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1. INTRODUCTION

It was a turning point in the development of mathematics when Zadeh [26] introduced
the concept of fuzzy set. This laid the foundation of fuzzy mathematics. Consequently, the
last three decades were very productive for fuzzy mathematics.

The concepts of weak commuting, compatibility, non-compatibility and weak compat-
ibility were frequently used to prove fixed point theorems for single and set valued maps
satisfying certain conditions in different spaces.

The idea of converse commuting maps was first introduced by Lii [13] in 2002 which
discuss the relation from the reverse and proved fixed point theorems for single valued
maps in metric spaces. Since then many authors see [14], [19] have introduced the new
concepts of converse commuting multi valued mappings and proved some fixed point the-
orems using these concepts.

As fuzzy mathematics is the hottest area of research now-a-days and new concepts are
emerging very rapidly in this field. Among these concepts one is that of occasionally
weakly compatible maps introduced by Thagafi and Shazad [3].This concept is more gen-
eral among all the commutativity concepts and has opened a new venue for many mathe-
maticians. See [1], [2], [4], [5], [6], [7], [8] etc.
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The main purpose of this paper is to extend the concepts of converse commuting and
occasionally weakly compatible (owc) maps to fuzzy metric spaces and prove some com-
mon fixed point theorems for single and set valued maps using implicit relations under
strict contractive condition.

Our improvements in this paper are four-fold as;
(1) Relaxed the continuity of maps completely.
(2) Completeness of the space removed.
(3) Minimal type contractive condition used.
(4) The condition limn→∞M(x, y, t) = 1 is not used.

We first give some preliminaries and definitions.

2. PRELIMINARIES

Definition 1. [9] A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous t-norm if ∗
is satisfying the following conditions:

(1) ∗ is commutative and associative;
(2) ∗ is continuous;
(3) a ∗ 1 = a for all a ∈ [0, 1];
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].

Definition 2. [9] A triplet (X, M, ∗) is said to be a fuzzy metric space if X is an arbitrary
set, ∗ is a continuous t-norm and M is a fuzzy set on X2× (0,∞) satisfying the following;

(FM-1) M(x, y, t) > 0;
(FM-2) M(x, y, t) = 1 if and only if x = y;
(FM-3) M(x, y, t) = M(y, x, t);
(FM-4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s);
(FM-5) M(x, y, ·) : (0,∞) → (0, 1] is continuous.

Note that M(x, y, t) can be thought of as the degree of nearness between x and y with
respect to t.

Example 3. [20] (Induced fuzzy metric space) Let (X, d) be a metric space, denote
a ∗ b = ab for all a, b ∈ [0, 1] and let Md be fuzzy set on X2 × (0,∞) defined as follows:

Md(x, y, t) =
t

t + d(x, y)

Then (X, Md, ∗) is a fuzzy metric space. We call this fuzzy metric induced by a metric d.

Throughout this paper X will represent the fuzzy metric space (X, M, ∗).
Definition 4. [23] Let CB(X) denote the set of all non-empty closed and bounded subsets
of X . Then for every A,B ∈ CB(X) and for every t > 0, denote

H(A,B, t) = sup{M(a, b, t), a ∈ A, b ∈ B}
and

δM (A,B, t) = inf{M(a, b, t), a ∈ A, b ∈ B}.
If A consists of a single point a, we write δM (A,B, t) = δM (a,B, t). If B also consists

of a single point b, we write δM (A,B, t) = δM (A, b, t).
It follows immediately from definition that

δM (A, B, t) = δM (B,A, t) ≥ 0;
δM (A,B, t) = 1 ⇔ A = B = {a} for all A,B ∈ CB(X).
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Definition 5. [12] A point x ∈ X is called a coincidence point (resp. fixed point) of
A : X → X , B : X → CB(X) if Ax ∈ Bx (resp. x = Ax ∈ Bx)

Definition 6. [12] Maps A : X → X and B : X → CB(X) are said to be weakly
compatible if they commute at coincidence points. i.e., if ABx = BAx, whenever
Ax ∈ Bx.

Definition 7. [12] Maps A : X → X and B : X → CB(X) are said to be occasionally
weakly compatible (owc) if there exists some point x ∈ X such that Ax ∈ Bx and
ABx ⊆ BAx.

Clearly weakly compatible maps are occasionally weakly compatible (owc). However,
the converse is not true in general as shown in [12].

S. Sedghi et al. [22] proved the following result:

Theorem 8. . Let F,G be mappings of a complete fuzzy metric space (X,M, ∗) with
t ∗ t = t for all t ∈ [0, 1] into CB(X) and also f, g be mappings of X into itself satisfying

(1) Fx ⊆ g(X), Gx ⊆ f(X) for every x ∈ X;
(2) The pairs (F, f) and (G, g) are weakly compatible;
(3) There exists a constant k ∈ (0, 1) such that

φ

(
δM (Fx, Gy, kt),M(fx, gy, t),H(fx, Fx, t),H(gy,Gy, t)

H(fx, Gy, αt) ∗H(gy, Fx, (2− α)t)

)
≥ 0 (2. 1)

for every x, y in X , for every t > 0 and α ∈ (0, 2). Suppose that one of g and f is a closed
subset of X then there exists a unique p ∈ X such that {p} = {fp} = {gp} = Fp = Gp,
and where φ ∈ Φ = {φ : [0, 1]5 → [−1, 1]} is a continuous function satisfying the
following conditions:

(φ1) T (t1, t2, t3, t4, t5) is increasing in t1 and decreasing in t2, . . . , t5.
(φ2) T (u, v, v, v, v) ≥ 0 implies that u > v for all v ∈ [0, 1] and u ∈ [0, 1].

The aim of this paper is to establish common fixed point theorems by dropping the
hypothesis of completeness of the space and deleting the two conditions Fx ⊆ g(X),
Gx ⊆ f(X) of above theorem and using more general concept of occasionally weakly
compatible maps.

3. RESULTS AND DISCUSSION

We now, prove the following result.

Theorem 9. Let (X, M, ∗) be a fuzzy metric space with t ∗ t = t for all t ∈ [0, 1] and let
A,B : X → X and S, T : X → CB(X) be single and set valued mappings respectively
such that the pairs (A,S) and (B, T ) are occasionally weakly compatible satisfying

φ

(
δM (Sx, Ty, t),M(Ax,By, t),H(Ax, Sx, t),
H(By, Ty, t),H(Ax, Ty, t) ∗H(By, Sx, t)

)
≥ 0 (3. 1)

for every x, y in X , for every t > 0 and where φ : [0, 1]5 → [−1, 1] is a continuous
function satisfying

(φ1) φ is decreasing in t2 and t5 for all t > 0.
(φ2) φ(u, u, v, v, u) ≥ 0 ⇒ u ≥ v, for all u, v ≥ 0.
Then A,B, S and T have a unique common fixed point in X .
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Proof. Since the pairs (A,S) and (B, T ) are occasionally weakly compatible (owc) maps,
therefore, there exist two elements u, v in X such that Au ∈ Su, ASu ⊆ SAu and
Bv ∈ Tv, BTv ⊆ TBv.

First we prove that Au = Bv. As Au ∈ Su, Bv ∈ Tv, so,
M(Au,Bv, t) ≥ δM (Su, Tv, t), M(Au, Tv, t) ≥ δM (Su, Tv, t) and M(Bv, Su, t) ≥

δM (Su, Tv, t).
If Au 6= Bv, then δM (Su, Tv, t) < 1. Using ( 3. 1 ) for x = u, y = v

φ

(
δM (Su, Tv, t),M(Au,Bv, t),H(Au, Su, t),
H(Bv, Tv, t),H(Au, Tv, t) ∗H(Bv, Su, t)

)
≥ 0.

As H(Au, Su, t) ≥ M(Au, Su, t) ≥ δM (Au, Su, t), a ∗ b ≥ c ∗ d, whenever a ≥ c,
b ≥ d, so we have

φ (δM (Su, Tv, t), δM (Su, Tv, t), 1, 1, δM (Su, Tv, t)) ≥ 0.

Also φ satisfies (φ2), so δM (Su, Tv, t) = 1, which gives Au = Bv. Now, we claim
that A2u = Au. Suppose not, then δM (Su, Tv, t) < 1.

Again using ( 3. 1 ) for x = Au, y = v, we get

φ

(
δM (SAu, Tv, t), M(AAu,Bv, t),H(AAu, Su, t),
H(Bv, Tv, t),H(AAu, Tv, t) ∗H(Bv, SAu, t)

)
≥ 0,

i.e.

φ (δM (SAu, Tv, t),M(AAu, Bv, t), 1, 1,M(AAu, Tv, t) ∗M(Bv, SAu, t)) ≥ 0.

Also, Au ∈ Su and ASu ∈ SAu, so AAu ∈ ASu ⊆ SAu and Bv ∈ Tv and
BTv ⊆ TBv, thus

M(AAu,Bv, t) ≥ δM (SAu, Tv, t) and M(Bv, SAu, t) ≥ δM (SAu, Tv, t) hence

φ (δM (SAu, Tv, t), δM (SAu, Tv, t), 1, 1, δM (SAu, Tv, t)) ≥ 0.

But φ satisfies (φ2), so δM (SAu, Tv, t) = 1, a contradiction and hence A2u = Au = Bv.
Similarly, we can show that B2v = Bv.
Putting Au = Bv = z, then Az = z = Bz, z ∈ Sz and z ∈ Tz.
Therefore, z is a fixed point of A,B, S and T .
For uniqueness , let z 6= z

′
be another common fixed point of A,B, S and T , then by

using ( 3. 1 ), we have,

φ

(
δM (Sz, Tz

′
, t),M(Az, Bz

′
, t),H(Az, Sz, t),

H(Bz
′
, T z

′
, t), H(Az, Tz

′
, t) ∗H(Bz

′
, Sz, t)

)
≥ 0,

i.e.,

φ
(

δM (Sz, Tz
′
, t), δM (Az, Bz

′
, t), 1, 1, δM (Az, Tz

′
, t) ∗ δM (Tz

′
, Sz, t)

) ≥ 0.

By (φ2), we get δM (Sz, Tz
′
, t) = 1 and hence z = z

′
i.e., z = z

′
is unique common

fixed point of A,B, S and T . ¤

Now, we furnish an example to our theorem .

Example 10. [21] Let (X, M, ∗) be a fuzzy metric space in which X = R+, a ∗ b =
min{a, b} for all a, b ∈ [0, 1] such that M(x, y, t) = t

t+|x−y| for all t > 0. Now, we define
the mappings A,B : X → X and S, T : X → CB(X) as follows:

A(X) =
{

2x− 1, if x ≤ 5;
2x, if x > 5. B(X) =

{
3− 2x, if x ≤ 1;
x + 1, if x > 1.
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S(X) =
{ {1}, if x < 2;

[2x,2x+5], if x ≥ 2. T (X) =
{ {1}, if x = 1;

[x,x+2], otherwise.
Define φ : [0, 1]5 → [0, 1] as φ(t1, t2, t3, t4, t5) = min{t1, t2, t3, t4, t5}. Here the pairs
(A,S) and (B, T ) are owc and the contractive condition is also satisfied and ‘1’ is unique
common fixed point of A,B, S and T .

Remark 11. Theorem 9 is a generalization of corresponding theorems of [15] and [25],
since we extended the setting of single valued maps to the one of single and set valued maps
by removing the condition of the completeness of the space and continuity of maps and
concept of weakly compatibility has been replaced by more general concept of occasionally
weakly compatible maps with a strict contractive condition.

Also, we deleted some assumptions of the function φ which are superfluous for our
result but necessary for [15] and [25].

If we set A = B in Theorem 9, then we get the following corollary.

Corollary 12. Let (X, M, ∗) be a fuzzy metric space with t ∗ t = t for all t ∈ [0, 1] and let
A : X → X and S, T : X → CB(X) be single and set valued mappings respectively such
that the pairs (A,S) and (A, T ) are occasionally weakly compatible satisfying

φ

(
δM (Sx, Ty, t), M(Ax,Ay, t),H(Ax, Sx, t),
H(Ay, Ty, t),H(Ax, Ty, t) ∗H(Ay, Sx, t)

)
≥ 0 (3. 2)

for every x, y in X , for every t > 0 and φ satisfies (φ1) and (φ2).
Then A,S and T have a unique common fixed point in X .

If we set A = B and S = T in Theorem 9, we get the following corollary.

Corollary 13. Let (X, M, ∗) be a fuzzy metric space with t ∗ t = t for all t ∈ [0, 1] and let
A : X → X and S : X → CB(X) be single and set valued mappings respectively such
that the pair (A,S) are occasionally weakly compatible satisfying

φ

(
δM (Sx, Sy, t),M(Ax,Ay, t),H(Ax, Sx, t),
H(Ay, Sy, t),H(Ax, Sy, t) ∗H(Ay, Sx, t)

)
≥ 0 (3. 3)

for every x, y in X , for every t > 0 and φ satisfies (φ1) and (φ2).
Then A and S have a unique common fixed point in X .

Definition 14. [21] A point x ∈ X is called a commuting point of A,B : X → X , if
ABx = BAx.

Definition 15. [13] Maps A,B : X → X are said to be converse commuting if ABx =
BAx implies Ax = Bx.

Remark 16. The concept of converse commuting mappings introduced by Lii [13] is re-
verse process of weakly compatible mappings.

Let in this note C(A,S) denotes the set of converse commuting points of A and S.
Now, we prove the following result.

Theorem 17. let A, B, S, T : X → X be self maps such that the pairs (A, S) and (B, T )
are converse commuting maps satisfying

φ

(
M(Sx, Ty, t),M(Ax,By, t),M(Ax, Sx, t),
M(By, Ty, t),M(Ax, Ty, t),M(By, Sx, t)

)
≥ 0, (3. 4)

for every x, y in X , for every t > 0 and φ : [0, 1]6 → [0, 1] is a continuous function
satisfying
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(φ1) φ(u, u, v, v, u, u) ≥ 0 or φ(u, u, u, v, u, u) ≥ 0 ⇒ u ≥ v, for all u, v ≥ 0.
If A and S, B and T have a commuting point, then A,B, S and T have a unique

common fixed point in X .

Proof. Let u ∈ C(A, S) and v ∈ C(B, T ), therefore, ASu = SAu ⇒ Au = Su, hence
M(Au, Su, t) = 1, also Au = Su ⇒ AAu = SAu = ASu, and hence M(AAu, SAu, t) =
1. Similarly, BTv = TBv ⇒ Bv = Tv therefore M(Bv, Tv, t) = 1 and so M(BBv, TBv, t) =
1.

First we prove that Au = Bv. If Au 6= Bv, then M(Au,Bv, t) < 1. Using ( 3. 4 ) for
x = u, y = v we get

φ

(
M(Su, Tv, t),M(Au,Bv, t),M(Au, Su, t),
M(Bv, Tv, t),M(Au, Tv, t), M(Bv, Su, t)

)
≥ 0,

i.e.,

φ (M(Su, Tv, t),M(Su, Tv, t), 1, 1,M(Su, Tv, t),M(Su, Tv, t)) ≥ 0.

Also φ satisfies (φ1) so M(Su, Tv, t) = 1, which gives Au = Bv. Now, we claim that
A2u = Au. Suppose not, then M(AAu,Au, t) < 1.

Again using ( 3. 4 ) for x = Au, y = v, we get

φ

(
M(SAu, Tv, t),M(AAu,Bv, t),M(AAu, SAu, t),

M(Bv, Tv, t),M(AAu, Tv, t), M(Bv, SAu, t)

)
≥ 0,

i.e.,

φ

(
M(SAu, Tv, t),M(AAu,Bv, t),M(AAu, SAu, t),

1,M(AAu, Tv, t),M(Bv, SAu, t)

)
≥ 0.

As, Au = Su and AAu = ASu = SAu and φ satisfies (φ1), so

φ (M(AAu,Au, t),M(AAu,Au, t), 1,M(AAu,Au, t), M(AAu,Au, t)) ≥ 0.

But φ satisfies (φ1), so M(AAu,Au, t) = 1, a contradiction and hence A2u = Au = Bv.
Similarly, we can show that B2v = Bv.

On the other hand, AAu = ASu = SAu, and Bv = BBv = BTv = TBv. Hence
Au = z, is a common fixed point of A, B, S and T and uniqueness of fixed point follows
easily from ( 3. 4 ). ¤

Example 18. [21] Let (X, M, ∗) be a fuzzy metric space in which X = R+, a∗ b = ab for
all a, b ∈ [0, 1] such that M(x, y, t) = t

t+|x−y| for all t > 0. Now, we define the mappings
A,B : X → X and S, T : X → CB(X) as follows:

A(X) =
{

2x− 1, if x < 2;
2x, if x ≥ 2. B(X) =

{
2x− 1, if x ≤ 2;
x + 2, if x > 2.

S(X) =
{

x2, if x < 2;
x2 − 1, if x ≥ 2. T (X) =

{
3− 2x2, if x ≤ 2;
x2 − 1, otherwise.

Define φ : [0, 1]6 → [0, 1] as φ(t1, t2, t3, t4, t5, t6) = min{t1, t2, t3, t4, t5, t6}. Here the
pairs (A,S) and (B, T ) are converse commuting satisfying the contractive condition and
‘1’ is unique common fixed point of A,B, S and T .
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