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Abstract

An application of Swarm Intelligence (SI) based Meta-heuristics for a NP-hard problem in the area
of wireless communications is explored. The specific problem is of detecting symbols in a Multi-
Input Multi-Output (MIMO) communications system. This approach is particularly attractive as SI
is well suited for physically realizable, real-time applications, where low complexity and fast
convergence is of absolute importance. Application of Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO) algorithms is discussed. While an optimal Maximum Likelihood
(ML) detection using an exhaustive search method is prohibitively complex, we show that the
Swarm Intelligence optimized MIMO detection algorithms gives near-optimal Bit Error Rate
(BER) performance in fewer iterations, thereby reducing the ML computational complexity
significantly. The simulation results suggest that the proposed detector gives an acceptable
performance complexity trade-off in comparison with optimal ML and non-linear Vertical Bell labs
Layered Space Time (VBLAST) detectors. The proposed techniques result in as high as 14-dB
enhanced BER performance with acceptable increase in computational complexity in comparison
with VBLAST. The reported algorithms reduce the computer time requirement significantly over
exhaustive search method with a reasonable BER performance.
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Input Multi-Output System (MIMO).

Introduction

Real life optimization problems are often so complex that
finding the best solution becomes computationally
infeasible. Therefore, an intelligent approach is to search for
a good approximate solution consuming lesser
computational resources. Several engineering problems
contain multiple objectives that need to be addressed
simultaneously. Many techniques have been proposed that
imitate nature’s own ingenious ways to explore optimal
solutions for both single and multi-objective optimization
problems. Earliest of the nature inspired techniques are
genetic and other evolutionary heuristics that evoke
Darwinian evolution principles.

Computational Swarm Intelligence [1] is one such
innovative distributed intelligent paradigm for solving
optimization problems that originally took its inspiration
from the biological examples by swarming, flocking
phenomena in vertebrates and the cooperative forging
strategy of real ants.

PSO meta-heuristic is a population-based Swarm
Intelligence (SI) technique inspired by the coordinated
movements of birds flocking introduced by Kennedy and
Eberhart in 1995 [2],[3]. Standard PSO uses a real-valued
multidimensional solution space [2], whereas in binary
PSO particle positions are discrete rather than real valued
[4].

ACO meta-heuristic is another SI algorithm based on
the cooperative forging strategy of real ants [5],[6]. In this
approach, several artificial ants perform a sequence of
operations iteratively. Ants are guided by a greedy
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heuristic algorithm which is problem dependent, that aid
their search for better solutions iteratively. Ants seek
solutions using information gathered previously to perform
their search in the vicinity of good solutions. Its binary
version known as binary ant system (BAS) is well suited
for constrained optimization problems with binary solution
structure [7], [8].

Simple mathematical model, resistance to being
trapped in local minima and convergence to near optimal
solution in fewer iterations make these techniques a
suitable candidate for real-time NP-hard communication
problems [20],[21], in addition to other wide range of
applications like traveling salesman problem [3], [6].

The relevant information—theoretic analysis reveals that
significant performance gains are achievable in wireless
communication systems using a MIMO architecture
employing multiple antennas [9]. This architecture is
suitable for higher data rate multimedia communications
[10]. One of the challenges in building wide band MIMO
systems is the tremendous processing power required at the
receiver side. While coded MIMO schemes offer better
performance than separate channel coding and modulation
scheme by fully exploring the tradeoff between multiplexing
and diversity [11], its hardware complexity can be
significant, especially for wide band system with more than
four antennas both at the transmitter and the receiver sides.
On the other hand, it is easier to implement traditional
channel coding schemes such as Convolution code and
Turbo code for data rates of hundreds of Mbps. For this
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reason we discuss uncoded MIMO system also called spatial
multiplexing as shown in Fig 1.
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Fig. 1. Spatial multiplexing system

One of the challenges in designing a MIMO system is
tremendous processing requirements at the receiver.
MIMO symbol detection involves detecting symbol from a
complex signal at the receiver. This detection process is
considerably complex as compared to single antenna
system. Several MIMO detection techniques have been
proposed [12]. These detection techniques can be broadly
divided into linear and non-linear detection methods.
Linear methods offer low complexity with degraded BER
performance as compared to non-linear methods. This
paper focuses on non-linear detectors and makes an effort
to improve BER performance at the cost of complexity and
vice versa. ML and V-BLAST detectors [13],[14] are well
known non-linear MIMO detection methods. ML
outperforms VBLAST in BER performance, while
VBLAST is lesser complex than ML. In [15],[16] a
performance complexity trade off between the two
methods have been reported.

Being NP-hard [12] computational complexity of
optimum ML technique is generically exponential.
Therefore, in order to solve these problems for any non-
trivial problem size, exact, approximate or un-conventional
techniques such as meta-heuristics based optimization
approach can be used. The exact method exploits the
structure of the lattice and generally obtains the solution
faster than a straightforward exhaustive search [12].
Approximation algorithm provides approximate but easy
to implement low-complexity solutions to the integer least-
squares problem. Whereas, meta-heuristics based
algorithm works reasonably well on many cases, but there
is no proof that it always converges fast like SI techniques.

An application of SI based meta-heuristics for symbol
detection problem in wireless communication is presented
in [21], [22]. The problem is to detect symbols from a
composite signal, received at multiple receivers,
transmitted from multiple transmitters. This MIMO
detection problem is one of the most important issues
faced in wireless communications area. A performance
analysis of binary particle swarm and binary ant system
based symbol detection algorithm for spatial multiplexing
systems is reported in this paper. An acceptable and
interesting performance complexity trade off is observed
from the reported results.

The rest of the paper is organized as follows. Section
2 provides the system model. In section 3 MIMO symbol
detection problem for flat fading channel is described. A
brief overview of the existing MIMO detectors is given in
section 4. Section 5 provides the details of the proposed SI
based MIMO detection techniques. Performance of the
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proposed detector is reported in section 6, while section 7
concludes the paper.

MIMO detection for flat-fading channel

MIMO channel model

Consider a MIMO system where N, different signals are
transmitted and arrive at an array of N, (N, < N,) receivers
via a rich-scattering flat-fading environment. Grouping all
the transmitted and received signals into vectors, the
system can be viewed as transmitting an N, X 1 vector
signal x through an N, x N, matrix channel H, with N, x 1
Gaussian noise vector v added at the input of the receiver.
The received signal as an N, x 1 vector can be written as:

y=Hx+v ey

Where y is the received The (n, n,)th element of H,
h is the complex channel response from the n"

n.n,
transmit antenna to the n,‘h receive antenna. The
transmitted symbol x is zero mean and has covariance
matrix Ry= E{xx*} = O'fI. The vector v is also zero-mean

and R, = E{vv*} = ¢’L. The entries of the channel matrix

H are assumed to be known to the receiver but not to the
transmitter. This assumption is reasonable if training or
pilot signals are sent to estimate the channel, which is
constant for some coherent interval.

Problem formulation
The task is that of detecting N, transmitted symbols from a
set of N, observed symbols that have passed a non-ideal
communication channel, typically modeled as a linear
system followed by an additive noise vector as shown in
Fig 2:

\Y

Detector ——>

Fig. 2. A simplified linear MIMO communication system
showing the following discrete signals: transmitted symbol

vector X € } N channel matrix He R ¥, additive noise

vectorVE R Y , receive vectory € R"Y , and detected symbol

vector X €R V' .

Transmitted symbols from a known finite alphabet y =
{x5,...,.xy} of size M are passed to the channel. The
detector chooses one of the M possible transmitted
symbol vectors from the available data. Assuming that the

symbol vectors X € ¥ are equiprobable, the Maximum

Likelihood (ML) detector always returns an optimal
solution according to the following:
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x, = arg max P(yisobserved|x was sent) 2)
XE ;(N !

Assuming the additive noise v to be white and
Gaussian, the ML detection problem of Figure 1 can be
can be expressed as the minimization of the squared
Euclidean distance to a target vector y over N,-dimensional
finite discrete search set:

2
x, = arg min|| — He 3)
xe N

Optimal ML detection scheme needs to examine all
M" or 2" symbol combinations (b is the number of bits
per symbol). The problem can be solved by enumerating
over all possible x and finding the one that causes the
minimum value as in (3). Therefore, the computational
complexity increases exponentially with constellation size
M and number of transmitters N,.

We present Swarm Intelligence algorithms assisted
spatial multiplexing system symbol detectors that view the
MIMO symbol detection issue as a combinatorial
optimization problem and try to approximate the near
optimal solution iteratively.

Some existing MIMO detectors

Linear MIMO detectors
A straightforward approach to recover x from y is to use an
N, x N,weight matrix W to linearly combine the elements of
y to estimate x, i.e. X =Wy.

Zero-Forcing(ZF)

The ZF algorithm attempts to null out the interference
introduced from the matrix channel by directly inverting the
channel with the weight matrix [12].

Minimum Mean Squared Error (MMSE)

A drawback of ZF is that nulling out the interference
without considering the noise can boost up the noise power
significantly, which in turn results in performance
degradation. To solve this, MMSE minimizes the mean
squared-error, i.e. J(W) = E{(x- X )*(x-X )}, with respect to
W [17], [18].

Non-Linear MIMO Detectors

VBLAST

A popular nonlinear combining approach is the vertical Bell
labs layered space time algorithm (VBLAST)[13]. This
detection method is also called Ordered Successive
Interference Cancellation (OSIC). It uses the detect-and-
cancel strategy similar to that of decision-feedback
equalizer. Either ZF or MMSE can be used for detecting the
strongest signal component used for interference
cancellation. The performance of this procedure is generally
better than ZF and MMSE. VBLAST provides a suboptimal
solution with lower computational complexity than ML.

However, the performance of VBLAST is degraded due to
error propagation.

ML Detector

Maximum  Likelihood detector is optimal but
computationally very expansive. ML detection is not
practical in large MIMO systems.

Pso for spatial multiplexing system

Particle Swarm Optimization (PSO)

Particle Swarm Optimization argues that intelligent
cognition derived from interactions of individuals in a social
world and this socio-cognitive approach can be effectively
applied to computationally intelligent systems [3]. A swarm
consists of a number of particles (possible solutions) that
move (fly) through the feasible solution space to explore the
optimal solution that can be coded as binary strings or real-
valued vectors. The particles are capable of interacting with
each other in a given neighborhood, and traverse a search
space where a quality measure, fitness can be evaluated. The
particles are evolved through cooperation and competition
among themselves over iterations. The coordinates of each
particle represent a possible solution associated with two
vectors, the position (X;) and velocity (V;). In d-dimensional
search space, the i particle can be represented by d-

dimensional position vector X, = (x,, X, ,..., X,,) and another
d-dimensional velocity vectorV, =(v,,v,,,...,v,) . Each
particle experiences an iterative procedure of adaptation to
two types of major information i.e. individual learning and
cultural transmission, which means the procedure,
accelerates particles at each time step, towards personal best
(personal best for each particle) and the position of the most
recent global best (best position returned form the swarm)
point, with the relative acceleration towards each
determined stochastically. A key attractive feature of the
PSO approach is its simple mathematical model involving
two model equations [3].

In binary PSO [4], velocity loses its physical meaning.
It is used to determine a probability by squashing velocities
to the range (0,1) by using sigmoid function.

PSO based MIMO Detection

Here we exploit parsimonious binary choice PSO
algorithm’s potential to optimize MIMO symbol detection
[22]. An important step to implement PSO is to define a
fitness function; this is the link between the optimization
algorithm and the real world problem. Fitness function is
unique for each optimization problem. The fitness function
using the coordinates of the particle returns a fitness value to
be assigned to the current location. If the value is greater
than the value at respective personal best (pbest) for each
particle, or global best (gbest) of the swarm, then previous
locations are updated with the present locations. The
velocity of the particle is changed according to the relative
locations of pbest and gbest as shown in Fig. 3.

Once the velocity of the particle is determined, it
simply moves to the next position. After this process is
applied on each particle in the swarm, it is repeated till the
maximum number of iterations is reached. PSO algorithms
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flow diagram is shown in Fig. 4. This exploratory-exploitive
optimization approach can be extended to MIMO detection
optimization problem discussed below.

The major challenge in designing Binary PSO based
MIMO detector was selection of BPSO parameters that fit
the symbol detection optimization problem. In addition, the
selection of effective fitness function is vital as well as
problem dependent. Fitness function perhaps is the only
link between the real world problem and the optimization
algorithm. The basic fitness function used by the
optimization algorithm to converge to the near optimal
solution is (3) that is minimum Euclidian distance. Choice
of initial solution plays an important role in the fast
convergence of the optimization algorithm to a suitable
solution Initial guess is essential for these algorithms to
perform. Therefore, our detector takes the output of ZF or
ZF-VBLAST as its initial solution guess. This educated
guess enables the algorithm to reach more refined solution
iteratively by ensuring fast convergence. Assuming random
initialization does not guarantee convergence to reasonable
solution in lesser iterations.

X, (t+1)(updated)
.gbest

best ;

\

Fig. 3. PSO Visualization
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Fig. 4. PSO flow diagram
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The proposed detection algorithm is detailed below:

1. Take the output of ZF or ZF-VBLAST such as
xie{O,l} as initial particles (initial solution bit string)
instead of selecting randomly from the solution space.

2. The algorithm parameters are initialized. ‘vi’ is
initialized to zero (equal probability for binary decision),
‘pbest,;’ and ‘gbest;,’ are initialized to maximum
Euclidean distance depending upon the QAM size.

3. Evaluate the fitness of each particle (bit):

=l -m @

Minimum Euclidean distance for each symbol represents
the fitness of solution. Effect on the Euclidean distance
due to search space bits is measured. Find the global
best performance ‘gbest; in the population that
represents the least Euclidean distance found so far.
Record the personal best ‘pbest;;” for each bit along its
previous values.

4. For each search space bit at d" side of the bit string of
particle x;, compute bits velocity using following PSO
velocity update equation:

Vid(k) =Viq k-1)+ ¢71rand1[pbestid - Xid(k -]
5
+q)2rand2[gbestd—xid(k-l)] )

with Viq € {'Vmax’ Vmax}-

5. The particle position is updated depending on the
following binary decision rule:

If rand; < S(vii(k)), then x;4(k) =1,else x;(k) =0. (6)

6. Goto step 3 until maximum number of iterations is
reached. The number of iterations is system and
requirement dependent (usually kept less than 25 to
avoid large complexity). Solution gets refined
iteratively.

Here ‘k’ is the number of iterations, rand is a random
number generated uniformly in [0,1] and ‘S’ is sigmoid
transformation function.

1
S (k) =—————"—
id 1+ exp(—vid (k) @

The parameter ‘v;’ is the particles predisposition to
make 1 or 0, it determines the probability threshold to make
this choice. The individual is more likely to choose 1 for
higher v;,(k), whereas its lower values will result in the
choice of 0. Such a threshold needs to stay in the range of
[0,1]. The sigmoid logistic transformation function maps the
value of v;,(k) to a range of [0,1]. The terms ¢; and ¢, are
positive acceleration constants used to scale the contribution
of cognitive and social components such that ¢, + ¢, <4 [3].
These are used to stochastically vary the relative pull of
pbest and gbest. v, sets a limit to further exploration after
the particles have converged. Its values are problem
dependent, usually set in the range of [-4,+4] [3].
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ACO for spatial multiplexing system

ACO is another attractive Swarm Intelligence technique
that is very effective in solving optimization problems that
have discrete and finite search space. Since the optimal
MIMO detection problem involves a search process across
the finite number of possible solutions, ACO is another
suitable candidate to solve this problem [23].

Ant colony optimization (ACO)
ACO is based on the behavior of a colony of ants
searching for food. In this approach, several artificial ants
perform a sequence of operations iteratively. Within each
iteration, several ants search in parallel for good solutions
in the solution space. One or more ants are allowed to
execute a move iteratively, leaving behind a pheromone
trail for others to follow. An ant traces out a single path,
probabilistically selecting only one element at a time, until
an entire solution vector is obtained. In the following
iterations, the traversal of ants is guided by the pheromone
trails, i.e., the stronger the pheromone concentration along
any path, the more likely an ant is to include that path in
defining a solution. The quality of produced solution is
estimated via a cost function in each iteration. This
estimate of a solution quality is essential in determining
whether or not to deposit pheromone on the traversed path.
As the search progresses, deposited pheromone
dominates ants’ selectivity, reducing the randomness of the
algorithm. Therefore, ACO is an exploitive algorithm that
seeks solutions using information gathered previously, and
performs its search in the vicinity of good solutions.
However, since the ant’s movements are stochastic, ACO
is also an exploratory algorithm that samples a wide range
of solutions in the solution space.

Binary ant system (BAS)
1) Solution construction: In BAS, artificial ants construct

solutions by traversing the mapping graph as shown in Fig
5 below.

/Tlo\‘ %20 %io Tno
' X
1 > 3 i i+1 n n+1
2r o1 T T,

Fig. 5. Routing Diagram for Ants in BAS

A number of n, ants cooperate together to search in
the binary solution domain per iteration. Each ant
constructs its solution by walking sequentially from node 1
to node n+1 on the routing graph shown above. At each
node i, ant either selects upper path i, or the lower path i;
to walk to the next node i+/. Selecting iy means x,=0 and
selecting i; means x=1. The selecting probability is
dependent on the pheromone distribution on the paths:

Pis =Tjg (k),i=1,...,n,s€{0,1} 8)

here ‘k’ is the number of iterations.

2) Pheromone Update: The algorithm sets all the
pheromone values as 7,,(0)=05, initially but uses a

following pheromone update rule:

z'is(k+1)e(1—p)ris(k)+pxesZisex Wy ©)

upd

Where S,pqis the set of solutions to be intensified; wy
are explicit weights for each solution xe&S,, which
satisfying 0< w,< 1 and 2y supaisex Wx=1. The evaporation
parameter p is initially as py, but decreases as p <— 0.9p
every time the pheromone re-initialization is performed.
Supa consists of three components: the global best solution
S, the iteration best solution S”, and the restart best
solution §”” w, combinations are implemented according to
the convergence status of the algorithm which is monitored
by convergence factor cf, given by:

rl-o—f,-ll/n (10)

cf =§

The pheromone update strategy in different values of
cf, are given in table-1, here wy, wy, and w,, are the weight
parameters for S* ™ and S respectively, cf;, i=1,...,5 are
threshold parameters in the range of [0,1]. When cf>cfs, the
pheromone re-initialization is preformed according to $*°.

BA-MIMO detection algorithm

The fitness function used by this optimization algorithm to
converge to the optimal solution is (4) similar to PS-
MIMO algorithm discussed earlier. ZF or ZF-VBLAST
output was assumed as initial solution guess to ensure fast
convergence. The proposed detection algorithm is
described as follows:

1. Take the output of ZF or VBLAST as initial input to
algorithm instead of keeping random values, such
that x; € {0,1} . Number of nodes n visited by n, ants is

bxN, i.e ML search space size (x;). Here x; represents
the bit strings of the detected symbols at the receiver
and i= [ to n.

2. The probability of selecting x;=0 or 1 depends upon the
pheromone deposited according to (9). Where
T (0)=0.5 for equal initial probability. Evaluate the

fitness of solution based on (4). Minimum Euclidean
distance for each symbol represents the fitness of
solution. Effect on the Euclidean distance due to x;
measured.

3. Pheromone update based on (9) is performed. S,,q that
consists of Sgb, Sib, and S is calculated with weights
w, based on ¢f (10) and Table-1.

4. Goto step-2 until maximum number of iterations is
reached. The solution gets refined iteratively.

As c¢f —0, the algorithm gets into convergence, once cf >
cfs, the pheromone re-initialization procedure is done
according to $*”.
r =1, if ise S¥

arn

T,, =7, otherwise



122

where 7, and 7, are the two parameters satisfying
0<7,<7,<land 7, +7, =1.

The algorithm parameters are set as : x,= bN, Ty=.5, Ty=.65
and py=0.3.

Table 1. Pheromone update strategy[7] for BA-MIMO system

Cf <Cf 1 Cf < (Cf b Cf <(Cf 2 Cf <(Cf 3 Cf <(Cf £l
cf2) cf3) cfy) cfs)
wy |1 23 13 0 0
wy | O 113 2/3 1 0
Wb 0 0 0 0 1

Simulation and numerical results

This section provides some simulation and numerical results
to prove the performance of the reported MIMO-SI
detectors.

BER versus SNR performance

We evaluate these detectors performance for a 4x4, 6x6 and
8x8 NxN, MIMO system using 4-QAM scheme and 4x4
MIMO system with 16-QAM constellations. The SNR
(Ew/N,) is the average Signal to noise ratio per antenna
(P/o,%) where P is the average power per antenna and o,” is
the noise variance. The simulation environment assumes
Rayleigh fading channel. The channel is assumed to be
quasi-static for each symbol, but independent among
different symbols. Perfect sampling and carrier frequency
offset synchronization are assumed. Particle size in PSO
and Colony Size in case of ACO depends upon N, and
QAM constellation alphabet size. It will be similar to
‘solution bit string length’. Therefore, N, = bxN, where ‘b’
is bits per symbol. For 4x4, 4-QAM system, N, or x; equals
8 and it grows to 16 for 8x8, 4-QAM system. Similarly,
number of algorithm iterations (I, earlier referred as k)
depends upon N, and QAM sizes. ‘N,  is kept in the range
of 5 to 20 in our simulations. Iterations can be tuned like
other algorithm parameters according to the system
requirements. Iterations are according to the system
requirements. Larger N, can result in better BER at the
cost of complexity. However, the algorithm reaches
saturation after a certain number of iterations and therefore
N, needs to be tuned carefully. Larger N, can result in
achieving better BER performance at the cost of
complexity. Optimum N;. value is taken from the
algorithms convergence pattern shown in Fig. 14. For PSO,
0; = ¢x=1 and v, =+4 are assumed. Similarly, for ACO
10=.5, Ty=.65 and py=0.3 are assumed in the simulations.
An average of no less than 30,000 simulations is taken to
report statistically relevant results.

Fig. 6 presents the BER versus E,/N, performance of
proposed PSMIMO detector compared with ML and
VBLAST detectors for 4x4 MIMO system keeping Nj, at
10. Initial solution guess is taken from VBLAST for better
convergence. At 10* BER, the PSMIMO results in 5-dB
degraded performance in comparison with ML. Whereas
BAMIMO algorithm’s BER performance shown in Fig. 7
is further deteriorated by 1-dB in comparison with
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PSMIMO detection technique. However, in comparison
with VBLAST, both proposed detection algorithms show
14-dB  and 13-dB enhanced BER performance,
respectively.

Fig. 8 and Fig.9 show a 6x6 MIMO system. BER gain
for both PSMIMO and BAMIMO detectors in comparison
with VBLAST is 10-dB and 7-dB, respectively. The BER
performance of these detectors is much less than optimal
ML however at a significant complexity reduction
(discussed next). The algorithm iterations are kept at 15 for
these results.

H —o— ML-4x4{4-QAM)
] F

—&— VBLAST
—-—r

BER

o 5 10 15 20 25 30 35 40
Eb/No

Fig. 6. BER versus E,/N, for 4-QAM 4x4 PS-MIMO system.

I —o— ML-4xd(d-0AM)
| —— IF

—— VBLAST I
—%— BA-MIMO (10 itr)

T

[ P oy gy

=1
-d.

BER

Eb/No

Fig. 7. BER versus E,/N, for 4-QAM 4x4 BA-MIMO system.

BER

0 5 10 15 20 25 30 35 40
Eb/No

Fig. 8. BER versus E,/N, for 6x6 4-QAM PS-MIMO system
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Fig. 9. BER versus E,/N, for 6x6 4-QAM BA-MIMO system.

—®— ML 8x8 (4-QAM)

—— PS-MIMO(20 itr)
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q —%— BA-MIMOO itr) H

BER
=)

Ebi/No
Fig. 11. BER versus E/N, for 8x8 4-QAM BA-MIMO system

Similarly, for a 8x8 (N;,=20) system in Fig. 10 and
Fig. 11, the BER improvement in comparison to VBLAST
for both the proposed detectors is significant. However,
ML has superior BER performance but its complexity is
also considerable.

Increase in system size (N, xN,), results in exponential
increase of search space, therefore more algorithm
iterations are required to converge to near-optimal
solution. These heuristics tend to saturate after few
iterations, therefore an optimum number of iterations are

selected for efficient performance. A trade off between
systems BER performance and iterations has to be
maintained according to the system requirement and
priority.

Computational complexity comparison

Here we examine the computational complexity of the
reported detectors and compare it with ML and VBLAST
detectors. As the hardware cost of each algorithm is
implementation-specific, we try to provide a rough
estimate of complexity in terms of number of complex
multiplications. The computational complexity is
computed in terms of the N, N, and the constellation size
M.

For ML detector as seen from (3) MN’(N,N,)
multiplications are required for matrix multiplication
operation and additional M"'N, multiplications are needed
for square operation. Therefore, ML complexity becomes:

Y =N, (N, +1)M "™ (12)

In case of ZF, the pseudo-inverse of matrix (HH)y
'H” takes 4N’ +2N’N, multiplications [24]. Therefore, ZF
complexity becomes:

Y =4N] +2N]N, (13)

For VBLAST the pseudo-inverse matrix is calculated
N, times with decreasing dimension. In addition, the
complexity of ordering and interference canceling is
N, -1
Z[N,(N,—i)+2N,]. Therefore, total complexity of
i=0
VBLAST (YVBLAST) results in

N3 2, !

Vpiast = 2 (47 +2Ni")+ X [N,(N,-i)+2N,] (14)
i=0 i=0

=N} +(5/2+2/3N,)N; +(7/2+N,)N} +1/3N,N, (15)

For the proposed detector, first fitness using (3) is
calculated. Here N, = x;. Multiplication complexity (ys;)
becomes:

7/Sl = Np (NtNr) (16)

Velocity update in PSO and pheromone update in case
of ACO require y,,; additional multiplications per iteration
from (5) and (9). To reduce some complexity w=1 and
@+@=2 is assumed in PSO. Therefore p;, becomes 2, the
complexity becomes:

73]:N[, (NtNr+lu,si) (17)

This procedure is repeated N;, times to converge to the
near-optimal BER performance. Therefore,

7/SI = Np (NtNr +Iusi)Nitr (18)
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Table 2. Complexity Comparison (Complex Multiplications) NxN, MIMO ystem

Method 4x4(4-QAM) 6x6(4-QAM) 8x8(4-QAM) 4x4(16-QAM)
ML (7,,) 5120 30720 47M 1.3M
VBLAST (7, 157 ) 712 3054 8864 712
(N,=8 N,=10, | (N,=10, N,=15, (N,=16, N;,=20, (N,=16, N;,=10,
Proposed Detectors " =2) ) " =) " )
PS-MIMO 2152 9894 30624 3592
BA-MIMO 2152 9894 30624 3592

These SI-MIMO detectors take initial solution guess
as ZF or VBLAST output therefore, it is added into get the
resultant complexity ysr.tor

Vsi-tor = Ysi + (Woprasr OF Vzr ) (19)

From (12) it is observed that the complexity of ML is
exponential with N, and M. ML complexity for a 4-QAM
4x4 system is 5120 and it grows to 4.7 M for 8x8 system.
This increase is even significant with higher order
modulation schemes.

Computational complexity of VBLAST for 4-QAM
4x4, 6x6 and 8x8 systems computed from (15) is 712,
3054 and 8864 respectively. The complexity of proposed
detectors with VBLAST initialization for 4x4, 6x6 and 8x8
configurations is comes out to be 2152, 9894 and 30624
respectively. A detailed complexity comparison is shown
in Table 2. However, this complexity estimate is only
meaningful in the order of magnitude sense since it is
based on the number of complex multiplications only.

Performance-complexity trade-off

Table 3, suggests that a reasonable performance-complexity
trade-off exists when a comparison of the proposed
detectors is drawn with ML and VBLAST detectors.
Compared with ML the complexity reduction of the
proposed detector is significant for larger MIMO systems
where ML is not practical to use. However, this complexity
gain is at the cost of degraded BER performance. For a 4x4,
4-QAM system, at 10 BER the performance of proposed
PS and BA detectors is degraded by 5-dB and 6-dB,

Table 3. Performance Complexity Trade-Off NxN, MIMO system

respectively with 58% complexity reduction. Similarly, in
8x8, 4-QAM system, the proposed algorithm achieves 107
BER at 6-dB more SNR than ML, however, the ML
complexity reduction is as high as 99%. When compared
with VBLAST the proposed detector complexity increase is
approximately 70 % with a BER gain up to 14-dB for larger
MIMO system.

Performance in Higher Order Modulation
Schemes

The performance of PSMIMO and BAMIMO
detectors in a 16-QAM MIMO system is shown in Fig. 12
and Fig. 13, respectively. We observe a consistent BER
performance of the proposed techniques even at larger
QAM systems. BER degradation in comparison to ML is
approximately 6-dB. However, the complexity reduction
calculated in Table-4 with this BER performance trade-off
is convincingly high. VBLAST detector has reduced
complexity as compared to the proposed detectors but its
BER performance is also significantly less.

Effects of change in algorithm parameters and
increase in iterations

These SIMIMO detectors converge to near optimal
performance with increase in the algorithm iterations,
however these algorithm also experience saturation after
reaching a particular threshold BER. Therefore a perfect
algorithm tuning at an optimum N, for -efficient
performance is required. Fig-14 shows the convergence of
PSMIMO algorithm with an increase in iterations for ZF
and VBLAST initial inputs. The algorithm gets saturated

Performance complexity Proposed Detectors 4x4 6x6 8x8 4x4
comparison of the proposed 4
detectors with VBLAST and ML (at 107 BER) (4-QAM) - (4-QAM) | (4-QAM) | (16QAM)
PS-MIMO Complexity reduction 58% 68% 99% 99%
ML andd Detector Performance degradation 5-dB 10-dB 8-dB 6-dB
Topose

getgctors BA-MIMO Complexity reduction 58% 68% 99% 99%
Detector Performance degradation 6-dB 13-dB 10-dB 8-dB

_ o 0 0 0 0

VBLAST PS-MIMO Complexity increase 67% 69% 71% 80%
and Detector Performance improvement 14-dB 10-dB 14-dB 10-dB
proposed BA-MIMO Complexity increase 67% 69% 71% 80%
detectors Detector Performance improvement 12-dB 7-dB 11-dB 8-dB
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at around 10 iterations with VBLAST input and 15
iterations for ZF initialization case. Therefore, N;, is kept
at 10 for a 4x4 MIMO system. Similarly, iterations tuning
for the other systems is performed to find the optimum Nj,.
Choice of good initial guess has an effect on the detectors
convergence as can be seen from Fig 12. Here VBLAST
output as initial guess results in faster convergence than ZF
initial input.

= =]
:| —®&— ML BxB (16-QAM)

—&— ML 8x8 (16-QAM) H
—h— 7F

.| —%— VBLAST
—%— BA-MIMO

0 5 10 15 2E] 25 30 35 40
Eb/No
Fig. 13. BER versus E,/N, for 16-QAM 4x4 BA-MIMO system

10 T

[ —e—MLaxa-0amy1scE H
| —e—1zF i

‘¥ —e—vBLAsT
-1-| =—%— PS-MIMO(ZF input)
| | —B— PS-MIMO(VBLAST input) ||

ITERATIONS

Fig. 14. Convergence with iterations at 15-dB

Fig.15 presents the effect of changing the algorithm
parameters on the detectors performance. Values of the
cognitive component (c;) and social component (c,) are
changed. Results in Fig. 15 assume c¢;+c,= .5, 1 and 2.
Larger values of social and cognitive components results
in an improvement in BER performance. A possible reason
for this can be that more fly over and coming back to
better solution is achieved with higher ¢; and ¢, values.

—o— ML-4x4 (4-QAM)
—&— VBLAST

—8— PS-MIMO(C1C2=.5)
—¥— PS-MIMO(C1C2=1.49)
—%— PS-MIMO(C1C2=2)

BER

H H i i i

Eb/No
Fig. 15. Effect on BER of PS-MIMO algorithm with C1 and C2

Analysis of Swarm Intelligence assisted
detection algorithms

Swarm Intelligence assisted detection approach show
promising results. Their simple mathematical model, lesser
implementation complexity, resistance to being trapped in
local minima and convergence to reasonable solution in
lesser iterations make these nature inspired techniques a
suitable candidate for real-time symbol detection in Spatial
Multiplexing System. SI algorithms imitate nature’s own
ingenious ways to explore the search space to find out
optimal solution. PSO uses the intelligence derived from
the coordinated movements of birds, wherecas ACO is
inspired form cooperative forging strategy of ants. The
efficiency of these algorithms also lies in a simple
computer code in the central algorithm with few
parameters to tune. In this particular MIMO detection
application, PSO has outperformed ACO in terms BER
performance, whereas the computational complexity is
same.

Conclusion

In this paper an application of Computational Swarm
Intelligence for symbol detection in spatial multiplexing
system is presented. These heuristics prove to be powerful
function optimizers. Their simple model with lesser
implementation complexity makes these suitable for this
NP-hard wireless communications problem. The algorithms
show promising results when compared with the optimal
ML and traditional VBLAST detectors. SI optimized MIMO
symbol detection methods approach near-optimal
performance with much reduced computational complexity,
especially for complex systems with multiple transmitting
antennas, where conventional ML  detector is
computationally expensive and impractical to deploy.
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Although VBLAST detector has a reduced complexity, its
BER performance is inferior to the proposed detector. The
simulation results suggest that the proposed detector
improves ML complexity by as high as 99% with 6-dB to 8-
dB BER performance degradation for 8x8 MIMO system.
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