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Abstract. Various recurrence relations between formal orthogonal poly-
nomials can be used to derive Lanczos-type algorithms. In this paper, we
consider recurrence relation A12 for the choice Ui(x) = Pi(x), where
Ui is an auxiliary family of polynomials of exact degree i. It leads to
a Lanczos-type algorithm that shows superior stability when compared
to existing Lanczos-type algorithms. The new algorithm is derived and
described. It is then computationally compared to the most robust algo-
rithms of this type, namely A12, A5/B10 and A8/B10, on the same test
problems. Numerical results are included.
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1. INTRODUCTION

The Lanczos algorithm, [26, 1], has been designed to find the eigenvalues of a ma-
trix. However, it has found application in the area of Systems of Linear Equations (SLE’s)
where it is now well established. It is an iterative process which, in exact arithmetic, finds
the exact solution in at most n number of steps [27], where n is the dimension of the prob-
lem. Several Lanczos-type algorithms have been designed and among them, the famous
conjugate gradient algorithm of Hestenes and Stiefel [25], when the matrix is Hermitian
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and the bi-conjugate gradient algorithm of Fletcher [22], in the general case. In the last few
decades, Lanczos-type algorithms have evolved and different variants have been derived,
which can be found in [2, 4, 6, 7, 8, 9, 10, 12, 15, 23, 24, 28, 29, 30, 31, 33, 14, 18].

Lanczos-type algorithms are commonly derived using Formal Orthogonal Polynomials
(FOP’s), [6]. The connection between the Lanczos algorithm, [27] and orthogonal polyno-
mials, [32] has been studied extensively in [2, 6, 9, 10, 12, 5, 11, 13, 17].

1.1. Notation. The notation introduced by Baheux, in [2, 3], for recurrence relations with
three terms is adopted here. It puts recurrence relations involving FOP’s Pk(x) (the poly-
nomials of degree at most k with regard to the linear functional c) and/or FOP’s P (1)

k (x)

(the monic polynomials of degree at most k with regard to linear functional c(1), [13]) into
two groups: Ai and Bj . Although relations Ai, when they exist, rarely lead to Lanczos-
type algorithms on their own (the exceptions being A4, [2, 3], and A12, [18]), relations Bj

never lead to such algorithms for obvious reasons. It is the combination of recurrence rela-
tions Ai and Bj , denoted as Ai/Bj , when both exist, that lead to Lanczos-type algorithms.
In the following we will refer to algorithms by the relation(s) that lead to them. Hence,
we will have, potentially, algorithms Ai and algorithms Ai/Bj , for some i = 1, 2, . . . and
some j = 1, 2, . . . .

The paper is organized as follows. In the next section, the background to the Lanczos
process is presented. Section 3 is on FOP’s. Section 4 is on algorithm A12, [18] and the
estimation of the coefficients of the recurrence relations A12 used to derive it. Section
5 is the estimation of the coefficients of recurrence relation A12, [18], used to derive the
new algorithm of the same name i.e A12(new). Section 6 describes the test problems and
reports the numerical results. Section 7 is the conclusion and further work.

2. THE LANCZOS PROCESS

Consider the system of linear equations,

Ax = b, (2.1)

where A is n× n real matrix, b and x are vectors in Rn.
Choose x0 and y, two arbitrary vectors in Rn, such that y ̸= 0. Then, Lanczos process

[27] consists in generating a sequence of vectors xk ∈ Rn, such that

xk − x0 ∈ Fk(A, r0) = span(r0,Ar0, . . . ,Ak−1r0), (2.2)

and
rk = b − Axk⊥Gk(AT , y) = span(y,AT y, . . . , (AT )k−1y), (2.3)

where AT is the transpose of matrix A.
Equation (2.2) implies,

xk − x0 = −β1r0 − β2Ar0 − · · · − βkAk−1r0. (2.4)

Multiplying both sides by A and adding and subtracting b on the left hand side of (2.4)
gives

rk = r0 + β1Ar0 + β2A2r0 + · · ·+ βkAkr0. (2.5)

If we set
Pk(x) = 1 + β1x+ · · ·+ βkx

k,

then we can write from (2.5)

rk = Pk(A)r0. (2.6)
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From (2.3), since (AT )iy and rk are each in orthogonal subspaces, we can write,

((AT )iy, rk) = (y,Airk) = (y,AiPk (A)r0) = 0, for i = 0, . . . , k − 1.

Thus, the coefficients β1,. . . ,βk form a solution of system of linear equations,

β1(y,Ai+1r0) + · · ·+ βk(y,Ai+kr0) = −(y,Air0), for i = 0, . . . , k − 1. (2.7)

If the determinant of the above system is not zero then its solution exists and allows to
obtain xk and rk. Obviously, in practice, solving the above system directly for increasing
values of k is not feasible; k is the order of the iterate in the solution process. We shall see
now how to solve this system for increasing values of k recursively, that is, if polynomials
Pk can be computed recursively. Such computation is feasible as the polynomials Pk form
a family of FOP’s and will now be explained. In exact arithmetic, k should not exceed n,
where n is the dimension of the problem.

3. FORMAL ORTHOGONAL POLYNOMIALS

Let c be a linear functional on the space of complex polynomials defined by

c(xi) = ci for i = 0, 1, . . .

where

ci = ((AT )
i
y, rk) = (y,Airk) for i = 0, 1, . . .

Again, because of (2.3) above, an orthogonality condition can be written as,

c(xiPk) = 0 for i = 0, . . . , k − 1. (3.1)

This condition shows that Pk is the polynomial of degree at most k which is a FOP with
respect to the functional c, [5].

Given the expression of Pk(x) above, Pk(0) = 1, ∀k is a normalization condition for
these polynomials; Pk exists and is unique if the following Hankel determinant

H(1)
k =

∣∣∣∣∣∣∣∣∣
c1 c2 · · · ck
c2 c3 · · · ck+1

...
...

...
ck ck+1 · · · c2k−1

∣∣∣∣∣∣∣∣∣
is not zero, in which case we can write Pk(x) as

Pk(x) =

∣∣∣∣∣∣∣∣∣
1 x · · · xk

c0 c1 · · · ck
...

...
...

ck−1 ck · · · c2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c1 · · · ck
...

...
ck · · · c2k−1

∣∣∣∣∣∣∣
, (3.2)

where the denominator of this polynomial is H(1)
k , the determinant of the system (2.7). We

assume that ∀ k, H(1)
k ̸= 0 and therefore all the polynomials Pk exist for all k. If for some k,

H(1)
k = 0, then Pk does not exist and breakdown occurs in the algorithm, [6, 9, 10, 12, 11].
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A Lanczos-type method consists in computing Pk recursively, then rk and finally xk

such that rk = b − Axk, without inverting A. This gives the solution of the system (2.1)
in at most n steps, where n is the dimension of the SLE. For more details, see [6, 8].

FOPs can be put together into recurrence relations. Such relations give rise to various
procedures for the recursive computation of Pk and hence we get different Lanczos-type
algorithms for computing rk and, therefore, xk. These algorithms have been studied in
[2, 6, 8, 9, 10, 12, 11, 3]. They differ by the recurrence relationships used to express the
polynomials Pk, k = 2, 3, ....

4. RECURRENCE RELATION A12 BASED ALGORITHM

Algorithms A5/B10, A8/B10 and A12 are the most robust algorithms as found in
[2, 18, 20, 21, 3], on the same problems considered here. We, therefore compare our
results with these algorithms. Since the algorithm we introduce here is also based on the
recurrence relation A12 [18, 19], according to the notation of [2], it is really a modification
of algorithm A12 that can be found in [18]. Indeed, A12 is derived using the auxiliary
polynomial Ui(x) = xi, of exact degree i, while here we derive a new algorithm A12

but for Ui(x) = Pi(x). For completeness, we recall algorithm A12 here but leave out its
derivation which can be found by the interested reader in [18].

4.1. Algorithm A12. Algorithm A12 [18] can be described as follows.

Algorithm 1 : Lanczos-type algorithm A12

Choose x0 and y such that y ̸= 0,
Set r0 = b−Ax0, y0 = y, p = Ar0, p1 = Ap, c0 = (y, r0),
c1 = (y, p), c2 = (y, p1), c3 = (y,Ap1), δ = c1c3 − c22,
α = c0c3−c1c2

δ , β =
c0c2−c21

δ ,
r1 = r0 − c0

c1
p, x1 = x0 +

c0
c1
r0,

r2 = r0 − αp+ βp1, x2 = x0 + αr0 − βp,
y1 = AT y0, y2 = AT y1, y3 = AT y2.
for k = 3, 4,. . . , do
yk+1 = AT yk, q1 = Ark−1, q2 = Aq1, q3 = Ark−2,
a11 = (yk−2, rk−2), a13 = (yk−3, rk−3), a21 = (yk−1, rk−2), a22 = a11,
a23 = (yk−2, rk−3), a31 = (yk, rk−2), a32 = a21, a33 = (yk−1, rk−3),
s = (yk+1, rk−2), t = (yk, rk−3), Fk = −a11

a13
,

b1 = −a21 − a23Fk, b2 = −a31 − a33Fk, b3 = −s− tFk,
∆k = a11(a22a33 − a32a23) + a13(a21a32 − a31a22),
Bk = b1(a22a33−a32a23)+a13(b2a32−b3a22)

∆k
,

Gk = b1−a11Bk

a13
,

Ck = b2−a21Bk−a23Gk

a22
,

Ak = 1
Ck+Gk

,
rk = Ak{q2 +Bkq1 + Ckrk−2 + Fkq3 +Gkrk−3},
xk = Ak{Ckxk−2 +Gkxk−3 − (q1 +Bkrk−2 + Fkrk−3)};
If ||rk|| ≤ ϵ, then x = xk, Stop.

end for
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5. THE NEW ALGORITHM A12 AND ITS DERIVATION

As said above, in [18], relation A12 is derived using the auxiliary polynomial Ui(x) =
xi, of exact degree i. Here, we discuss the same relation, but for Ui(x) = Pi(x). Co-
efficients are estimated for the new case. The Lanczos-type algorithm based on A12 for
the new choice of Ui, is called A12(new). This new algorithm is described below. Before
deriving and discussing it, we recall the definition of an orthogonal polynomials sequence,
[18].
Definition 1. A sequence Pm is called an orthogonal polynomial sequence, [16] with re-
spect to the linear functional c if, for all nonnegative integers n and m,
(i) Pm is a polynomial of degree m,
(ii) c(xnPm) = 0, for m ̸= n,
(iii) c(xmPm) ̸= 0.

5.1. Relation A12 for the choice Ui(x) = Pi(x). Consider the following recurrence re-
lationship, [18],

Pk(x) = Ak{(x2 +Bkx+Ck)Pk−2(x) + (Dkx
3 +Ekx

2 +Fkx+Gk)Pk−3(x)} (5.1)

where Pk, Pk−2, and Pk−3 are polynomials of degree k, k−2, and k−3, respectively. Ak,
Bk, Ck, Dk, Ek, Fk and Gk are the coefficients to be determined using the normality and
the orthogonality conditions given in Section 3. Let, again, c be a linear functional defined
by c(xi) = ci. The orthogonality condition gives

c(UiPk) = 0, i = 0, 1 · · · , k − 1.

For x = 0, and applying the normality condition, (5.1) becomes

1 = Ak{Ck +Gk}. (5.2)

Now multiply (5.1) by Ui. Applying ‘c’ on both sides and using the orthogonality condi-
tion, we get

c(x2UiPk−2) +Bkc(xUiPk−2) + Ckc(UiPk−2) +Dkc(x
3UiPk−3)

+Ekc(x
2UiPk−3) + Fkc(xUiPk−3) +Gkc(UiPk−3) = 0. (5.3)

The orthogonality condition holds for i = 0, 1, 2, · · · , k − 7.
For i = k − 6, equation (5.3) gives

Dkc(x
3Uk−6Pk−3) = 0,

which implies that Dk = 0, since c(x3Uk−6Pk−3) ̸= 0.
For i = k − 5, (5.3) becomes Ekc(x

2Uk−5Pk−3) = 0.
Since c(x2Uk−5Pk−3) ̸= 0, Ek = 0.
For i = k − 4, we get
c(x2Uk−4Pk−2) + Fkc(xUk−4Pk−3) = 0, which gives

Fk = −c(x2Uk−4Pk−2)

c(xUk−4Pk−3)
. (5.4)

For i = k − 3, i = k − 2 and i = k − 1 equation (5.3) can be respectively written as,

Bkc(xUk−3Pk−2) +Gkc(Uk−3Pk−3) =

−c(x2Uk−3Pk−2)− Fkc(xUk−3Pk−3), (5.5)

Bkc(xUk−2Pk−2) + Ckc(Uk−2Pk−2) +Gkc(Uk−2Pk−3) =

−c(x2Uk−2Pk−2)− Fkc(xUk−2Pk−3), (5.6)
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Bkc(xUk−1Pk−2) + Ckc(Uk−1Pk−2) +Gkc(Uk−1Pk−3) =

−c(x2Uk−1Pk−2)− Fkc(xUk−1Pk−3). (5.7)

Now for simplicity let us denote the right sides of equations (5.5), (5.6) and (5.7) by b1
,b2 and b3 respectively then we get the following system of equations,

Bkc(xUk−3Pk−2) +Gkc(Uk−3Pk−3) = b1, (5.8)
Bkc(xUk−2Pk−2) + Ckc(Uk−2Pk−2) +Gkc(Uk−2Pk−3) = b2, (5.9)
Bkc(xUk−1Pk−2) + Ckc(Uk−1Pk−2) +Gkc(Uk−1Pk−3) = b3. (5.10)

If ∆k denotes the determinant of the coefficient matrix of the above system of equations
then,

∆k = c(xUk−3Pk−2){c(Uk−2Pk−2)c(Uk−1Pk−3)

−c(Uk−2Pk−3)c(Uk−1Pk−2)}
+c(Uk−3Pk−3){c(xUk−2Pk−2)c(Uk−1Pk−2)

−c(Uk−2Pk−2)c(xUk−1Pk−2)}. (5.11)

If ∆k ̸= 0 then,

Bk =
1

∆k
{b1{c(Uk−2Pk−2)c(Uk−1Pk−3)− c(Uk−2Pk−3)c(Uk−1Pk−2)}

+c(Uk−3Pk−3){b2c(Uk−1Pk−2)− b3c(Uk−2Pk−2)}},

Gk =
b1 − c(xUk−3Pk−2)Bk

c(Uk−3Pk−3)
,

Ck =
b2 − c(xUk−2Pk−2)Bk − c(Uk−2Pk−3)Gk

c(Uk−2Pk−2)
.

With the above new estimated coefficients, the expression of polynomials Pk(x) can be
written as,

Pk(x) = Ak{(x2 +Bkx+ Ck)Pk−2(x) + (Fkx+Gk)Pk−3(x)}. (5.12)

Now, for Ui(x) = Pk(x), and from equation (5.4), Fk becomes

Fk = −c(x2Pk−4Pk−2)

c(xPk−4Pk−3)
.

Similarly, from equation (5.11) ∆k becomes,
∆k = c(xPk−3Pk−2){c(P 2

k−2)c(Pk−1Pk−3)− c(Pk−2Pk−3)c(Pk−1Pk−2)}+
c(P 2

k−3){c(xP 2
k−2)c(Pk−1Pk−2)− c(P 2

k−2)c(xPk−1Pk−2)}.

Using (definition 1), [18], ∆k simplifies to

∆k = −c(P 2
k−3)c(P

2
k−2)c(xPk−1Pk−2).

Using again definition 1 and Ui(x) = Pk(x), the rest of the coefficients can be determined
as follows. Let

b1 = −c(x2Pk−3Pk−2)− Fkc(xP
2
k−3),

b2 = −c(x2P 2
k−2)− Fkc(xPk−2Pk−3),

b3 = −c(x2Pk−1Pk−2)− Fkc(xPk−1Pk−3),
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then

Bk =
1

∆k
{b1{c(Pk−2Pk−2)c(Pk−1Pk−3)− c(Pk−2Pk−3)c(Pk−1Pk−2)}

+c(Pk−3Pk−3){b2c(Pk−1Pk−2)− b3c(Pk−2Pk−2)}},
or,

Bk = −
b3c(P

2
k−3)c(P

2
k−2)

∆k
=

b3
c(xPk−1Pk−2)

,

Gk =
b1 − c(xPk−3Pk−2)Bk

c(P 2
k−3)

,

Ck =
b2 − c(xPk−2Pk−2)Bk − c(Pk−2Pk−3)Gk

c(Pk−2Pk−2)
=

b2 − c(xP 2
k−2)Bk

c(P 2
k−2)

,

and

Ak =
1

Ck +Gk
.

As in [18], we can write,

rk = Ak{A2rk−2 +BkArk−2 + Ckrk−2 + FkArk−3 +Gkrk−3}, (5.13)

xk = Ak{Ckxk−2 +Gkxk−3 − (Ark−2 +Bkrk−2 + Fkrk−3)}. (5.14)
As we know from [2, 3],{

setting Uk(x) = Pk(x) and zk = Pk(A
T )y, we get

c(UkPk) = (y, Uk(A)P(A)r0) = (Uk(A
T )y, Pk(A)r0) = (zk, rk).

(5.15)

So, from relation (5.12), after replacing x by AT , multiplying by y on both sides and using
(5.15) we can write,

zk = Ak{(AT )2zk−2 +BkAT zk−2 + Ckzk−2 + FkAT zk−3 +Gkzk−3}. (5.16)

Similarly using (5.15) all coefficients become,
Fk = − c(x2Pk−4Pk−2)

c(xPk−4Pk−3)
=− (AT zk−2,Ark−4)

(zk−3,Ark−4)
,

∆k = −c(P 2
k−3)c(P

2
k−2)c(xPk−1Pk−2)=−(zk−3, rk−3)(zk−2, rk−2)(zk−1,Ark−2).

b1 = −(AT zk−3, Ark−2)− Fk(zk−3, Ark−3),
b2 = −(AT zk−2, Ark−2)− Fk(zk−2, Ark−3),
b3 = −(AT zk−1, Ark−2)− Fk(zk−1, Ark−3),
Bk= b3

c(xPk−1Pk−2)
= b3

(zk−1,Ark−2)
,

Gk= b1−c(xPk−3Pk−2)Bk

c(P 2
k−3)

= b1−(zk−3,Ark−2)Bk

(zk−3,rk−3)
,

Ck= b2−c(xP 2
k−2)Bk

c(P 2
k−2)

= b2−(zk−2,Ark−2)Bk

(zk−2,rk−2)
,

Ak = 1
Ck+Gk

.
All previous formulae are valid for k ≥ 4. So we need r1, r2, r3 and z1, z2, z3 to calculate
rk and zk recursively. r1 , r2 and z1, z2 are found differently in [18], while r3 and z3 can
be determined in a similar way giving,
r3 = r0 − ά

∆p + β́
∆p1 −

γ́
∆p2,
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z3 = z0 − ά
∆y1 +

β́
∆y2 −

γ́
∆y3.

Using rk = b − Axk, we get from r3,
x3 = x0+ ά

∆r0− β́
∆p+ γ́

∆p1, where ∆ = c1(c3c5−c24)−c2(c2c5−c3c4)+c3(c2c4−c23),
ά = c0(c3c5 − c24)− c2(c1c5 − c2c4) + c3(c1c4 − c3c2),
β́ = c0(c2c5 − c4c3)− c1(c1c5 − c2c4) + c3(c1c3 − c22),
γ́ = c0(c2c4 − c23)− c1(c1c4 − c2c3) + c2(c1c3 − c22).
Note that parameters p, p1, p2, y1, y2, y3, ∆, α, β, and γ are temporary and defined in the
algorithm below.

5.2. Algorithm A12(new). We can now describe the new variant of algorithm A12(new)
as follows.

Algorithm 2 : Lanczos-type Algorithm A12(new).

Choose x0 and y such that y ̸= 0.
Set r0 = b −Ax0, z0 = y, p = Ar0, p1 = Ap, p2 = Ap1, p3 = Ap2, p4 = Ap3,
c0 = (y, r0), c1 = (y, p), c2 = (y, p1), c3 = (y,p2), c4 = (y, p3), c5 = (y, p4),
δ = c1c3 − c22, α = c0c3−c1c2

δ , β =
c0c2−c21

δ ,
r1 = r0 − ( c0c1 )p, x1 = x0 + ( c0c1 )r0,
r2 = r0 − αp + βp1, x2 = x0 + αr0 − βp,
y1 = AT y, y2 = AT y1, y3 = AT y2,
z1 = z0 − ( c0c1 )y1, z2 = z0 − αy1 + βy2,
∆ = c1(c3c5 − c24)− c2(c2c5 − c3c4) + c3(c2c4 − c23),
ά = c0(c3c5 − c24)− c2(c1c5 − c2c4) + c3(c1c4 − c3c2),
β́ = c0(c2c5 − c4c3)− c1(c1c5 − c2c4) + c3(c1c3 − c22),
γ́ = c0(c2c4 − c23)− c1(c1c4 − c2c3) + c2(c1c3 − c22),
r3 = r0 − ά

∆p + β́
∆p1 −

γ́
∆p2,

z3 = z0 − ά
∆y1 +

β́
∆y2 −

γ́
∆y3,

x3 = x0 + ά
∆r0 − β́

∆p + γ́
∆p1.

for k = 4,5. . . , do
q1 = Ark−2, q2 = Aq1, q3 = Ark−3,
s1 = AT zk−2, s2 = AT s1, s3 = AT zk−3,
∆k = −(zk−3, rk−3)(zk−2, rk−2)(zk−1, Ark−2),
Fk = − (AT zk−2,Ark−4)

(zk−3,Ark−4)
,

b1 = −(AT zk−3, Ark−2)− Fk(zk−3, Ark−3),
b2 = −(AT zk−2, Ark−2)− Fk(zk−2, Ark−3),
b3 = −(AT zk−1, Ark−2)− Fk(zk−1, Ark−3),
Bk = b3

(zk−1,Ark−2)
,

Gk = b1−(zk−3,Ark−2)Bk

(zk−3,rk−3)
,

Ck = b2−(zk−2,Ark−2)Bk

(zk−2,rk−2)
,

Ak = 1
Ck+Gk

,
rk = Ak{q2 +Bkq1 + Ckrk−2 + Fkq3 +Gkrk−3},
xk = Ak{Ckxk−2 +Gkxk−3 − (q1 +Bkrk−2 + Fkrk−3)},
zk = Ak{s2 +Bks1 + Ckzk−2 + Fks3 +Gkzk−3}.
If ||rk|| ≤ ϵ, then x = xk, Stop.

end for
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6. NUMERICAL TESTS

A12(new) has been tested against A12, A5/B10 and A8/B10, the best Lanczos-type
algorithms according to [2, 18, 3]. The test problems arise in the 5-point discretisation of
the operator −∂2

∂x2 − ∂2

∂y2 +γ ∂
∂x on a rectangular region [3]. Comparative results on instances

of the following problem ranging from dimension 10 to 100 for parameter δ taking values
0.0 and for the tolerance eps = 1.0e− 05, are recorded in Table 1.

A =



B −I · · · · · · 0

−I B −I
...

...
. . . . . . . . .

...
... −I B −I
0 · · · · · · −I B


,

with

B =



4 α · · · · · · 0

β 4 α
...

...
. . . . . . . . .

...
... β 4 α
0 · · · β 4


,

and α = −1 + δ, β = −1 − δ. The right hand side b is taken to be b = AX, where
X = (1, 1, . . . , 1)T , is the solution of the system. The dimension of B is 10.

TABLE 1. Experimental results for problems when δ = 0

A5/B10 A8/B10 A12 A12new
n ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec) ||rk|| t(sec)
10 2.0866e− 013 0.002628 3.5775e− 013 0.008440 1.0252e− 013 0.042433 2.7146e− 015 0.018560
20 2.5278e− 014 0.002619 1.6765e− 013 0.008624 1.8456e− 013 0.042880 2.4416e− 015 0.017902
30 2.4011e− 009 0.003139 6.9352e− 009 0.009134 1.6272e− 007 0.043438 2.0829e− 010 0.019099
40 1.5539e− 009 0.003344 1.5680e− 009 0.009113 2.0343e− 010 0.043924 2.7946e− 011 0.019164
50 1.8730e− 006 0.003810 1.4671e− 006 0.009634 4.7570e− 005 0.044461 1.2734e− 006 0.020314
60 5.9083e− 006 0.003747 6.6800e− 006 0.009599 2.8615e− 005 0.044002 2.3608e− 006 0.020202
70 9.3260e− 006 0.004658 4.6961e− 006 0.010246 8.5638e− 005 0.044369 5.3790e− 007 0.020988
80 4.5674e− 006 0.005496 4.6144e− 006 0.011470 6.8618e− 005 0.046109 3.5468e− 006 0.022625
90 NaN NaN 7.2121e− 005 0.047276 4.3695e− 006 0.021556
100 9.0038e− 006 0.004284 8.4881e− 007 0.010383 3.1098e− 005 0.044758 2.0040e− 008 0.020606

Table 1 records the computational results obtained with algorithms A12(new), A12,
A5/B10 and A8/B10. Clearly, A12(new) is an improvement on A12 on both robust-
ness/stability and efficiency accounts. Compared to the well established A5/B10 and
A8/B10, it is definitely more robust/stable; indeed, all problems have been solved to the
required accuracy by A12(new), and the other two algorithms failed to do so in one case
as evidenced by the ”NaN” outputs which point to breakdown or lack of robustness and
stability, on the problem of dimension n=90. On efficiency, however, as expected, algo-
rithms A5/B10 and A8/B10 are faster since they rely on recurrence relations involving
lower order FOP’s requiring few coefficients to estimate; unlike A12 and A12(new).
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7. CONCLUSION

In this paper we have shown that, if the recurrence relation A12 [18], is determined
for the choice of Ui(x) = Pi(x), other than xi which is discussed in [18], then a more
robust algorithm A12(new) can be derived. The numerical performance of this algorithm
compares well to that of three existing Lanczos-type algorithms, which were found to be
the best among a number of such algorithms, [2, 18, 3], on the same set of problems as
considered here. Another achievement of A12(new) is that it can solve the above problem
when its dimension is up to 500, while the rest of algorithms give results for problems with
dimensions less or equal to 100.
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