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Abstract. In the following text we prove that for bijectionϕ : N → N
and discrete set{1, . . . , k} with k ≥ 2, the generalized shift dynamical
system({1, . . . , k}N, σϕ) is e−chaotic, (expansive, positively expansive)
if and only if {{ϕi(n) : i ∈ Z} : n ∈ N} is a finite partition ofN (or
equivalently there existsN ∈ N such thatN =

⋃{ϕi({1, . . . , N}) : i ∈
Z}).
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1. PRELIMINARES

By a topological dynamical system(or briefly dynamical system) (X, f) we mean a topo-
logical spaceX (phase space) and continuous mapf : X → X.
For a nonempty setX consider two maps one-sided shiftσ1 : XN → XN and two-
sided shiftσ2 : XZ → XZ with σ1((xn)n∈N) = (xn+1)n∈N (for (xn)n∈N ∈ XN) and
σ2((yn)n∈Z) = (yn+1)n∈Z (for (yn)n∈Z ∈ XZ), whereN = {1, 2, . . .} is the set of all
natural numbers andZ = {0,±1,±2, . . .} is the set of all integers. One-sided and two-
sided shifts are well-known and studied in several branches of mathematics, like ergodic
theory and dynamical systems. For arbitrary nonempty setΓ, mapϕ : Γ → Γ, nonempty
setX with at least two elements, we callσϕ : XΓ → XΓ with σϕ((xα)α∈Γ) = (xϕ(α))
(for all (xα)α∈Γ ∈ XΓ) the generalized shift. If X is a topological space, considerXΓ

under product (pointwise convergence) topology, soσϕ : XΓ → XΓ is continuous. Gen-
eralized shifts in the above form has been introduced in [3], and their dynamical (and
non-dynamical) properties has been studied in several texts, like [1], [2] and [6].

REMARK 1. SupposeX is a topological space with at least two elements andΓ is a
nonempty set, equipXΓ with product topology. It is well-known that[7]:
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• XΓ is compact if and only ifX is compact;
• XΓ is metrizable if and only ifX is metrizable andΓ is countable.

REMARK 2. SupposeX is a nonempty set with at least two elements andΓ is a non-
empty set, then the following statements are equivalent[3]:

• σϕ : XΓ → XΓ is bijective;
• ϕ : Γ → Γ is bijective.

Hence ifX has a topological structure, thenσϕ : XΓ → XΓ is a homeomorphism if and
only if ϕ : Γ → Γ is bijective.

REMARK 3. If Γ is a nonempty set andϕ : Γ → Γ is arbitrary, forα, β ∈ Γ let α ∼ϕ β
if and only if there existsn, m ∈ N with ϕn(α) = ϕm(β). Then∼ϕ is an equivalence
relation onX. If ϕ : Γ → Γ is bijective andα ∈ Γ, then the equivalence class ofα under
ϕ is α

∼ϕ
= {ϕn(α) : n ∈ Z}, so α

∼ϕ
has exactly one of the following forms:

• there existsm ∈ N with α
∼ϕ

= {αn : 0 ≤ n < m} whereαi’s are distinct

ϕ(αi) = αi+1 for i = 0, . . . ,m− 1 andϕ(αm−1) = α0;
• α
∼ϕ

= {αn : n ∈ Z}, αns are distinct andϕ(αn) = αn+1 for n ∈ Z.

In addition for bijectiveϕ : Γ → Γ andα, β ∈ Γ we haveα ∼ϕ β if and only if there
existsn ∈ Z with ϕn(α) = β.

In the following text supposeX is a discrete finite set with at least two elements andΓ is a
countable infinite set. So we may supposeX = {1, . . . , k} with discrete topology,k ≥ 2,
andΓ = N, also supposeϕ : Γ → Γ is bijective (note to Remarks 1 and 2). The main aim
of this text is to studye−chaotic generalized shift dynamical system({1, . . . , k}N, σϕ).

2. WHEN IS ({1, . . . , k}N, σϕ) EXPANSIVE?

We call the dynamical system(Y, f) (or briefly f : Y → Y ) with compact metric space
(Y, ρ) and homeomorphismf : Y → Y , expansiveif there existsµ > 0 such that for all
distinctx, y ∈ Y there existsn ∈ Z with ρ(fn(x), fn(y)) > µ.

REMARK 4. For arbitrary setY we call the collectionF of subsets ofY ×Y a uniform
structure inY if (let ∆Y = {(x, x) : x ∈ Y }) [5]:

• ∀α ∈ F (∆Y ⊆ α);
• ∀α, β ∈ F (α ∩ β ∈ F);
• ∀α ∈ F ∃β ∈ F (β ◦ β−1 ⊆ α);
• ∀α ∈ F ∀β ⊆ Y × Y (α ⊆ β ⇒ β ∈ F).

Moreover for allα ∈ F andx ∈ Y let α[x] = {y ∈ Y : (x, y) ∈ α}.
If F is a uniform structure inY , then{U ⊆ Y : ∀x ∈ Y ∃α ∈ F (α[x] ⊆ U)} is a topology
on Y , we call it uniform topology induced fromF . We call the topological space unifor-
mazable if there exists a uniform structureF in Y such that uniform topology induced from
F coincides with original topology onY , and in this case we callF compatible uniform
structure inY . Every compact Hausdorff (resp. compact metric) space is uniformazable
and has a unique compatible uniform structure. IfY is a compact metric space, forε > 0
letαε = {(x, y) ∈ Y ×Y : ρ(x, y) ≤ ε}, andG = {D ⊆ Y ×Y : ∃δ > 0(αδ ⊆ D)}, then
G is a compatible uniform structure inY . It’s evident that homeomorphismf : Y → Y is
expansive if and only if there existsβ ∈ G such that for all distinctx, y ∈ Y there exists
n ∈ Z with (fn(x), fn(y)) /∈ β. SinceG is the unique compatible uniform structure inY ,
expansivity of homeomorphismf : Y → Y does not depends onρ and we may choose any
compatible metric onY .
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Consider the equivalence relation∼ϕ onN as in Remark 3. We proveσϕ : XN → XN

is expansive if and only ifN∼ϕ
= { α

∼ϕ
: α ∈ N} is finite. Also using Remark 4 equip

{1, . . . , k}N with metric

d((xn)n∈N, (yn)n∈N) =
∑

n∈N

δ(xn, yn)
2n

(*)

for (xn)n∈N, (yn)n∈N ∈ {1, . . . , k}N, where:

δ(z, w) =
{

0 z = w ,
1 z 6= w .

So ({1, . . . , k}N, d) is a compact metric space (metric topology on{1, . . . , k}N induced
from d, coincides with product topology on{1, . . . , k}N (see [7])).

LEMMA 2.1. If N
∼ϕ

= { α1
∼ϕ

, . . . , αs

∼ϕ
}, then for all distinctx, y ∈ {1, . . . , k}N there exists

n ∈ N such thatd(fn(x), fn(y)) ≥ 1
2max(α1,...,αs) (consider metricd on{1, . . . , k}N as in

(*)).

Proof. Consider distinctx = (xn)n∈N, y = (yn)n∈N ∈ {1, . . . , k}N. There existsm ∈ N
with xm 6= ym, there existsr ∈ {1, . . . , s} with m ∈ αr

∼ϕ
, so there existsk ∈ Z with

ϕk(αr) = m. Suppose(zn)n∈N := σk
ϕ(x) = (xϕk(n))n∈N and(wn)n∈N := σk

ϕ(y) =
(yϕk(n))n∈N. Thus

d(σk
ϕ(x), σk

ϕ(y)) = d((zn)n∈N, (wn)n∈N)

≥ δ(zαr , wαr )
2αr

=
δ(xϕk(αr), yϕk(αr))

2αr

=
δ(xm, ym)

2αr
=

1
2αr

≥ 1
2max(α1,...,αs)

which completes the proof. ¤
COROLLARY 2.1. If N

∼ϕ
is finite, thenσϕ : {1, . . . , k}N → {1, . . . , k}N is expansive.

Proof. If N
∼ϕ

= { α1
∼ϕ

, . . . , αs

∼ϕ
} chooseµ ∈ (0, 1

2max(α1,...,αs) ). By Lemma 2.1 for all

distinctx, y ∈ {1, . . . , k}N there existsn ∈ Z with d(σn
ϕ(x), σn

ϕ(y)) ≥ 1
2max(α1,...,αs) > µ

which leads to the desired result by Remark 4. ¤
LEMMA 2.2. If N

∼ϕ
is infinite, thenσϕ : {1, . . . , k}N → {1, . . . , k}N is not expansive.

Proof. Considerµ > 0, then there existsN ∈ N such that
∑

n>N

1
2n

< µ. Since N
∼ϕ

is infinite, there existsm ∈ N such that m
∼ϕ

6= k
∼ϕ

for all k ∈ {1, . . . , N}, i.e. m ∈
N \ ( 1

∼ϕ
∪ · · · ∪ N

∼ϕ
), and m

∼ϕ
⊆ N \ ( 1

∼ϕ
∪ · · · ∪ N

∼ϕ
) ⊆ N \ {1, . . . , N} let xn = yn = 1

for all n ∈ N \ {m}, xm = 1 andym = 2. Forx = (xn)n∈N, y = (yn)n∈N for all r ∈ Z
we have:

d(σr
ϕ(x), σr

ϕ(y)) = d((xϕr(n))n∈N, (yϕr(n))n∈N)

≤
∑

xϕr(n) 6=yϕr(n)

1
2n

=
∑

ϕr(n)=m

1
2n

≤
∑

n∼ϕm

1
2n

≤
∑

n>N

1
2n

< µ .

Hence we have:
∀µ > 0 ∃x 6= y ∀r ∈ Z (d(fr(x), fr(y)) < µ) .
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Using Remark 4,σϕ : {1, . . . , k}N → {1, . . . , k}N is not expansive. ¤

THEOREM 2.1. For bijection ϕ : N → N and discrete set{1, . . . , k} with k ≥ 2, the
generalized shift dynamical system({1, . . . , k}N, σϕ) is expansive if and only ifN∼ϕ

is

finite (i.e., there existsn1, . . . , ns ∈ N withN = {ϕi(nj) : j ∈ {1, . . . , s}, i ∈ Z}).
Proof. Use Corollary 2.1 and Lemma 2.2. ¤

EXAMPLE 1. Defineϕ1, ϕ2 : N→ N with:

ϕ1(n) =





n + 2 n is odd
n− 2 n > 2 is even
1 n = 2

and ϕ2(n) =
{

n + 1 n is odd
n− 1 n is even

then({1, . . . , k}N, σϕ1) is expansive, and({1, . . . , k}N, σϕ2) is not expansive, sinceN∼ϕ1
=

{N} and N
∼ϕ2

= {{2n− 1, 2n} : n ∈ N}.

3. e−CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEM ({1, . . . , k}N, σϕ)

We call the dynamical system(Y, f), e−chaotic, if it is expansive and the set of all periodic
points (off : Y → Y ) is dense inY [9], we recall thata ∈ Y is a periodic point of
f : Y → Y if there existsn ≥ 1 with fn(a) = a.

REMARK 5. If Y is a discrete topological space with at least two elements,Λ is a
nonempty set andη : Λ → Λ is arbitrary, then the set of periodic points ofση : Y Λ → Y Λ

(ση((xα)α∈Λ) = (xη(α))α∈Λ) is dense inY Λ if and only ifη : Λ → Λ is one to one[4,
Theorem 2.6].

THEOREM 3.1 (main). For bijection ϕ : N → N discrete set{1, . . . , k} with k ≥ 2,
in the generalized shift dynamical system({1, . . . , k}N, σϕ), the following statements are
equivalent:

• ({1, . . . , k}N, σϕ) is e−chaotic;
• ({1, . . . , k}N, σϕ) is expansive;
• N
∼ϕ

is finite (i.e., there existsn1, . . . , ns ∈ NwithN = {ϕi(nj) : j ∈ {1, . . . , s}, i ∈
Z}, or equivalently{{ϕi(n) : i ∈ Z} : n ∈ N} is a finite partition ofN).

Proof. Use Remark 5 and Theorem 2.1. ¤

EXAMPLE 2. Using [4, Theorem 2.13], for discrete topological spaceY with at least
two elements andη : N→ N, the generalized shift dynamical system(Y N, ση) is Devaney
chaotic if and only ifη : N→ N is one to one without any periodic point. Let:

• L = the class of all generalized shift dynamical systems(Y N, ση), whereη : N→
N is bijective.

• L1 = the class of all Devaney chaotic generalized shift dynamical systems(Y N, ση),
whereη : N→ N is bijective.

• L2 = the class of alle−chaotic generalized shift dynamical systems(yN, ση),
whereη : N→ N is bijective.

We have the following diagram:
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L
L1

L2(E1)

(E2)

(E3)
(E4)

where:

• E1 is({1, . . . , k}N, σϕ1) as in Example 1;
• E2 is({1, . . . , k}N, σϕ2) as in Example 1;
• E3 is({1, . . . , k}N, σϕ3) for ϕ3 : N→ N with (k ≥ 2):

ϕ3(n) =
{

1 n = 1 ,
ϕ1(n− 1) + 1 n > 1 ;

• E4 is ({1, . . . , k}N, σϕ4) for ϕ4 : N → N with (k ≥ 2)(supposepm is themth
prime number andN \ {pk

m : m, k ≥ 1} = {w1, w2, . . .} for w1 < w2 < · · · ):

ϕ4(n) =
{

p
ϕ1(k)
m n = pk

m ,
wϕ1(k) n = wk .

4. MORE DETAILS ON EXPANSIVE GENERALIZED SHIFT DYNAMICAL SYSTEMS

Regarding previous sections, let’s call the dynamical system((Z,F), f) with uniform
phase space(Z,F) and homeomorphismf : Z → Z expansiveif there existsµ ∈ F
such that for all distinctx, y ∈ Z there existsn ∈ Z with (fn(x), fn(y)) /∈ µ. In this
section suppose(Y,K) is a uniform Hausdorff space with at least two elements,Λ is a
nonempty set andλ : Λ → Λ is an arbitrary map. It is well-known that product and sub-
spaces of uniform spaces are uniformzable.
In this section we prove that if the generalized shift dynamical system(Y Λ, σλ) with bijec-
tion λ : Λ → Λ is expansive (with any compatible uniformity onY Λ, whereY Λ equipped
with product topology), thenΛ is countable and{{λn(α) : n ∈ Z} : α ∈ Λ} is a finite
partition ofΛ.

COROLLARY 4.1. Using Theorem 3.1 ifM is countable,W is finite discrete with at least
two elements andψ : M → M is bijective, then the following statements are equivalent
(note thatWM with product topology is a compact metrizable space):

• (WM , σψ) is e−chaotic,
• (WM , σψ) is expansive,
• M
∼ψ

is finite.

THEOREM 4.1. For bijection λ : Λ → Λ if the generalized shift dynamical system
(Y Λ, σλ) is expansive, thenΛ is countable and andΛ

∼λ
is finite.

Proof. First of all note that for allα ∈ Λ, α
∼λ

= {λn(α) : n ∈ Z} is countable. Suppose
{αn}n≥1 is a sequence inΛ andp, q are two distinct elements ofY . Let M =

⋃{ αn

∼λ
:

n ≥ 1}. Since(Y Λ, σλ) is expansive,({p, q}M , σλ¹M
) is expansive too. Since{p, q} is

a discrete set with two elements andM is countable, using Corollary 4.1, forψ = λ ¹M

the set M
∼ψ

(= { αn

∼λ
: n ≥ 1}) is finite. Thus we don’t have any infinite sequence inΛ

∼λ

and Λ
∼λ

is finite. Since Λ
∼λ

is finite and all α
∼λ

(∈ Λ
∼λ

) is countable, the set
⋃

Λ
∼λ

= Λ is
countable too. ¤
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Positively expansive dynamical system.We call the dynamical system(Y, f) (or briefly
f : Y → Y ) with compact metric space(Y, ρ), positively expansiveif there existsµ > 0
such that for all distinctx, y ∈ Y there existsn ≥ 0 with ρ(fn(x), fn(y)) > µ [8].
It’s evident that for homeomorphismf : Y → Y , if (Y, f) is positively expansive, then
it is expansive. Using the same method described in Remark 4 positively expansivity of
continuous mapf : Y → Y does not depends onρ and we may choose any compatible
metric onY . Using the same proof as in Lemma 2.2, for arbitrary self-mapµ : N → N,
if the generalized shift dynamical system({1, . . . , k}N, σµ) is positively expansive, then
N
∼µ

is finite. However for constant mapµ : N → N with µ(n) = 1, the dynamical

system({1, . . . , k}N, σµ) is not positively expansive, althoughN∼µ
is finite. Moreover

using Lemma 2.1 and Theorem 3.1 we have the following corollary.

COROLLARY 4.2. For bijection ϕ : N → N and discrete set{1, . . . , k} with k ≥ 2,
the generalized shift dynamical system({1, . . . , k}N, σϕ) is expansive if and only if it is
positively expansive.
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