(3)⇒ (2) It is similar to that of (2)⇒ (3).
(2) ⇒ (1) Let xt ∈ dom(F ), µ ∈ LY , µ be r-fsc with xt ∈ F l(µ) we have by (2),

F l(µ) = λ (say) isr-fso then, there existsr-fso setλ ∈ LX andxt ∈ λ such that
λ ≤ F l(µ). Thus,F is FLC-irresolute.

We state the following results without proof in view of above theorems.

Theorem 3. 7.Let F : X ( Y be aFM and normalized between twoL-fts,s (X, τ),
(Y, η) andµ ∈ LY , then the following are equivalent:

(1) F is FUCS-continuous.
(2) Fu(µ) is r-fso, if η(µc) ≥ r.
(3) F l(µ) is r-fsc, if η(µ) ≥ r.

Theorem 3. 8.Let F : X ( Y be aFM and normalized between twoL-fts,s (X, τ),
(Y, η) andµ ∈ LY , then the following are equivalent:

(1) F is FUC-irresolute.
(2) Fu(µ) is r-fso, for anyµ is r-fsc.
(3) F l(µ) is r-fsc, for anyµ is r-fso.

Example 3. 9. Let X = {x1, x2}, Y = {y1, y2, y3} andF : X ( Y be aFM
defined byGF (x1, y1) = 0.1, GF (x1, y2) = >, GF (x1, y3) = ⊥, GF (x2, y1) =
0.5, GF (x2, y2) = ⊥ andGF (x2, y3) = >. We assume that> = 1 and⊥ = 0. Define
L-fuzzy topologiesτ : LX → L andη : LY → L as follows:

τ(λ) =




>, if λ ∈ {⊥,>},
1
2 , if λ ∈ {0.5, 0.6},
⊥, otherwise,



On Upper and Lower Contra-Continuous Fuzzy Multifunctions 115

η(µ) =





>, if µ ∈ {⊥,>},
1
2 , if µ = 0.5,
1
3 , if µ = 0.4,
⊥, otherwise.

(1) F is FUCS-continuous (resp.FUC-continuous) but notFUC-irresolute because
0.45 is 1

2 -fso in (Y, η) andF l(0.45) = 0.45 is not 1
2 -fsc.

(2) F is FLCS-continuous (resp.FLC-continuous) but notFLC-irresolute because
0.45 is 1

2 -fso in (Y, η) andFu(0.45) = 0.45 is not 1
2 -fsc.

Example 3. 10. Let X = {x1, x2}, Y = {y1, y2, y3} andF : X ( Y be aFM
defined byGF (x1, y1) = 0.2, GF (x1, y2) = >, GF (x1, y3) = 0.3, GF (x2, y1) =
0.5, GF (x2, y2) = 0.3 andGF (x2, y3) = >. We assume that> = 1 and⊥ = 0. Define
L-fuzzy topologiesτ : LX → L andη : LY → L as follows:

τ(λ) =




>, if λ ∈ {⊥,>},
1
2 , if λ = 0.3,
⊥, otherwise,

η(µ) =




>, if µ ∈ {⊥,>},
1
2 , if µ = 0.4,
⊥, otherwise.

We can obtain the followings:

SCτ (λ, r) =




⊥, if λ = ⊥, r ∈ L◦,
λ, if 0.3 ≤ λ ≤ 0.7, ⊥ < r ≤ 1

2 ,
>, otherwise,

SCη(λ, r) =




⊥, if λ = ⊥, r ∈ L◦,
λ, if 0.4 ≤ λ ≤ 0.6, ⊥ < r ≤ 1

2 ,
>, otherwise.

(1) F is FUCS-continuous (resp.FUC-irresolute) but notFUC-continuous because
η(0.4) = 1

2 in (Y, η), F l(0.4) = 0.4 andτ([F l(0.4)]c) � 1
2 .

(3) F is FLCS-continuous (resp.FLC-irresolute) but notFLC-continuous because
η(0.4) = 1

2 in (Y, η), Fu(0.4) = 0.4 andτ([Fu(0.4)]c) � 1
2 .

Theorem 3. 11. Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η) and
µ ∈ LY . Suppose that one of the following properties hold:

(1) SCτ (Fu(µ), r) ≤ Fu(Iη(µ, r)).
(2) F l(Cη(µ, r)) ≤ SIτ (F l(µ), r).
ThenF is FLCS-continuous.

Proof. (1)⇒ (2) Letµ ∈ LY hence by (1), we obtain[SIτ (F l(µ), r)]c = SCτ ([F l(µ)]c, r)
= SCτ (Fu(µc), r) ≤ Fu(Iη(µc, r)) = [F l(Cη(µ, r))]c. Then, we obtain

F l(Cη(µ, r)) ≤ SIτ (F l(µ), r).

Suppose that (2) holds. Letµ ∈ LY andη(µc) ≥ r then by (2), we haveF l(µ) ≤
SIτ (F l(µ), r). ThusF l(µ) is r-fso. Then from Theorem 3.5(2),F is FLCS-continuous.
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Theorem 3. 12. Let F : X ( Y be aFM between twoL-fts,s (X, τ), (Y, η) and
µ ∈ LY . Suppose that one of the following properties hold:

(1) SCτ (Fu(µ), r) ≤ Fu(SIη(µ, r)).
(2) F l(SCη(µ, r)) ≤ SIτ (F l(µ), r).
ThenF is FLC-irresolute.

Proof. (1)⇒ (2) Letµ ∈ LY hence by (1), we obtain[SIτ (F l(µ), r)]c = SCτ ([F l(µ)]c, r)
= SCτ (Fu(µc), r) ≤ Fu(SIη(µc, r)) = [F l(SCη(µ, r))]c. Then, we obtain

F l(SCη(µ, r)) ≤ SIτ (F l(µ), r).

Suppose that (2) holds. Letµ ∈ LY andµ be r-fsc then by (2), we haveF l(µ) ≤
SIτ (F l(µ), r). ThusF l(µ) is r-fso. Then from Theorem 3.6(2),F is FLC-irresolute.

We state the following results without proof in view of above theorems.

Theorem 3. 13.Let F : X ( Y be aFM and normalized between twoL-fts,s(X, τ),
(Y, η) andµ ∈ LY . Suppose that one of the following properties hold:

(1) SCτ (F l(µ), r) ≤ F l(Iη(µ, r)).
(2) Fu(Cη(µ, r)) ≤ SIτ (Fu(µ), r).
ThenF is FUCS-continuous.

Theorem 3. 14.Let F : X ( Y be aFM and normalized between twoL-fts,s(X, τ),
(Y, η) andµ ∈ LY . Suppose that one of the following properties hold:

(1) SCτ (F l(µ), r) ≤ F l(SIη(µ, r)).
(2) Fu(SCη(µ, r)) ≤ SIτ (Fu(µ), r).
ThenF is FUC-irresolute.

Theorem 3. 15. Let F : X ( Y andH : Y ( Z be twoFM ,s and let(X, τ),
(Y, η) and (Z, δ) be threeL-fts,s. If H is normalized,H is FUS-continuous andF is
FLCS-continuous, thenH ◦ F is FLCS-continuous.

Proof. LetF beFLCS-continuous,H beFUS-continuous andγ ∈ LZ , δ(γc) ≥ r.
Then from Theorem 1.12(4) and Theorem 3.5(2), we have(H ◦ F )l(γ) = F l(H l(γ)) and
F l(H l(γ)) is r-fso with η((H l(γ))c) ≥ r. Thus,H ◦ F is FLCS-continuous.

We state the following result without proof in view of above theorem.

Theorem 3. 16. Let F : X ( Y andH : Y ( Z be twoFM ,s and let(X, τ),
(Y, η) and(Z, δ) be threeL-fts,s. If F is normalized,F is FUCS-continuous andH is
FLS-continuous, thenH ◦ F is FUCS-continuous.
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