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Abstract. This paper is devoted to the concepts of fuzzy upper and fuzzy
lower contra-continuous, contra-irresolute and contra semi-continuous mul-
tifunctions. Several characterizations and properties of these multifunc-
tions along with their mutual relationships are established.ifuzzy
topological spaces. Later, composition and union between these multi-
functions have been studied.
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1. INTRODUCTION AND PRELIMINARIES

Kubiak [17] and Sostak [28] introduced the notion &f)fuzzy topological space as a
generalization of_-topological spaces (originally called.{)fuzzy topological spaces by
Chang [8] and Goguen [10]). It is the grade of openness ofdnzzy set. A general
approach to the study of topological type structures on fuzzy powersets was developed in
[11-13,17,18,28-30].

Berge [7] introduced the concept multimappidg: X — Y whereX andY are
topological spaces and Popa [24,25] introduced the notion of irresolute multimapping.
After Chang introduced the concept of fuzzy topology [8], continuity of multifunctions
in fuzzy topological spaces have been defined and studied by many authors from different
view points (e.g. see [3,4,21-23]). Tsiporkova et. al., [31,32] introduced the Continuity
of fuzzy multivalued mappings in the Chasduzzy topology [8]. Later, Abbas et al., [1]
introduced the concepts of fuzzy upper and fuzzy lower semi-continuous multifunctions in
L-fuzzy topological spaces.
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Throughout this paper, nonempty sets will be denoted¥hyt” etc.. Let a complete
lattice L = (L,<,V,A,/) be a complete distributive complete lattice with an order-reversing
involution on it, and with a smallest elemehtand largest elemenri (L # T). The family
of all L-fuzzy sets inX is denoted by.* andL, = L — {0}. Fora € L, a(z) = « for
all z € X. The complement of af-fuzzy set) is denoted by\“. This symbol— for a
multifunction. All other notations are standard notationd effizzy set theory.

Definition 1. 1. [1] Let F' : X — Y, thenF is called a fuzzy multifunctioni' M, for
short) iff F(z) € LY for eachz € X. The degree of membership gin F(x) is denoted
by F(z)(y) = Gp(z,y) forany(z,y) € X x Y.

The domain off’, denoted bylom(F') and the range of’, denoted byng(F), for any
x € X andy € Y, are defined by:

dom(F)(z) = \/ Gr(z,y)  and  rng(F)(y) = \/ Gr(z,y).

yey reX

Definition 1. 2.[1] Let F: X — Y be aF'M. ThenkF is called:
(1) Normalized iff for eachr € X, there existg, € Y such thalGp(z,y0) = T.
(2) Acrispiff Ggp(x,y) = T foreachr € X andy € Y.

Definition 1. 3.[1] Let F': X — Y be aF'M. Then,
(1) The image of\ € LX is anL-fuzzy setF(\) € LY defined by:

F(y) =\ [Grla,y) A @)

zeX

(2) The lower inverse ofi € LY is anL-fuzzy setF () € LX defined by:
Flp)(@) = \/ [Gr@.y) A p)).

yey

(3) The upper inverse of € LY is anL-fuzzy setF'*(u) € LX defined by:
FU(u)(z) = N [Gi(x,9) v p(y)].

yey

Theorem 1. 4.[1]Let F': X — Y be aF' M. Then,

Q) F(M\) < F(A2) if A1 < Xo.

(2) Fl(p1) < Fl(p2) andF* (1) < F¥(pg) if p1 < po.
(3) F!(u) = (F" ()"

(4) F*(puc) = (F'(n))".

(5) F(F"(n)) < pif Fisacrisp.

(6) F“(F(\)) > Aif Fisacrisp.

Definition 1. 5. [1]Let FF : X — Y andH : Y — Z be twoF'M's. Then the
compositionf! o F' is defined by:((H o I)(z))(2) = V ey [Gr(z,y) AN Gu(y, 2)].

Theorem 1. 6.[1] Let F : X — Y andH : Y — Z be twoF' M's. Then we have the
following:

(1) (Ho F)=F(H).

(2) (H o F)" = F*(H"),

() (Ho F)! = F'(HY).
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Theorem 1. 7.[1] Let F; : X — Y be aF M. Then,
D) User F)A) = Vier Fi(A).

) (Uier F2)' (1) = Vier FL (1)

) User F0)“ (1) = Nier Fi* (1)

Definition 1. 8. [13,17,20,28] AnL-fuzzy topological spacel(fts, in short) is a pair
(X, 7), whereX is a nonempty set and: LX — L is a mapping satisfying the following
properties:

O 7(T)=7(L) =T,

(02) T()\l A\ )\2) > 7'(/\1) A\ 7'(/\2), for any\;, \s € LX,

(03)7(Vier At) > Aser- 7(A), for any{A Jier © LY.

Thenr is called anL-fuzzy topology onX. For everyA € LX, 7()) is called the degree
of openness of thé-fuzzy set\.

A mappingf : (X,7) — (Y, n) is said to be continuous with respectliefuzzy topolo-
giest andy iff 7(f~*(u)) > n(u) for eachy € LY.

Theorem 1. 9.[9,14,16,20] Let X, 7) be anL-fts. Then for eachh € LX,r € L, we
defineL-fuzzy operator€’, andI, : LX x L, — LX as follows:

Cr(\r) = /\{,u e LX X< p,m(pc) >}

L(\r)= \/{u e LX p<\7(p) >r)

For\, u € LX andr, s € L, the operator’, satisfies the following statements:
(Cycy (éa T) =1L

(C2)A < Cr (A, 7).

(C3)C- ()\ 7’)\/0 ( r)=Cr(AVpu,r).

(C5)C ( )—)\Iff T(AC) > r.

(CB)C- (A1) = (I-(A\,r))cand I (A, r) = (Cr(\, 1)) .

Definition 1. 10. [6,14,27] Let(X,7) be anL-fts. Then for each\, ¢ LX and
r € L,. Then)\ is called:

(1) r-fuzzy semi-opem(-f so, in short) iff A < C, (I (A, r), )

(2) r-fuzzy semi-closedr(- f sc, in short) iff I.(C. (A, r),r) <

Theorem 1. 11.[14] Let (X, 7) be anL-fts. Then for each\ € LX, r € L, we define
L-fuzzy operatorsSC, andSI, : LX x L, — LX as follows:

SCr(\, 1) = /\{u €L :N<upu, pisr— fsc}.

SI (A7) = \/{,u e L™ ip <\ pisr— fso}.

Theorem 1. 12.[1] Let F': X — Y be aF' M between twal-fts's (X, 7), (Y, n) and
u € LY. Then we have the following:

(1) Fis FLS-continuous iffr (F! (1)) > n(p).

(2) If F'is normalized, thed” is F'U S-continuous iffr (F (1)) > n(u).

(3) Fis FLS-continuous iffr ((F“(u))¢) > n(u).
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(4) If F is normalized, thed is FU S-continuous iffr ((F!(p))¢) > n(uc).

Definition 1. 13.[2] Let F' : X — Y be aF'M between twa.-fts's (X, 1), (Y,n) and
r € L,. ThenF is called:

(1) FUW -continuous (respF LW -continuous) at a.-fuzzy pointz; € dom(F) iff
x; € FU(pu) (resp. x; € F'(u)) for eachy € LY andn(p) > r there exists\ € LX,
7(\) > r andz, € A such that\ A dom(F) < F*(C,(u,7)) (resp.A < FY(Cy(1,7))).

(2) FUW -continuous (respF LW -continuous) iff it isF'U W -continuous (respE LTV -
continuous) at every; € dom(F).

Proposition 1. 14.[2] F is normalized implied” is FUW -continuous at arL-fuzzy
pointz, € dom(F) iff x, € F*(u) for eachu € LY andn(u) > r there exists\ € L,
7(A) > randz; € A such thatn < F*(C,(u,7)).

2. FUZzY UPPER AND LOWER CONTRACONTINUOUS MULTIFUNCTIONS

Definition 2. 1. Let F : X — Y be aF M between twolL-fts's (X, 7), (Y, n) and
r € L,. ThenF is called:

(1) Fuzzy upper contra-continuous'{ C-continuous, in short) at afn-fuzzy point
z; € dom(F) iff z, € F“(u) for eachy € LY andn(u¢) > r there exists\ € LX,
7(A) > r andz; € A such that\ A dom(F) < F*(pu).

(2) Fuzzy lower contra-continuous'{.C-continuous, in short) at ab-fuzzy pointz; €
dom(F) iff x; € F'(u) for eachy € LY andn(u) > r there exists\ € LX, 7(\) > r
andz; € A such that\ < F'(p).

(3) FUC-continuous (respF LC-continuous) iff it is U C-continuous (respF LC-
continuous) at every; € dom(F).

Proposition 2. 2. F' is normalized implieg” is FUC-continuous at ar.-fuzzy point
z, € dom(F) iff x, € F“(u) for eachy € LY andn(u¢) > r there exists\ € L,
7(A) > randz; € A suchthat\ < F*(u).

Remark 2. 3. The notions of FUC-continuous multifunctions andFU S-continu
ous multifunctions are independent as shown in the following Examples 2.6 and 2.7.

Theorem 2. 4. Let F : X — Y be aF'M between twoL-fts's (X, 1), (Y,n) and
u € LY, then the following are equivalent:

(1) F'is FLC-continuous.

) T(F' () > r, if n(pe) > r.

@) T((F* (1)) =, if n(p) > .

Proof. (1)= (2) Letx; € dom(F), u € LY, n(u®) > r andz; € F'(u) then, there
existsA € LY, 7(\) > r andz; € ) such that\ < F!(x) and hencer, € I.(F'(u),7).
Therefore, we obtaid (1) < I (F!(u),r). Thust(F'(u)) > r.

(2) = (3) Lety € LY andn(u) > r hence by (2),

T(F'(u) = 7((F*(n))) = 7.
(3) = (2) It is similar to that of (2)= (3).
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(2) = (1) Letzy € dom(F), p € LY, n(p) > r with z; € F'() we have by (2),
7(F'(p)) > r. Let F'(u) = X (say) then, there exists€ L*, 7()\) > r andx; € X such
that\ < F!(u). ThusF is F LC-continuous.

We state the following result without proof in view of above theorem.

Theorem 2. 5.Let F': X — Y be aF'M and normalized between twiafts's (X, 7),
(Y,n) andu € LY, then the following are equivalent:

(1) Fis FUC-continuous.

) T(F* () > 7, if n(uc) > 7.

@) T((F!()e) =, if n(p) > 7.

Example 2. 6. Let X = {z1,22}, Y = {y1,y2,y3} @andF : X — Y be aFM
defined byGp(z1,y1) = 0.1, Gp(x1,y2) = T, Gr(x1,y3) = L, Gp(xe,y1) =
0.5, Gp(x2,y2) = L andGp(z2,y3) = T. We assume that = 1 and L = 0. Define
L-fuzzy topologies : LX — Landp: LY — L as follows:

T, if xe{L,T},
) =14 3, if A€ {0506},

1, otherwise,

T, if pe{lT}

i, if p=0.5,
n(p) = ; it =04,

1, otherwise.

(1) F is FUC-continuous but not#’U S-continuous becausg(0.4) = = in (Y,n),
F*(0.4) = 0.4 and7(F“(0.4)) = L. Hence(F“(0.4)) # n(0.4).

(2) F is FLC-continuous but nof’LS-continuous becausrp(@) = Lin (Y,n),
F'(0.4) = 0.4 and7(F'(0.4)) = L. Hences(F'(0.4)) # n(0.4).

Wl

ol

Example 2. 7. Let X = {z1,22}, Y = {y1,y2,y3} andF : X — Y be aFM
defined byGr(z1,y1) = 0.1, Gp(21,92) = T, Gr(z1,y3) = L, Gr(w2,y1) =
0.5, Gp(z2,y2) = L andGr(z2,ys) = T. We assume that = 1 and_L = 0. Define
L-fuzzy topologies : LX — L andn : LY — L as follows:

T, it Ae{l, T}
T(A) =14 3, if Xe{04,0.5},
1, otherwise,
T, if pe{l T}
3, i p=0.5,
n(p) = ; if =04,
1, otherwise.
(1) F is FUS-continuous but no#'UC-continuous because(%) = 1in (V,n)
F'(0.4) = 0.4 and7((F'(0.4))°) = L. Thus,7((F'(0.4))°) # 3.
(2) F is FLS-continuous but nof" LC- contlnuous because(o.zl) = +in (Y,n),

F“(0.4) = 0.4 and7((F“(0.4))°) = L. Thus,7((F“(0.4))°) # 1.
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Definition 2. 8. Let (X, ) be anL-fts. Then for eachA € LX andr € L, we define
L-fuzzy operatotKer, : LX x L, — L* as follows:

Ker-(\,r) = /\{,u e L™ :x<up, m(p) >}

Lemma 2. 9.For A in an L-fts (X, 7), if 7(\) > r then\ = Ker, (A, r).

Theorem 2. 10.Let F : X — Y be aF M between twal-fts's (X, 7) and(Y, 7). If
C-(F*(n),r) < FY“(Kery(u,r)) foranyu € LY, thenF is F LC-continuous.

Proof. Suppose that (F“(u),r) < F*“(Ker,(u,r)) foranyp € LY. Letv € LY
andn(v) > r by Lemma 2.9, we have'. (F“(v),r) < F*“(Kery(v,r)) = F*(v). This
implies thatC, (F*“(v),r) = F“(v) and hencer((F*(v))¢) > r. Thus, by Theorem
2.4(3),F is F LC-continuous.

Theorem 2. 11.Let F : X — Y be aF M and normalized between twb-fts's
(X,7) and(Y,n). If C(F'(u),r) < FY(Ker,(u,r)) foranyu € LY, thenF is FUC-
continuous.

Proof. Suppose that, (F'(u),r) < F'(Ker,(u,r)) foranyp € LY. Letv € LY and
n(v) > r by Lemma 2.9, we hav€’, (F'(v),r) < F!(Ker,(v,r)) = F'(v). This implies
thatC, (F!(v),r) = F'(v) and hence-((F'(v))¢) > r. Thus, by Theorem 2.5(3) is
FUC-continuous.

Theorem 2. 12. Let {F;};cr be a family of FLC-continuous between twd-fts's
(X,7)and(Y,n). ThenlJ, . F; is F LC-continuous.

Proof. Lety € LY andn(u®) > r then(U,cr Fi)' (1) = Vier(FL (1)) by Theorem
1.7(2). Since{F;};cr is a family of FLC-continuous between twé-fts's (X, ) and
(Y,n), thent(F}(u)) > r for eachi € T. Then for eachy € LY andn(uc) > r,
we haver (U;cr F)' (1) = 7(Ver(FH (1) = Aser 7(FH (1) > 7. HencelJ,p. F; is
F LC-continuous.

Theorem 2. 13. Let F} and F, be two normalizedF’'UC-continuous between two
L-ftss (X, 7) and(Y, n). ThenFy |J F; is FUC-continuous.

Proof. Lety € LY andn(u¢) > rthen(Fy |J F2)% (i) = F(u) A F¢ (i) by Theorem
1.7(3). SinceF; and F» be two normalized”U C-continuous between twb-fts's (X, 7)
and(Y,n), thent(F*(u)) > r for eachi € {1,2}. Then for eachu € LY andn(u¢) > r,
we haver ((F; U Fa)" (1)) = 7(Fj*(u) A F3 (1)) > 7(Fj*(u)) A 7(F§()) > r. Hence
F1 U F» is FUC-continuous.

Theorem 2. 14.LetF : X —o Y andH : Y — Z be twoFM's and let(X, 1),
(Y,n) and(Z,4) be threeL-fts's. If F' is F'LS-continuous and? is F'LC-continuous,
thenH o F'is FLC-continuous.
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Proof. LetF be FLS-continuous,H be FLC-continuous andy € L%, §(y¢) > r.
Then from Theorem 1.12(1) and Theorem 2.4(2), we t{@e F)!(y) = F'(H'(v)) and
(FY(H'(v))) > n(H! (7)) > r. ThusH o F is F LC-continuous.

We state the following result without proof in view of above theorem.

Theorem 2. 15.LetF: X oY andH : Y — Z betwoFM-s and let(X, 7), (Y, n)
and(Z, ) be threeL-fts's. If F and H are normalizedF’ is FUS-continuous and? is
FUC-continuous, thett? o F'is FUC-continuous.

Theorem 2. 16.LetF : X — Y andH : Y — Z be twoFM's and let(X,7),
(Y,n) and(Z, ) be threeL-fts's. If H is normalized,H is FU S-continuous and” is
FLC-continuous, thetH o F'is F LC-continuous.

Proof. LetF be FLC-continuous,H be FUS-continuous andy € L%, §(y) > .
Then from Theorem 1.12(2) and Theorem 2.4(3), we Hd¥e F)“(y) = F“(H"(y))
andr ([F*(H"(~))]¢) > rwith n(H*(v)) > r. ThusH o F'is F LC-continuous.

We state the following result without proof in view of above theorem.

Theorem 2. 17.LetF : X —o Y andH : Y — Z be twoFM's and let(X, 1),
(Y,n) and(Z, ) be threeL-fts's. If F' is normalized,F' is FUC-continuous and? is
FLS-continuous, the o F' is F'UC-continuous.

Definition 2. 18. [5,15,19,26] AnL-fuzzy set) in an L-fts (X, 7) is calledr-fuzzy
compact iff every family in{z : 7(u) > r, p € LX}, wherer € L, covering) has a
finite subcover.

Definition 2. 19. An L-fuzzy set)\ in an L-fts (X, 7) is calledr-fuzzy stronglyS-
closed iff every family in{ : 7(u¢) > 7, u € LX}, wherer € L, covering) has a finite
subcover.

Theorem 2. 20.Let F' : X — Y be a crispF'UC-continuous between twa-fts's
(X,7)and(Y,n). Suppose thak'(z,) is r-fuzzy stronglyS-closed for eaclr; € dom(F).
If an L-fuzzy setX in an L-fts (X, 7) is r-fuzzy compact, the'(\) is r-fuzzy strongly
S-closed.

Proof. Let\ ber-fuzzy compact set itk and{v; : n(v¢) > r, i € '} be a family
covering of '(A) i.e., F(A) < V. Sinced =V, ., =+, we have

F)=F(\/ =)=\ Fz) < \/

TiEN TLEN i€l

It follows that for eache; € A, F(z;) < \/,cp . SinceF () is r-fuzzy stronglyS-
closed for eaclr; € dom(F), then there exists finite subset, of I" such thatF'(z;) <
Ver,, Yn = 7a,- By Theorem 1.4(6), we have, < F*(F(z)) < F"(7.,) and

TiEN TEN
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From Theorem 2.5(2), we havg F'“(v,,)) > r. Hence{F“(y,,) : 7(F"(Vz,)) >
r, z; € A} is a family covering the set. Since) is compact, then there exists finite index

setN such thath </, . F*(7z,, ). From Theorem 1.4(5), we have

F(X) < F( \/ F*(vz,,)) = \/ F(F"(Va,,) \/ Ve, -

neN neN neN

Then,F'()) is r-fuzzy stronglyS-closed.

Theorem 2. 21.Let F : X — Y be aF'M between twal-fts's (X, 1), (Y,n). If Fis
F LC-continuous thenF is F LW -continuous.

Proof. Letx; € dom(F), p € LY, n(p) > r andx, € F'(u). SinceF is FLC-
continuousy ([C,,(p, 7)]¢) > r andz, € F'(C,(u,7) then, there exists € LX, 7(\) > r
andz; € A such that\ < F'(C,(u,r)). HenceF LW -continuous.

We state the following result without proof in view of above theorem.

Theorem 2. 22.Let F' : X — Y be aF'M and normalized between twofts's (X, 7),
(Y,n). If F'is FUC-continuous thenF is FUW -continuous.

Remark 2. 23.[4,33] Let(X, 7) and(Y, n) be anL-fts's . An L-fuzzy sets of the form
A x pwith 7(X\) > r andn(u) > r form a basis for the produdi-fuzzy topologyr x 7
onX x Y,where forany(z,y) € X x Y, (A x p)(z,y) = min{\(z), u(y)}.

Theorem 2. 24.Let (X, 7) and(X;, ;) beL-ftss(i € I). faFM F : X — [[,.; X
is F'LC-continuous (wher¢],, X; is the product space), théfo F'is F'LC- contmuous
foreachi € I, whereP; : [],.; X; — X, is the projection multifunction which is defined
by Py ((x;)) = {=;} foreachk € I.

Proof. Le”’"io € LXiO andTio (:u’zco) > T Then (Pto © F) (,uio) = Fl(Pl (Mto)) =

Fl (g, % [[izi, Xi)- Since I is FLC-continuous andy; ((pi, < [[,;, Xi)) > r, it
follows thatr (F* (1, x [1izi, Xi)) = . ThenP; o F is anF' LC-continuous.

We state the following result without proof in view of above theorem.

Theorem 2. 25.Let (X, 7) and(X;, ;) beL-ftss(i € I). faFM F : X — []
is F'UC-continuous (wherg], ., X; is the product space), thého F'is FUC- contmuous
foreachi € I, whereP; : [[,.; X; — X is the projection multifunction which is defined
by P ((z;)) = {z;} foreachk € I.

zeI

Theorem 2. 26.Let (X;, ;) and(Y;,n;) be L-ftss andF; : X, — Y; be aF' M for
eachi € I. Suppose thak : [],.; X; — [[;c; Yi is defined byF'((z;)) = [[;c; Fi(xs).
If F'is FLC-continuous, the; is F LC-continuous for eache 1.

Proof. Letu; € LY andn,(ug) > r. Thenn,((ui x [z, Y3)?) > r. SinceF is
FLC-continuous, it follows that; (F!(u; x [ Y5) = and F'(u; x [l Y5) =

F'(ui) x [1;; X Consequently, we obtain that 7' (11;)) > r for eachi € I.
Thus, F; is FLC-continuous.
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We state the following result without proof in view of above theorem.

Theorem 2. 27.Let (X;, ;) and(Y;, ;) be L-ftss andF; : X; — Y; be aF M for
eachi € I. Suppose thak : [],.; X; — [[;c; Yi is defined byF'((z;)) = [[;c; Fi(zs)-
If F'is FUC-continuous, thert; is F'UC-continuous for eache 1.

3. FUzzYy UPPER AND LOWER CONTRA SEMICONTINUOUS MULTIFUNCTIONS

Definition 3. 1. Let F' : X — Y be aF'M between twolL-fts's (X, 7), (Y,n) and
r € L,. ThenF is called:

(1) Fuzzy upper contra semi-continuous{{C'S-continuous, in short) at ah-fuzzy
pointz, € dom(F) iff z; € F*(u) for eachu € LY andn(uc) > r there exists-fso set
A € LX andz; € A such that\ A dom(F) < F“(p).

(2) Fuzzy lower contra semi-continuoug [LC'S-continuous, in short) at ah-fuzzy
pointz; € dom(F) iff z, € F'(u) for eachy € LY andn(u®) > r there exists- fso set
A € LX andz; € A such thath < F'(u).

(3) FUCS-continuous (resp.F LCS-continuous) iff it is FUCS-continuous (resp.
FLCS-continuous) at every, € dom(F).

Definition 3. 2. Let F' : X — Y be aF'M between twolL-fts's (X, 7), (Y,n) and
r € L,. ThenF is called:

(1) Fuzzy upper contra-irresoluté  C-irresolute, in short) at al-fuzzy pointx; €
dom(F) iff x;, € F*(u) for eachy € LY is r-fsc there exists-fso setA € LX and
x¢ € A such thath A dom(F) < F“(u).

(2) Fuzzy lower contra-irresoluté(LC-irresolute, in short) at ai-fuzzy pointz; €
dom(F) iff z; € F'(u) for eachu € LY is r-fsc there exists-fso setA € LX and
x, € Asuch that < Fl(pu).

(3) FUC-irresolute (resp. F'LC-irresolute) iff it is FFUC-irresolute (resp. FLC-
irresolute) at every, € dom(F).

Proposition 3. 3. F'is normalized impliest' is FUCS-continuous (resp.FUC-
irresolute) atr; € dom(F) iff z; € F*(u) for eachy € LY andn(uc) > r (resp. u is
r-fsc) there exists-fso setA € LX andx; € ) such that\ < F“(p).

Remark 3. 4. The notions of FUC-continuous multifunctions ané'U C-irresolute
multifunctions are independent as shown in the following Examples 3.9 and 3.10.

The following implications hold:

1. FUC-continuous = FUCS-continuous < FUC-irresolute.
2. FLC-continuous = FLCS-continuous < FLC-irresolute.
In general the converses are not true.

Theorem 3. 5. Let F : X — Y be aFM between twol-fts's (X, 7), (Y,n) and
u € LY, then the following are equivalent:

(1) F is FLCS-continuous.

(2) FY(p) is r-fso, if n(u®) > r.

() F(p) is7-fse, if n(p) > 7.
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Proof. (1)= (2) Letx; € dom(F), u € LY, n(u®) > r andz; € F'(u) then, there
existsr-fso seth € LX andz; € A such that\ < F!(u) and hencer; € SI, (F'(u), 7).
Therefore, we obtaid (1) < SI, (F'(u1),7). Thus,F!(p) is r-fso.

(2) = (3) Lety € LY andn(u) > r hence by (1)F! (u€) = (F*(u))¢ isr-fso. Then,
F(u)isr-fsc.

(3) = (2) Itis similar to that of (2)= (3).

(2) = (1) Letz; € dom(F), p € LY, n(uc) > r with z; € F'(u) we have by (2),
Fl'() = X (say) isr-fso then, there exists-fso setA € LX andx; € A such that
A < FY(p). Thus,F is F LCS-continuous.

Theorem 3. 6. Let F' : X — Y be aFM between twoL-fts's (X, 7), (Y,n) and
u € LY, then the following are equivalent:

(1) F'is FLC-irresolute.

(2) F'(p) is r-fso, for anyu is r-f sc.

(3) F*(w) is r-fsc, for anyp is r- f so.

Proof. (1)= (2) Letx; € dom(F), u € LY, yber-fscandx, € F'(u) then, there
existsr-fso seth € LX andz; € A such that\ < F'(u) and hencer; € SI, (F'(u), 7).
Therefore, we obtaid™ (1) < SI, (F'(u1),7). Thus,F!(p) is r-fso.

(2) = (3) Lety € LY andp ber-fso hence by (1),F!(u¢) = (F*(u))¢ is r-fso.
Then,F*(u) isr-fsc.

(3) = (2) Itis similar to that of (2)= (3).

(2) = (1) Letz; € dom(F), u € LY, p ber-fscwith z; € F'(u) we have by (2),
Fl(n) = X (say) isr-fso then, there exists-fso setA € LX andx; € A such that
A < FY(p). Thus,F is F LC-irresolute.

We state the following results without proof in view of above theorems.

Theorem 3. 7.Let F : X — Y be aF'M and normalized between twa-fts's (X, 7),
(Y,n) andu € LY, then the following are equivalent:

(1) Fis FUCS-continuous.

(2) F*(p) isr-fso, if n(u®) = r.

() Fl(p) isr-fsc, if n(pu) > r.

Theorem 3. 8.Let F : X — Y be aF'M and normalized between tw-fts's (X, 7),
(Y,n) andy € LY, then the following are equivalent:

(1) F'is FUC-irresolute.

(2) F* () is r-fso, for anyp is r- f sc.

(3) F'(u) is r-fsc, for anyp is r-f so.

Example 3. 9. Let X = {z1,22}, Y = {y1,y2,y3} andF : X — Y be aFM
defined byGF(l‘l,yl) = 0.17 Gp(l‘l,yg) = T, Gp(xl,yg) = J_, GF(LZJQ,yl) =
0.5, Gp(z2,y2) = L andGr(z2,ys) = T. We assume that = 1 and_L = 0. Define
L-fuzzy topologies : LX — L andn : LY — L as follows:

T, if xe{L,T},
T(A) =14 3, if Xe{0.5,0.6},
1, otherwise,
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T i pe{LT)
3, if p=05,
M= u=oa,

1, otherwise.
(1) Fis FUCS-continuous (respFU C-continuous) but nof’U C-irresolute because
0.45is 1-fsoin (Y,n) andF'(0.45) = 0.45 is not3-f sc.
(2) F'is FLCS-continuous (respE’ LC-continuous) but nof’ LC-irresolute  because
0.45is 3-fsoin (Y,n) andF*(0.45) = 0.45 is not3-fsc.

Example 3. 10.Let X = {z1,22}, Y = {y1,y2,y3} andF : X — Y be aFM
defined byGr(z1,91) = 0.2, Gp(z1,y2) = T, Gr(z1,y3) = 0.3, Gp(w2,y1) =
0.5, Gp(z2,y2) = 0.3 andGr(z2,y3) = T. We assume that = 1 and_L = 0. Define
L-fuzzy topologies : LX — Landp: LY — L as follows:

T, if xe{Ll,T1},
Loif A=03,
1, otherwise,

T, if pe{l T}
3, i =04,

1, otherwise.

We can obtain the followings:

1, if AN=1, relL,,
SCT(/\,T):{A, if 03<A<07, L<r<i,

T, otherwise,

L, if A=1, relL,,
SCU(/\,T)z{/\, if 04<A<06, L<r<i,

T, otherwise.

(1) F is FUC S-continuous (respFUC- irresolute) but not"U C-continuous because
n(0.4) = Lin (Y,n), F'(0.4) = 0.4 andr ([F'(0.4)]°) # 3.

(3) F'is FLC'S-continuous (respF' LC- irresolute) but no#'LC-continuous because
n(0.4) = 3 in (Y,n), F*(0.4) = 0.4 and7([F*(0.4)]°) # L.

Theorem 3. 11.Let F : X — Y be aF'M between twolL-fts's (X, 7), (Y,n) and
u € LY. Suppose that one of the following properties hold:

(1) SC-(F"().7) < F*(L,(11,1)).

(2) FH(Cy(j1.7) < SL(F' (1), 7).

ThenF is FLC S-continuous.

Proof. (1)= (2) Letu € LY hence by (1), we obtaii® I, (F! (1), 7)]¢ = SC([F(1)]¢,7)
= SC(F*(uc),r) < FY(I,(uc,r)) = [FY(C,(u,r))]. Then, we obtain

F!(Cy(p,r)) < S (F' (), 7).

Suppose that (2) holds. Let € LY andn(u®) > r then by (2), we haveé™ (1) <
SI.(F'(u),r). ThusF!(p) is r-fso. Then from Theorem 3.5(2F is F'LC S-continuous.
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Theorem 3. 12.Let F' : X — Y be aF'M between twol-fts's (X, 1), (Y,n) and
u € LY. Suppose that one of the following properties hold:

(1) SC-(F(1),7) < F*(SLy(. 7).

(2) FY(SCy(p, 7)) < SL-(F'(w),r).

ThenF is FLC-irresolute.

Proof. (1)= (2) Lety € LY hence by (1), we obtails I, (F' (), r)]¢ = SC,([F(u)]¢,r)
= SC(F*(uc),r) < FY(ST,(uc,r)) = [FY(SC,(u,7))]¢. Then, we obtain

FY(SCy(u,r)) < SI(F'(1), 7).

Suppose that (2) holds. Let € LY andu ber-fsc then by (2), we havé (u) <
SI,(F'(u),r). ThusF!(p) is r-fso. Then from Theorem 3.6(2); is F'LC-irresolute.

We state the following results without proof in view of above theorems.

Theorem 3. 13.Let F' : X — Y be aF'M and normalized between twofts's (X, 7),
(Y,n) andu € LY. Suppose that one of the following properties hold:

(1) SC-(F! (), ) < F(L(11.7))-

(2) F*(Cy(p, 7)) < SI(F"(p), 7).

ThenF'is FUC S-continuous.

Theorem 3. 14.Let F' : X — Y be aF'M and normalized between twofts's (X, 7),
(Y,n) andu € LY. Suppose that one of the following properties hold:

(1) SC(F'(n),r) < FY(STy (7).

(2) F*(SC,y (1, 7)) < SL-(F* (), 7).

ThenF'is FUC-irresolute.

Theorem 3. 15. LetF' : X —o Y andH : Y — Z be twoFM' s and let(X,7),
(Y,n) and (Z, ¢) be threeL-fts's. If H is normalized.H is FUS-continuous and’ is
FLCS-continuous, thetH o F'is F LC'S-continuous.

Proof. LetF’ be FLCS-continuous,H be FU S-continuous and/ € LZ, §(v¢) > r.
Then from Theorem 1.12(4) and Theorem 3.5(2), we t{@e F)!(y) = F'(H'(v)) and
FUYH'(y)) isr-fsowith n((H'(y))¢) > r. Thus,H o F is F LCS-continuous.

We state the following result without proof in view of above theorem.

Theorem 3. 16.LetF : X —o Y andH : Y — Z be twoFM's and let(X,7),
(Y,n) and(Z, ) be threeL-fts's. If F' is normalized,F' is FUC'S-continuous and{ is
FLS-continuous, thetl o F'is FUC'S-continuous.
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