
Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 46(2)(2014) pp. 19-34

Computer Simulation of Fibre Suspension Flow through a Periodically
Constricted Tube

S. B. Shah,
Department of Mathematics,

Shah Abdul Latif University, Khairpur Mirs,
Sindh, Pakistan.

E-mail: baqir.shah@salu.edu.pk

H. Shaikh,
Department of Basic Sciences and Related Studies,
Mehran University of Engineering and Technology,

Jamshoro, Sindh, Pakistan.
E-mail: hisam.shaikh@salu.edu.pk

M. A. Solagni and A. Baloch,
Department of Computer Science,

ISRA University, Hyderabad, Sindh, Pakistan.
E-mail: manwarsolangi@yahoo.com, csbaloch@yahoo.com

Abstract: Present research work focus on a flow of fibres suspended in a Newtonian sol-
vent through periodically constricted tube using a time marching finite element method.
A semi implicit algorithm, so called, Taylor Galerken/pressure correction scheme is em-
ployed to seek the steady state numerical predictions. Effects of inertia and impact of
undulation on flow structure and friction factor is investigated. Co linear fibre constitutive
model is adopted along with quadratic closure approximation. Numerical solutions for
pure Newtonian fluid are compared and close agreement is realized against experimental
as well as numerical results.
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1. INTRODUCTION

Flow of fibre suspension has great importance in the processing of composite materials,
for example (glass, plastic, natural materials, polyethylene, polymer, rigid rod like fibres,
food fibres, blood flow in vessels, wood fibres and etc.). The numerical investigation of
these flows has attracted number of researchers. Initially, the approach of creeping motion
of a single ellipsoid rigid fibre suspended in a Newtonian solvent under simple shear flow
as suggested in [1] and was further carried out and extensively studied in [2, 3 and 4]. They
derived quadratic closure approximations, for simple shear flow and biaxial elongational
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flow, and included the Fockker Plank equation. Whilst, [5] presented a solution technique
for long cylindrical rod like fibre that eliminated the need of Fockker Plank equation for
the particle orientation distribution functions and reduced the complex computations. Fur-
ther, the fibre ratios and volume fractions by innovating extent of constitutive equations
has also been addressed. The similar form of the constitutive equation built-up in [6]. Also
developed by [5] and confirmed the theory for the particular cases of steady twodimen-
sional shear and elongational flows. Alternative bulk constitutive equation developed by
[7] adopting fibre suspension flow alignment assumption.

For the simulation of both planar and axisymmetric contraction and expansion flows
[8] has used the idea of [7] adopting semi implicit Taylor Galerken/ Pressure Correction
algorithm. The scheme they employed takes wide range of fibre concentration and inertial
values without encountering any numerical instability as previously observed limit points
of around 12 of [9]. The range of fibre constant reached hundred and beyond, which allows
the consideration of dilute to semidilute suspension flows against the constitutive theory
derived for dilute suspensions in creeping motion. Including inertia, increased from stoke-
sian flow to inertial flow taking the Reynolds number of over twenty, where fibres lose their
impact on flow structure. Successively investigated that how far the creeping flow theory
can be extended as inertia begins to take effect. Also provided some plane flow solutions
in both rectangular and circular coordinate system, and for axisymmetric expansions they
contrast co-linear and orthogonal alignment conditions, and compared against experimen-
tal results [10].

For extensional viscosity of suspension of long fibres between dilute and a semi dilute
regime the formulae of [2] was improved by [11]. On the rheology of suspension, the
motion of suspended particle and liquid, and the influence on each other was identified. A
rheological model was developed for the motion of individual fibre in a homogeneous flow
field, and the evolution of distribution of the orientation of such fibres [11]. The contribu-
tion of the bulk stress was calculated, due to fibres in terms of bulk flow which requires
computation of appropriate averages using the orientation function.

For the equations governing the flow of fibre suspension to establish the existence and
uniqueness of the solution investigated [12] and focused on the problem in which the pres-
ence of fibre is accounted for the inclusion of second order tensor known as orientation
tensor, which accounts in the distribution of fibres in the fluid. The use of orientation ten-
sor was first suggested by [13] and subsequently by [14]. The use of orientation tensor as
a field variable has the advantage that the behaviour of fibre may be characterised in an
averaged way, and in a manner which permits a completely deterministic problem to be
treated. The advantage gained was that the orientation tensors are continuum quantities,
so the governing equations as well as subsequent analysis and numerical studies may be
found on well known approaches [8 and 14].

The flow of fibre suspended in a Newtonian solvent through an axisymmetric expansion
and contraction flow [15] investigated and adopted finite element method together with
Brownian Configuration Field (BCF) method, originally suggested by [16], which does
not need any closure approximations and can obtain good quality results at high volume
concentrations of fibres. Also implemented the technique to model the fibre suspension
flows with shear induced migration and compared computational results with experimental
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data very well. Adopted constitutive models used by [7, 8 and 17] and investigates for-
mation and enhancement of vortex structure in contraction as well as expansion for fibre
suspension flows. Effects of different expansion and contraction ratios, volume fraction
and aspect ratios of fibres were investigated.

Fibre orientation in a simple moulding process, [18] used hybrid closure approximation
for simulation, originally developed by [14]. Hybrid closure approximation is a combina-
tion of linear and quadratic approximation, which is exact for random alignment and gives
a correct answer for perfectly aligned fibres respectively. The objective of study was to pre-
dict short fibre orientation in a liquid polymer flow and their effect on the flow character-
istics of suspensions during a mould-filling process by using hybrid closure approximation.

Flow through a periodically constructed tube has an industrial importance and present
challenge to numerical researchers, due to its variety of applications and unavailable close
form of the problem. This problem is simulated extensively adopting various numerical
techniques. Flow through a periodically constricted tube was originally investigated by
[19], and subsequently by [20 and 21], using the Finite Difference methods for testing in-
ertial flow of Newtonian fluid and the effect on flow resistance. Later on [22] presented
Finite Element predictions for both Newtonian and Non Newtonian fluids using Power
Law shear viscosity and extensional viscosity, and demonstrated influence of the inertia
and extensional viscosity on flow resistance.

The numerical method used by [21] employed a low order finite difference approxi-
mation of the derivatives which was criticised by [20] and presents enough evidence on
invalidity and inaccuracy of their results. Recently, several finite element methods have
been used to solve this problem by different researchers [22 and 23].

Present study investigates the flow of fibre suspension through a periodically constructed
tube. This problem is particularly chosen as suitable test case as it presence both converg-
ing and diverging sections and reduce shear and elongational motion at a same time and
relatively have simple domain. Two different undulation levels, i.e., thirty percent (30%)
and fifty percent (50%) are selected to investigate the effects of undulation and influence
of inertia (Re) on flow structure, fraction factor f, and flow resistance fRe is investigated.
The growth of recirculation flow rate (Qv) at different Reynolds number from zero to one
thousand, are particularly focused. At both undulation levels, start of recirculation at crit-
ical points are realised in present work. For all cases, the fibre constant Fc = 0, 1, 10 and
20 are taken. The numerical simulations utilize a finite element time stepping technique
based on a semi implicit Taylor Galerken/pressure correction scheme [22] and solutions
are obtained for inertial flows of Newtonian fluids to compare against [11, 21 and 22].

In Section 2, the complete problem is specified and the governing equations and numer-
ical method are described in Section 3. Numerical results and discussions are presented in
Section 4 and conclusions are drawn in Section 5.

2. PROBLEM SPECIFICATION

Flow of Fibre suspension through periodically constricted tube is considered as a do-
main of the interest. As on the assumption that fibre suspension flow is axi-symmetric in
circular tube, therefore, the flow is only considered for thin film in upperhalf of undulating
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tube, the schematic diagram of domain is shown in Figure1. The radius of the undulating
tube wall along the flow axis is given by the following formula:

rw = R

[
1 + λ Cos

(
2πz

L

)]

Where R is the average radius of the equivalent straight tube, bothλ and L are the di-
mensionless amplitude of the undulation and wave length respectively. Let (r, z) be coordi-
nates where z-axis is taken as axial direction along the axis in the flow of fibre suspension,
while r is along radial direction.

In order to specify the well posed problem the essential initial and mixed Dirichlet and
Neumann boundary conditions are taken as follows:

Initial Conditions: Quiescent initial flow condition is imposed for both velocity compo-
nents such as:

vr(z, 0) = vz(r, 0) = 0

For Momentum Transport Equation the Boundary Conditions adopted are as follows:
1. At solid wall: no-slipvr = vz = 0.
2. At exit: vr = p = 0, vz =?.
3. At axis of symmetry:vr = 0 and traction free condition:∂vz

∂r = 0.

4. At Inlet: vz = vmax

{
1− (

r
R

)2
}

.

3. GOVERNING SYSTEM OF EQUATIONS

Consider the flow of fibre suspension for Newtonian solvent through PCT governed by
the conservation of mass and axisymmetric momentum transport equations in cylindrical
polar co-ordinates in the absence of body forces and nondimensional form equations can
be presented as:

Continuity equation:
∇.v = 0.

Momentum Equation:

∂v

∂t
=

1
Re
∇. {2 D + FcD :< qq >< qq > } − (v.∇)v −∇p

Wherev ≡ (vr, vz) is the velocity vector field in r and z directions, p is isotropic fluid
pressure and t is time. Whilst, D and< qq > are rate of deformation and second order
orientation tensors respectively and is defined as:

D =
1
2

[
∇v + (∇v)†

]
and < qq >=

vv

|v.v| ,

Where,Fc is the Fibre constant, defined as:

Fc = φvol
r2
a

ln(ra)

While, Re denotes the Reynolds number defined as:

Re =
ρV R

µ0
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The characteristic velocity isVc, the characteristic length scale is the radius, R, of the
straight tube and the characteristic viscosityµc is the zero shear-rate viscosity. Appropriate
scaling in each variable takes the form.

4. NUMERICAL SCHEME

For the fibre suspension the numerical simulations utilize a finite element time stepping
technique based on a semi implicit Taylor Galerken/pressure correction scheme [24]. This
scheme was initially developed for flow Newtonian fluid and later on extended its range
to cover complex flows of Viscoelastic fluids by incorporating Petrove-Galerken stream-
line up-winding in the time stepping framework [8]. To describe this method, summary
is given here for completeness. This technique contains time discretization in Taylor se-
ries combined with predicator-corrector scheme. To find the second order time derivatives,
two steps LaxWendroff approach have been employed. These schemes show an exten-
sive development in accurateness and steadiness with respect to both finite deference and
Euler −Galerken finite element Schemes [8].Pressure− correction method assures
second order accuracy and stability through linearised energy analysis, and when it com-
bined with predicator- corrector Taylor Galerken technique [8-22], the base for presenting
numerical scheme adopted in this research work is provided to obtain the time independent
results.

The numerical simulations are conducted in multistage form. In the momentum trans-
port equation the presence of nondimensional additional diffusion term on the R.H.S that
represents the presence of fibre additive in cylindrical frame of reference is given at half
time step in first part of stage one. Initially, at stage one solution is obtained at half time
step. In second part of stage one, an intermediate non-solenoidal velocity field has been
calculated. At stage two Pressure difference is calculated by solving the Poisson equa-
tion. The Crank-Nicolson scheme is adopted to get the second order level of accuracy,
while solenoidal velocity has been obtained in third and final stage. Both stages one
and three are governed by the augmented mass matrices, and are iteratively solved very
efficiently in a handful of iteration by Jacoby Method which avoids the system matrix
assembly that is helpful component for solution process. At stage two we adopted direct
Choleski solution method, because the pressure matrix is symmetric and is positive definite
with bounded structure. Solving the problem, equations are discritised through standard
Galerken weighted residual method and mixed velocity pressure formulation is used for
finite element approximation and triangular element chosen here for domain. Both piece-
wise linear and quadratic functions for velocity and pressure are employed.

Stage1(a): Given(vn, pn), find vn+ 1
2 such that

��
2

∆t

�
vn+ 1

2 − vn
�

, v

�
+

1

2Re

�
∇
��

vn+ 1
2 − vn

�
,∇v

���

=

�
pn − 1

Re
∇vn + Fc
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D :
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Stage1(b): Given
�
vn, vn+ 1

2 , pn
�

, find v∗ such that:
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Stage2: Givenv∗ andpn, find pn+1 − pn such that:

�
θ∇ �pn+1 − pn� ,∇q

�
=
−1

∆t
(∇v∗, q)

Stage3: Givenv∗ andpn+1 − pn, find vn+1 such that:

�
1

∆t

�
vn+1 − v∗

�
, v

�
=
�
θ
�
pn+1 − pn� ,∇v

�

5. NUMERICAL RESULTS AND DISCUSSIONS

Numerical computations are carried out for flow of fibre suspension through two dif-
ferent undulation levels of the domain, to investigate the effect of amplitude of undula-
tion, influence of inertia on flow structure in the form of streamlines and pressure isobars.
Start of recirculation has been identified at different critical limit points of Reynolds num-
ber values. Fraction factor, flow resistance and vortex enhancement at different Reynolds
number with increasing fibre constants are also investigated. Numerical solutions have
been obtained for inertial flows of Newtonian fluids to compare against experimental data,
investigated in the literature [19] and other numerical results produced [21-22]. For each
undulation level, streamlines projections are plotted at constant incremental values in two
main parts, core flow and recirculation area. Seven contours are chosen in the main core
flow region, for thirty percent undulation, that are, 0.001, 0.01, 0.05 0.1.0.15, 0.2 and 0.24
(Q/2) on the line of symmetry of non dimensional values of stream functions while in the
fifty percent undulation, again seven contours are chosen to describe the core flow, which
are, 0.001, 0.02, 0.04, 0.06, 0.08, 0.1 and 0.12. In all the undulation levels, in the region
where the vortex development occurs,ψmin is employed to represent the slower regions.
All contours in a recirculation region represented from the centre of the vortex i.e., inner-
most contour to the peripheryψper of the vortex i.e., outermost contour. Two finite element
meshes are adopted for computation to validate the algorithm, which has been used in this
investigation.

5.1. Effects of Inertia on Flow Structure: The inertial flow of Newtonian fluid through
all selected levels of periodically constricted tube is analysed to understand the effects of
inertia on the flow structure. Streamline projections are described here with increasing the
values of Reynolds number (Re). In Figure 4 and Table 2, from computed data it is clear
that in thirty percent undulation no vortex is observed at low Reynolds number up to 40,
and streamlines representing main core flows are almost attached with undulation wall. The
development of vortex starts approximately at Re = 41 close to undulation upstream wall.
As Reynolds number increases vortex centre moving from upstream to the centre of the
undulation and grow larger. This process of the development of vortex as in left side of the
Figure: 5, grows more and strengthens, and the centre of vortex moves further to the centre
and occupy whole undulation. Whilst, in fifty percent undulation, recirculation develops at
low Reynolds number Re= 28 and similar phenomenon of vortex enhancement occurs. In
right of the Figure: 5, recirculation increased as inertia increased at high Reynolds number
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and size of vortex is enhanced as level of undulation increased and observed at the centre
of undulation. At Reynolds number 500, core flows becomes almost straight, vortex en-
hanced more, and centre of the vortex shifted towards the downstream, while by increasing
the inertia at Re=1000, it is observed that centre of the larger recirculation region moves
further to downstream and instability is observed in the shape of the vortex, the main core
flows observed very much straight. In table: 1, the numerical results of present study are
compared against the experimental results of [19], and numerical results of [21 and 22].

For the flow of pure Newtonian case at Re = 500, pressure drop is demonstrated in
figure- 6 within periodically constricted tube at both undulation levels of 30% and 50%.
Pressure contours in thirty percent undulation are plotted from 5.5126e-023 to 0.16003,
whilst for fifty percent the contours are plotted from 7.1593e-023 to 0.24885. The figure
clearly illustrates that maximum pressure drop moves from inlet in the vicinity of con-
verged wall to outlet in the neighbourhood of diverging wall. Therefore, non-linear inertial
influence on the friction factor (fRe) as function of rise in Reynolds number. However, in
recirculation region non linearity is not observed. It is extremely complex flow phenom-
enon, even at low inertial values flow resistance is also low where recirculation region is
not developed. On the contrary, the value of friction factor increased than the correspond-
ing Stokian value. The predicated numerical results in this study are investigated at three
different maximum velocities. Due to nonavailability of precise information on flowrate
solution are not in fully agreement with the experimental results of [19] and numerical
predictions of [21 and 22].

TABLE 1. Comparison Table for flow risistance (fRe) of Newtonian
fluid

Lahbabi and Pilitsis, Baloch and Present Study
Chang et al. Memon

(Vmax = 2) Vmax Vmax

Re ψmax = 0.245 =1.299224 =1.297959
00 26.4 26.4483 26.382 26.674 26.724 26.700
12 27.1 27.179 26.913 26.891 26.815 26.800
22 28.5 28.5536 27.889 27.346 27.238 27.100
51 31.7 31.7484 30.643 32.525 29.203 30.600
63 32.6 32.6758 32.601 34.468 31.520 31.500
73 33.4 33.4488 33.150 35.754 33.117 33.100
132 36.7 36.5264 35.961 40.458 38.928 37.100
264 39.7 40.2446 39.964 45.519 42.401 42.400
400 40.6 42.3491 41.966 48.655 45.440 45.400
600 40.9 44.0371 43.103 52.162 48.521 48.500
783 41.8 45.5828 44.058 54.880 50.815 50.800

5.2. Influence of Suspended Fibres on Flow Structure:The influence of suspended fi-
bres in a Newtonian solvent under simple shear flow through PCT is analysed with in-
creasing Reynolds number and different fibre constants(FC). Colinear fibre constitutive
model is adopted along with quadratic closure approximation to investigate the numerical
results by setting the levels of fibre constant asFC = 1, 10, and 20. From all values of



26 S. B. Shah, H. Shaikh, M. A. Solangi and A. Baloch

fibre constants at two undulation levels, it is observed that the presence of suspended fi-
bres in Newtonian solvent flow has noticeable influence on flow structure over pure flow
of Newtonian fluid. For each value of fibre constant, inertia is taken from Stokian to high
Reynolds number up to order of O(3) using the semi implicit algorithm, so called, Tay-
lorGalerken/pressure correction scheme. The steadystate numerical predictions are sought
out for both undulation levels to analyse the shape and flow rate(QV ) as a function of both
FC and Re in the recirculation region, as applied by [7, 8, and 9].

In thirty percent undulation withFC=1, up to low Reynolds Number of Re=37, no
recirculation has been observed and main core flow occupy whole undulation area. Recir-
culation starts at Re=38, very close to the centre of undulation and attached with wall and
demonstrated in left side of Figure 7. The limiting value of inertia decreases further as the
value of fibre constant increase where recirculation starts. WithFC=10, it starts at Re=23,
whilst, atFC=20 it develops at very low value of inertia of Re = 06, this limit point more
decreases as fibre constants increases. At high level of Reynolds number (Re=100), with
fibre constantFC = 1, andFC = 20, the influence of fibre and effects of inertia on vortex
enhancement similar to those reported above in pure Newtonian flow cases with slightly
change in the size of vortex as by introducing the fibre the size of vortex decreases. With
other high Reynolds numbers Re = 500 and Re = 1000, the size of vortex inhibits and
occupy the whole undulation area but the centre of recirculation in pure Newtonian case
witnessed moving towards downstream. Whilst in the presence of fibre, the development
of recirculation region is observed close to the centre of undulation.

In Table 2 and in right side of Figure 7,critical limit points of Reynolds number, where
recirculation starts, are presented for fifty percent undulation with chosen fibre constants.
Recirculation realised at low Re = 23 with fibre constantsFC = 01, as fibre constant depart
from low value toFC = 10 andFC = 20, this embryo vortex develops further and reduce
the level of inertia i.e., Re = 03 and Re = 02 respectively. In Figure 9, beyond the critical
Reynolds numbers Re= 100, 500, 1000 are presented, the shape and size of vortex observed
entirely different as observed in the pure Newtonian flow cases. With the introduction of
fibre constant, the centre of vortex predicted almost at the centre of undulation, whilst in
pure Newtonian flow cases it shifts from centre to downstream region. Furthermore, with
fibre constantFC = 10, in Figure 10, the core flow observed unstable and size of vortex
also reduced similar as in thirty percent undulation at the same level of fibre constant.

TABLE 2. Critical Reynolds Number at Different Undulation Levels.

Level of Fibre Constant(FC)
Undulation

Fc = 00 Fc=01 Fc=10 Fc=20
30 Percent 41.00 38.00 23.00 06.00
50 Percent 28.00 23.00 03.00 02.00

5.3. Impact of undulation on Flow Structure: The impact of amplitude of undulation
on flow structure for both pure Newtonian and fibre suspended in Newtonian solvent is
analysed in the form of flow structure, vortex enhancement and fraction factor. Stream-
lines represents flow structure and recirculation flow rate demonstrate the vortex growth
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in the form of size and intensity. The streamline projections show the distinct effects on
flow field at both the levels of undulation by introducing the fibre level in the Newtonian
solvent. The behaviour of flow analysed at various Reynolds number. It is observed that
development of recirculation starts when value of inertia decreased as level of undulation
increase.

For all fibre constants, the flow through both undulations the graph of the vortex inten-
sity is plotted in Figure 12 from Reynolds number 1 to 1000. Left side of the Figure 12
represents the vortex intensity for thirty percent undulation while, in right of figure12 it is
plotted for fifty percent undulation.

TABLE 3. Friction Factor (fRe) on both undulation levels with increas-
ing Reynolds Number.

Level of undulation
30 Percent 50 Percent

Re Fc=00 Fc=01 Fc=10 Fc=20 Fc = 00 Fc=01 Fc=10 Fc=20
1 1.5708 1.5708 1.5708 1.5708 1.5708 1.5708 1.5708 1.5708
50 2.1166 2.0621 3.8154 6.5591 2.0628 2.2155 4.5882 5.7914
100 2.3677 2.6137 8.3008 13.623 2.6869 2.9534 7.1413 12.3377
500 3.0583 4.711 26.029 72.693 3.7660 5.2813 25.5306 58.7391
1000 7.6446 7.6644 117.027 170.11 4.2850 8.7592 75.7636 123.3516

Another primary interest of the present investigation is to analyse the flow resistance
(friction factor) as the function of Reynolds number and relative pressure difference, de-
fined as:

f =
π2∆pR5

ρLQ2

Where R is the average radius, L is the amplitude wave length, Q is the flow rate,ρ is
the fluid density and p is relative pressure difference and can be defined as:

∆p =
Re .‖pmax − pmin‖Re>1

‖pmax‖Re=1

In Figure 13 the computed results of friction factor are graphically illustrated for both
undulation levels. The values of inertia are taken from zero to Re = 1000. Figure clearly
indicates that as inertia increase friction factor increase nonlinearly in an exponential fash-
ion. With the introduction of fibres the flow resistance increase and this rapidly increase as
fibre constant increase. Calculated data of these phenomena is illustrated in Table 3.

The empirical relationships for friction factor are developed based on computed solu-
tions against the five different Reynolds number and all chosen fibre constants for both the
levels of undulation are calculated and presented in Figure 14 and tabulated in Table 4.
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TABLE 4. Empirical Equations of thirty and fifty percent undulation
with increasing fibre Constant.

Empirical Equations
S.No Fibre Level 30 Percent Undulation 50 Percent Undulation
1 00 X=(0.0056)Re+1.51540 X=(0.0025)Re+2.0488
2 01 X=(0.0059)Re+1.77620 X=(0.0069)Re+1.8777
3 10 X=(0.1106)Re-5.171520 X=(0.07198)Re-0.8492
4 20 X=(0.1684)Re-2.694520 X=(0.1221)Re+0.0407

6. CONCLUSIONS

Adopting Taylor Galerken/Pressure Correction Scheme the steady state numerical so-
lutions are obtained. The comparison is made between computed solutions against other
numerical predictions and experimental results. The influence of inertia (Re) on flow struc-
ture, fraction factor f and flow resistance fRe is investigated. The vortex enhancement (Qv)
at different Reynolds number is particularly focused. At different undulation levels, start
of recirculation, i.e. Critical Limit Points of Reynolds number is realised.
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FIGURE 3. Finite element meshes of concentricted tube flow ((left)
Coars Mesh, (right) Refined Mesh).

FIGURE 4. Streamlines for both 30% and 50% undulation at critical
Reynolds numbers.

FIGURE 5. Streamlines for both 30% (left) and 50% (right) undulation
with increasing Reynolds Numbers (=100, 500 and 1000.)
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FIGURE 6. Critical Reynolds Number at Different Undulation Levels.

FIGURE 7. Graph of Pressure drop in both 30% and 50% undulation at
Re= 500.

FIGURE 8. Streamlines for 30% (left) and 50% (right) undulation at
critical Reynolds Numbers (Fc=01, 10 and 20).
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FIGURE 9. Vortex Intensity at 30% (left) and 30% (right) undulations
with increasing fibre constant and Reynolds numbers.

FIGURE 10. Streamlines for 30% (left) and 50% (right) undulation with
increasing Reynolds Numbers.

FIGURE 11. Streamlines for 30% (left) and 50% (right) undulation with
increasing Reynolds Numbers.
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FIGURE 12. Streamlines for 30% (left) and 50% (right) undulation with
increasing Reynolds Numbers.

FIGURE 13. Vortex Intensity at 30% (left) and 30% (right) undulations
with increasing fibre constant and Reynolds numbers.
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FIGURE 14. Graph of the Empirical equations at 30% (left) and 50%
undulations with increasing fibre constant.


