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Abstract. In the following text we prove that for bijectiop : N — N
and discrete sefl, ..., k} with k£ > 2, the generalized shift dynamical
system({1,...,k}", 0,) is e—chaotic, (expansive, positively expansive)
if and only if {{x%(n) : i € Z} : n € N} is a finite partition ofN (or
equivalently there existd € N such thatN = [ J{¢*({1,...,N}) :i €
Z}).
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1. PRELIMINARES

By atopological dynamical syste(or briefly dynamical systejn X, f) we mean a topo-
logical spaceX (phase spageand continuous map : X — X.

For a nonempty sek consider two maps one-sided shift : XY — XY and two-
sided shiftoy : X% — X% with 01((xn)neN) = (anrl)nEN (fOI’ (xn)neN S XN) and
02((Yn)nez) = Ynt1)nez (For (yn)nez € X%), whereN = {1,2,...} is the set of all
natural numbers and = {0,+1,+2,...} is the set of all integers. One-sided and two-
sided shifts are well-known and studied in several branches of mathematics, like ergodic
theory and dynamical systems. For arbitrary nonempty'satapy : I' — I", nonempty
setX with at least two elements, we call, : X' — X with o, ((2a)aer) = (Zp(a))

(for all (zo)aer € XT) the generalized shiftIf X is a topological space, consid&r"

under product (pointwise convergence) topologyysa X' — X' is continuous. Gen-
eralized shifts in the above form has been introduced in [3], and their dynamical (and
non-dynamical) properties has been studied in several texts, like [1], [2] and [6].

REMARK 1. SupposeX is a topological space with at least two elements &nid a
nonempty set, equii’ with product topology. It is well-known th§f]:
135
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e XT is compact if and only if{ is compact;
¢ XT is metrizable if and only if is metrizable and’ is countable.

REMARK 2. SupposeX is a nonempty set with at least two elements Brid a non-
empty set, then the following statements are equivgint
e 0, X" — XU is bijective;
e ¢ :I' — T'is bijective.
Hence ifX has a topological structure, then, : X — X' is a homeomorphism if and
only if o : I' — T is bijective.

REMARK 3. If I"is anonempty setand: I — I'is arbitrary, fora, 3 € ' leta ~, 3
if and only if there exists, m € N with ¢"(a) = ¢™(8). Then~, is an equivalence
relation onX. If ¢ : I' — T"is bijective andx € T', then the equivalence class®funder
pis 2 = {p"(a) : n € Z}, s0-2 has exactly one of the following forms:

@ @
o there existan € N with = = {a, : 0 < n < m} whereq;’s are distinct
o(a;) = a1 fori=0,....,m —1landp(a,,—1) = ao;
. N% ={ay, : n € Z}, a,,s are distinct andp () = 11 forn € Z.
In addition for bijectivep : I' — I"'and«, 5 € I' we havea ~, g if and only if there
existsn € Z with ¢" () = 3.

In the following text suppos« is a discrete finite set with at least two elements Risla
countable infinite set. So we may suppdée= {1,..., k} with discrete topologyk > 2,
andI’ = N, also suppose : I' — T is bijective (note to Remarks 1 and 2). The main aim
of this text is to study—chaotic generalized shift dynamical systéfa, ..., k}", 0,,).

2. WHEN IS ({1,...,k}Y 0,) EXPANSIVE?

We call the dynamical systelfY, f) (or briefly f : Y — Y’) with compact metric space
(Y, p) and homeomorphisrfi : Y — Y, expansivef there existsuy > 0 such that for alll
distinctz,y € Y there exists: € Z with p(f™(x), f"(y)) > p.

REMARK 4. For arbitrary setY we call the collectiorF of subsets of x Y a uniform

structure inY if (let Ay = {(x,2) : « € Y}) [B]:

e Vae F(Ay Ca);

e Vo, € F(anpeF),

e Vac FIABe F(BoB ! Ca);

e Vae FVBCY XY (aCfB=p[€F).
Moreover foralla € Fandz € Y leta[z] ={y € Y : (z,y) € a}.
If Fis a uniform structure i, then{U C Y :Vz € Y3a € F(a[z] C U)} is atopology
onY, we call it uniform topology induced froti. We call the topological space unifor-
mazable if there exists a uniform structufan Y such that uniform topology induced from
F coincides with original topology ofr', and in this case we calF compatible uniform
structure inY. Every compact Hausdorff (resp. compact metric) space is uniformazable
and has a unique compatible uniform structureY'lfs a compact metric space, fer> 0
leta, = {(z,y) e Y XY : p(x,y) <e},andG = {D CY xY : 35 > 0(as C D)}, then
G is a compatible uniform structure ivi. It's evident that homeomorphisfn: Y — Y is
expansive if and only if there exisise G such that for all distinctr,y € Y there exists
n € Z with (f"(x), f*(y)) ¢ 5. Sinceg is the unique compatible uniform structureln
expansivity of homeomorphisfn Y — Y does not depends gnand we may choose any
compatible metric ory’.
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Consider the equivalence relatien, on N as in Remark 3. We prove, : X" — XV
is expansive if and only ifj% = {N% : a € N} is finite. Also using Remark 4 equip
{1,..., K} with metric
0(Zn, Yn
(@0 e (go)ner) = 3 2e) ¢
neN

for () nen, (Yn)nen € {1,...,k}Y, where:
0 z=w,

s ={ § 22w

So ({1,...,k}N d) is a compact metric space (metric topology {an. . ., k}" induced
from d, coincides with product topology ofi, ..., k}" (see [7])).

LEMMA 2.1 If I = o 21 then for all distincte, y € {1,...,k}" there exists
@ @

2
n € N such thatd(f"(z), f*(y)) > W}m (consider metrielon{1,...,k}N asin
*))-

Proof. Consider distinct: = (2,,)nen, ¥ = (Yn)nen € {1,...,k}. There existsn € N
with z,, # ym, there exists- € {1,...,s} with m € 3;, so there existé € Z with
¢*(ar) = m. SUPPOSE 2z, )nen = 02(33) = (xga’“(n))nEN and (wy)nen = Uf;(y) =
(ygak(n))neN- Thus

d(UfZ(x),UZ(y)) = d((2n)nen; (Wn)nen)

o 0z Wa,) _ 0(Tpk(ar): Yot (ar)

- 2047- Q(Xr‘

_ 6($maym) _ 1 > 1

90t 2a, — 9max(ai,...,as)

which completes the proof. O
COROLLARY 2.1 If N% is finite, therw,, : {1,..., Kk} — {1,...,k} is expansive.
Proof. If N% = {2,..., 2=} choosey € (0, 5z —azy)- By Lemma 2.1 for all
distinctz,y € {1,...,k}" there exists: € Z with d(c7}(z),02(y)) > sem—=s > I
which leads to the desired result by Remark 4. O
LEMMA 2.2. If t-isinfinite, therv, : {1,..., Kk} — {1,...,k}" is not expansive.

. . 1 .
Proof. Considery > 0, then there exist&V € N such thatE o < M Since -
@
n>N
is infinite, there existsn € N such that™ # X forall k € {1,...,N}, i.e. m €
® ©

N\(iu---u%),and% QN\(N%U---UN%) CN\{1,...,N}letz, =y, =1
foralln € N\ {m}, x,, = 1 andy,, = 2. Forx = (zp)nen, ¥ = (Yn)nen forallr € Z
we have:

d(0; (x)’ 0;(3})) = d((l'sa’”(n))TLGI\h (ycpr(n))nGN)
1 1 1 1
< E — = — < g — < — .
= on on = on = on <K
Tor (n) EYe™ () @7 (n)=m n~em n>N

Hence we have:
V> 03 £y Vr € Z(d(f7(x), f7(y) < ) -
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Using Remark 4g, : {1,..., Kk} — {1,... k} is not expansive. O

THEOREM 2.1 For bijectiony : N — N and discrete sefl,...,k} with & > 2, the
generalized shift dynamical systeffil, . .., k}",0,) is expansive if and only if% is
finite (i.e., there existsy, ..., ns € NwithN = {¢'(n;) : j € {1,...,s},i € Z}).

Proof. Use Corollary 2.1 and Lemma 2.2. O

ExampPLE 1. Defineps, ps : N — N with:

n+2 n is odd
p1(n) =4 n—2 n>2iseven and  @o(n) = {
1 n=2

n+1 mnisodd
n—1 niseven

then({1,....k}", 0,,)is expansive, an{1, ..., k}", 0,,) is not expansive, sincgi— =
1
{N}and - = {{2n —1,2n} : n € N}.
w2

3. e—CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEM ({1,..., &k}, 0,)

We call the dynamical syste(i, f), e—chaotic, if itis expansive and the set of all periodic
points (of f : Y — Y) is dense inY” [9], we recall thata € Y is a periodic point of
f:Y = Y ifthere existr > 1 with f(a) = a.

REMARK 5. If Y is a discrete topological space with at least two elementss a
nonempty setang: A — A is arbitrary, then the set of periodic pointsef : YA — Y
(07 ((za)aer) = (Ty(a))aca) is dense inY™ if and only ifp : A — A is one to ong4,
Theorem 2.6]

THEOREM 3.1 (main) For bijectiony : N — N discrete set{1,...,k} with k > 2,

in the generalized shift dynamical systéf, ..., k}", o,,), the following statements are
equivalent:

e ({1,...,k}M, 0,) is e—chaotic;

o ({1,...,k} 0,) is expansive;

. N% is finite (i.e., there exists;, ..., ns € NwithN = {pi(n;) : j € {1,...,s},i €
Z}, or equivalently{{o%(n) : i € Z} : n € N} is a finite partition ofN).

Proof. Use Remark 5 and Theorem 2.1. O

ExAMPLE 2. Using[4, Theorem 2.13]for discrete topological spacg with at least
two elements ang : N — N, the generalized shift dynamical systéti', o,,) is Devaney
chaotic if and only if; : N — N is one to one without any periodic point. Let:

e L =the class of all generalized shift dynamical syst¢is, o,,), wheren : N —
N is bijective.

e £, =theclass of all Devaney chaotic generalized shift dynamical systetss,,),
wheren : N — N is bijective.

e Lo = the class of alle—chaotic generalized shift dynamical syste(§, o),
wheren : N — N is bijective.

We have the following diagram:
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L (E2)

Ly

L
(E4) (E1) 2

(E3)

where:

Elis({1,...,k}N,0,,) asin Example 1;
E2is({1,...,k}N, 0,,) asin Example 1;
E3is({1,..., kN, 0,,) for o3 : N — Nwith (k > 2):
(n) = 1 n=1,

paln) = pr(n—1)+1 n>1;
E4is({1,...,k}N,0,,) for ¢, : N — Nwith (k > 2)(supposep,, is themth
prime number an® \ {p~, : m, k > 1} = {wy,ws, ...} forw; < wqy < ---):

v1(k)

— ok
804(71)_{ bm n:pm,
wsﬂl(k) n=uwg.

4, MORE DETAILS ON EXPANSIVE GENERALIZED SHIFT DYNAMICAL SYSTEMS

Regarding previous sections, let’s call the dynamical systemF), f) with uniform
phase spac€Z, F) and homeomorphisnf : Z — Z expansivef there existsy € F
such that for all distinct:,y € Z there existsy € Z with (f™(z), f"(y)) ¢ u. In this
section supposéY, K) is a uniform Hausdorff space with at least two elementss a
nonempty set and : A — A is an arbitrary map. It is well-known that product and sub-
spaces of uniform spaces are uniformzable.

In this section we prove that if the generalized shift dynamical sygiétn o, ) with bijec-
tion X : A — A is expansive (with any compatible uniformity af*, whereY® equipped
with product topology), ther is countable and{\"(«) : n € Z} : « € A} is a finite
partition of A.

COROLLARY 4.1 Using Theorem 3.1 i is countable ]V is finite discrete with at least
two elements ang : M — M is bijective, then the following statements are equivalent
(note thati™ with product topology is a compact metrizable space):

o (WM g,)ise—chaotic,

o (WM g,)is expansive,

. % is finite.

THEOREM 4.1 For bijection A : A — A if the generalized shift dynamical system
(YA o)) is expansive, then is countable and anel/‘—A is finite.

Proof. First of all note that for alte € A, === = {\"(a) : n € Z} is countable. Suppose
{an}n>1 is @ sequence A andp, g are two distinct elements af. Let M = [J{2= :
n > 1}. Since(Y2,0,) is expansive({p, ¢}, o,,) is expansive too. Sincfp, ¢} is
a discrete set with two elements anfl is countable, using Corollary 4.1, fgr = X [
the setf—i(: {22 : n > 1}) is finite. Thus we don’t have any infinite sequenceﬁp
and 2 is finite. Since2- is finite and all-2 (¢ A-) is countable, the sét) X = A is
~X ~X ~ ~A ~X
countable too. O
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Positively expansive dynamical systemWe call the dynamical systefy’, f) (or briefly

f Y — Y) with compact metric spadg’, p), positively expansivé there existsy > 0

such that for all distinctz,y € Y there existsn > 0 with p(f™(z), f"(y)) > p [8].

It's evident that for homeomorphisth: Y — Y, if (Y, f) is positively expansive, then

it is expansive. Using the same method described in Remark 4 positively expansivity of
continuous magf : Y — Y does not depends ghand we may choose any compatible
metric onY. Using the same proof as in Lemma 2.2, for arbitrary self-magN — N,

if the generalized shift dynamical systefl, ..., k}Y, 0,,) is positively expansive, then
Nﬁ“ is finite. However for constant map : N — N with u(n) = 1, the dynamical
system({1,...,k}",0,) is not positively expansive, although- is finite. Moreover

using Lemma 2.1 and Theorem 3.1 we have the following coroﬁlary.

COROLLARY 4.2. For bijectiony : N — N and discrete sefl,...,k} with & > 2,
the generalized shift dynamical systéfd, ..., k}",0,) is expansive if and only if it is
positively expansive.
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