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Abstract

The Moving Kriging (MK) interpolation was recently proposed as a superior substitution
of the Moving Least Square (MLS) approximation in the construction of shape functions
for the Element-Free Galerkin Method (EFGM). Although Kriging is already a very well-
known geostatistical technique for spatial interpolation in geology and mining, it has only
been applied recently in computational mechanics. This paper presents an improved
version of the EFGM based on the MK interpolation for addressing the problems of shear
locking in Mindlin plates at the small thickness limit. Numerical results show that the
modified version of EFGM with MK interpolation does not exhibit shear locking.
Furthermore, the study also finds the accuracy of EFGM to be greatly enhanced with the

use of MK shape functions.
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Introduction

In recent years, EFGM proposed by Belytschko et al. [1]
has found many applications [2]. The EFGM commonly
employs shape functions constructed from a MLS
approximation which was formally introduced and studied
by Lancaster and Salkauskas [3]. The MLS approximation
has two major features that make it popular: 1) the
approximated field function is continuous and smooth in
the entire problem domain; and 2) it is capable of
producing an approximation with the desired order of
consistency. The key disadvantage of MLS approximation
is its interpolation property that does not allows exact
imposition of essential boundary conditions. In other
words, MLS approximations lack the delta function
property possessed by finite element shape functions.

The MK interpolation was recently proposed as a
superior substitution of the MLS approximation in the
construction of shape functions for the EFGM. Although
Kriging is already a very well-known geostatistical
technique for spatial interpolation in geology and mining,
it has only been applied recently in computational
mechanics. The key advantage of the MK interpolation is
its interpolation property that allows exact imposition of
essential boundary conditions, similar to the conventional
Finite Element Method (FEM). In fact with the MK shape
functions, EFGM using finite elements as integration cells
can be viewed as a class of FEM that employ element-free
shape functions, e.g., the shape functions untied to the
element structure [4].

It has long been recognized that the shear locking
phenomenon results from an inconsistency between the
rotation and the transverse displacement fields. To prevent
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shear locking, the interpolation field for rotation must have
the built-in capability to match the corresponding first
derivative of the transverse displacement field. With
regards to the FEM, this match can generally be arranged
for one-dimensional bending elements [5]. However, in 2D
finite elements such as plates and shells, such consistency
may not be possible since the shape functions are generally
constrained by the element nodal structure. It is then
imperative to provide some linkage between the definition
of the rotation and transverse displacement fields so that
Kifchhoff’s constraints may be satisfied approximately.

In the framework of meshless methods [6], the
complexity in constructing consistent shape functions, as
hampered by the element nodal structure, no longer exists.
This is a remarkable advantage of meshless approaches
since it allows the definition of smooth and consistent
approximations of rotations and displacements. Donning
and Liu [7] first noted this exceptional benefit in
addressing the problem of transverse shear locking in
Mindlin type bending elements. Recognizing the potential
of the matching fields approach outlined in the work of
Donning and Liu [7], it is applied herein, in conjunction
with the EFGM. With this strategy, slope and normal
rotation in each direction are more than field consistent;
they built with a capacity to perfectly match each other at
the outset and therefore satisfy the zero shear strain at the
thin limits. This leads to a complete absence of transverse
shear locking and thus a high degree of accuracy of EFGM
analyses employing either uniform or non-uniform nodal
arrangements, regardless of the slenderness ratio of the
respective plates.
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Moving kriging interpolation and the concept
of domain of influence
In Moving Kriging, the approximation u(x) is defined as

W' (%)= p,(X)a, +7(x) m

Where

Z p;(X)a; is polynomial basis function with m order
=

Z(X) is a stochastic parameter which creates localized

deviation from interpolation of n sampling points.

The covariance of Z(x) is defined by the correlation of
n sampling points or n nodes called the correlation matrix

R[R(x;.xj)] 2

The element of correlation matrix is the correlation
function in the form of a Gaussian function as,

lij

R(xi,xj):e{”’d'"J ., d, :lidmk A3)
ok

Where

ri/dy, is distance between 2 nodes normalized to
Domain Of Influence (DOI), its magnitude does not
depends on the unit used.

0. is non-unit parameter after r; is normalized by the

size of DOI.

d, =Domain of influence of each node at x;

Figures 1-2 schematically illustrates the concept of the
DOI of a node and the concept of the domain of nodal
visibility of all numerical integration points in an element
respectively [4, 8, and 9].

Shear locking
In FEM, the use of element-tied shape functions create
shear locking problems in shear deformable plate elements
due to the incompatibility between rotations and transverse
displacement. In EFGM, shear locking problem has been
eliminated by adopting the field-matching strategy [10 and
11].

For Mindlin plates, the approximate fields for the
transverse displacement and the two rotations can be
expressed as:

w' (x5, ¥) = D0, (x, y)w, @)

I1=1
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Fig. 1. Domain of influence concepts of a nodal point

a) Traditional concept of domain of influence
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b) Element layer concept of domain of influence

Fig. 2. Domain of influence concepts of an element
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6! (x, ) =>.1m,(x, )8, )
1=1

0 (x,y)=Y & (x, )8, ©)
=1

where ¢;(x,y) denotes a shape function for

approximating transverse displacement, 7 (x,y) is a shape
function for approximating rotations in the x-direction, and
&7 (x.y) is a shape function for approximating rotations in

the y-direction. ¢ (x,y) is shape function based on MK
interpolation, while 7;(x,y) and &;(x,y) are directly

derived from the partial derivative of @, (x,y)as

n,(x,y)= %(PI (x,y) and N

51 (x,y)= %(Pl(x’ y)

Element-free galerkin formulation for
Mindlin plates

Modeling

The two dimensional Mindlin plate model possesses three
independent variables at the middle surface of the plate.
After the plate is loaded, two basic assumptions are made:
1) the transverse strain is neglected; 2) plane sections
remain plane but not necessarily normal to the neutral axis.
For Mindlin plate, we have the following relations

8. (xy)=u (xy)-v,, (xy) (8)
6, (xy)=u,(xy)-v,, (xy) )

In which u(x,y) is the transverse displacement;
O4(x,y)and Oy(x,y) represent rotations of normal to the
mid-surface in the x- and y-directions respectively; and
YxAX,y) and 7yy,(x,y) denote equivalent constant shearing

strains in the z-direction on planes which are normal to the
x- and y-axes respectively.

Total potential energy
The total potential energy of Mindlin plate is given by

TT(.0,.0,)=Up (0,.0,)+
U, (,0,,0,)-Q,6,.,6,) (10)

where,

U,0,.0,) = ;jn{ezm +0%,+2v0,_ 0.+

XX 7.y
I-v
(5o w0

U, 1,6,,0,)=

D

u, -0)*+ 12
ljDs (u,,-6,) /4 (12)
2 (u’y_ey)Z

For the problem subjected to a distributed transverse
load,

Q(u) = IquudA (13)

Hence, the total potential energy can be further
expressed as

H(u,@x,ey)=
| 0%x + 0%y +2v0, 0, +
— D, (1- A
2j b (—VJ(eXy+eyx)
2 ’ ’ (14)
1 (u,, -0)+
+— D, , WA- [qudA
2 (uay _ey)
The first variation of equation (11) yields
SH(u,ex,Gy)ZSUb +08Ug -8Q2=0 (15)
Formulation of the Galerkin discretized

equations for Mindlin plates

Unlike EFGM, consistent shape functions for the
displacement field and rotation field are adopted here to
avoid shear locking. The unknown functions of the
problem can be approximated as:

u(x,y)=> ¢u"={of {u} (162)

0, (x, y)=Zn"9X" =i, } (16b)
0, (x, y)=zn:<‘;"6y” :{z“;}T{e)y} (16¢)
Wi (e ) =200"w, =l tw.} (16d)
W, (x,Y) =Zn:nnwex" ={H}T{Wex} (16¢)

Wy ()= &'w, " ={§}T{Wey} (160
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In which {n} is a vector of shape functions for rotation
field in the x-direction computed from the first partial x-
derivative of {¢} and {&} is a vector of shape functions for
the rotation field in y-direction computed from the first
partial y-derivative of {¢}.

From equation (15) and (16), the first Galerkin
equation can be formulated as shown below:

(u’xx +u’v\v )_
G, =- [q,udA - [D; o o it
(0. + M') a7
boundary terms
Taking integration by parts leads to
(u’x _6 x)wux +
G,= [Dy A -
(u,, -0 Jw,, (18)

J.qu w,dA

Substituting approximation functions from equations
(16a)-(16f) into equation (18) yields

o (o fudlo, - Inlfe, Ko, J+
0.7 jD{{cp,y}{u}{w,y}-{é}{ey}{%} J

bt o folb aa

(o (fo. Vo, )+ |
UD{{%}T{@,Y} H{”}‘
G, = {w,J'| ([D.fo..J n}aafe, ) 0)
([D.fo., ¥ {e)aafo, }-

 Jo} g,da

19)

Arbitrary variations of {w,} lead to the following
equation in matrix form

&, ub+[k, {0, )+
[, |8, }=1R,} ey
where
[k,), = [D. (0. Vo ., 1 o, Jha
K, | =- [D{o..} {naa
[Key]l =" J‘DS{(P’y}T {elaA

and {R, }= [fo} 4,44
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In the same manner

1+v
ex,xx +( 2 jey,xy +
W, dA+

=- D
X J. b I—V X
— Gw (22)

2
J D, (6 L )wedi + boundary terms

G,

0, Wy, tVv Gy,ywex,x +

Gy, = |Dy|(1-v 1-v A+
J‘ ' (Tjex.ywex’y +(7 ey.Xwex’y (23)

0.6, -0, b a4

‘(JDs{n}T{@,X}dA){u}+
It It

] > (%Vj(n,y}T{n,y} "l 0, | 4

DST{n}T{ﬂ}

Lo B
) e}

3

Gy, :{Wex }

Arbitrary variations of {w,} lead to the following
equation in matrix form

[k, ] b+ K, Lo, 3+
[k L.}, ] @
where
[k, =- [0} {o.. 1 an
. 3 3+
ko L= 17 (S o | s

2
D, {n}" {n}

o] vin Y b+ k]
K, | =D, (I'ij{n,y}r{ci,x} dAand R,_{={0}
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Similarly, Arbitrary variations of {w,} lead to the following
equation in matrix form
I+v
0 vy T ) 0, Xy
Gy, =- ij l-v [Ku]3{”}+lKex J3{ex}+
g (30)
+ ( 2 jQ y,XX (26) [KG}, L {ey }: {R 0y }
Wo, dA + where
jDS (9 y-uy )WeydA + boundary terms [Ku ]3 =- .[DS eV {(p,y }dA
[Kex ]3 = ij{‘i’y }T{ﬂ,x H+
Oyyayy VO y * [L—Vj{é ¥ in., JA
%X 'y
Gey:'[Db 1 v 1 v At 2
g YRRy ey 27 D, {é}T {&}+D,

uy by 4 k] (BTEM

E e (gj{axr{ax}
V{n’x}{ex}{é’y}"' and {Rey }= {0}

1-v
Y I ( 2 j(n’y}{ex}{é”‘}_i_ {%Y} Equation (21), (25), and (30) can be combined into the

(28) following matrix form:

1-v
(Tj(a’x}{ey}{a’x} i [Ku ]1 [Kex ]1 KL 1 ] _—{u} - -{Ru}-
+ [0.etbHel-fo Hgl, Joa o
] ] k1, &, & ] |8.3]={&, ]

L o O N A A

_(J‘Ds {é}r{(p, }dA u}+ The above expression formulation in equation (31) is for
Y Mindlin plates under distributed transverse load. A more
ID ’y T n,x} + general formulation is shown in Table 1.

Application of EFGM based on MK shape functions to

Mindlin plates is addressed. Following notations are used

{&} {&} +D, to identify boundary and loading types: SS-C for simply

supported plate under center point load and CL-C for

} clamped plate under center point load. The full square

{ey} plate is discretized by seven nodes uniformly spaced in

-V each direction and 6 x 6 regular background cells are
7 ’x {é’x}

Gy, :{Wey}T ( ] { }dA (29) Numerical investigation
’x ,y
D

{

constructed as shown in Figure 3. The following properties
of plates are used: square plate width L=10, thickness
D=0.1, E=30x10°, Poisson’s ratio n=0.3 and shear
correction factor k=5/6. For SS-C and CL-C point load of
magnitude 40 is applied.
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Table 1. Linear Discretized Equations for General Case of Mindlin Plates

K, + K lu] =

- Ds{n}T{w,x}TdA
IDg {a}T {(p,y }dA

R
I, ({svﬂx}T{@vx}*{“’*y }T

]
b

o fo '
(N R ) P S) T N L 3 R

e {2 Jo s

{nfaa

Ipg {(p,y }T {g}dA

b fet ey £, 1

y}{]jv)(&x}T{@x} A

in which additional symbols are defined as follows:
T T,
q = external moment  (in x - direction) J{‘P} ‘Il,dA+j{9°} td
0 5 {u} u
q = external moment (in 'y - direction) T T
0
y 03| 1ot g ansifit
t = external traction force  along r" { } x
u u Gy X
t = external traction moment (in x - direction) along T " T T
0 0 f{s} 9 dA+f{s} t
y 0
t = external traction moment (in 'y - direction) along r" L y
0y 0y
r ,7 = a natural boundary for transverse displaceme nt  field
r gn = a natural boundary for rotation (in x - direction) field
X
r (191 = a natural boundary for rotation (in 'y - direction) field
y
i . " ~ " Investigation of quadrature scheme
H H 1 H H Quadrature scheme is investigated first for this improved
- - : : ] version of EFGM since it affects the accuracy and the
{}____6____6____6____*5____‘5_____{: cqmputatlonal .tlme. Results  of ngrmahzed center
1 ] ] i 1 displacement with respect to exact solution vs. number of
: : : : : monomial terms in the polynomial function are plotted in
W, RV . N SR S Figures 4-13 for various quadrature schemes. Test results
! ! ! ! ! reveal that the difference of accuracy between 6 x 6 and 8
I I = : = X 8 quadrature schemes is rather insignificant. Therefore,
{J-----l?-- __,?__ __..?_ - __,q____,?_____ﬂ L based on accuracy and computational cost 6 x 6 integration
1 i ' H scheme is adopted.
1 1 1 1 1
1 1 1 1 1 .. . .
Oy (o o ) Investigation of domain of influence
1 1 1 1 1 Results of normalized center displacement with respect to
' ' i ' i exact solution vs. number of monomial terms in the
{}————¢—— ——¢—— ¢— -¢- -¢-———-{] polynomial function are plotted in Figures 4-13 for various
’ ’ H ’ H quadrature schemes. Numerical results in graphical format
1 1 1 1 1 reveal that the radius of DOI must be large enough to cover
o - & & & & o¥ n, layers of cells surrounding the associated node, where n,
- - is the order of basis function, to maintain adequate

L

Fig. 3. Arrangement of nodal structure for full square plate using
uniform Element Free Galerkin (EFG) discretization and regular
background cell structure equivalent to Finite Element mesh

numerical conditioning of system. This statement is in
agreement with the theory proposed by Kanok-Nukulchai
etal. [12].
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Fig. 4. SS-C thin square plate (L/D=100): normalized center
displacement vs. number of monomial terms in the basis function
having quadrature rule 4 x 4 for various domain of influence
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Fig. 7. SS-C thin square plate (L/D=100): normalized center
displacement vs. number of monomial terms in the basis function
having quadrature rule 7 x 7 for various domain of influence
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Fig. 5. SS-C thin square plate (L/D=100): normalized center
displacement vs. number of monomial terms in the basis function
having quadrature rule 5 x 5 for various domain of influence
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Fig. 8. SS-C thin square plate (L/D=100): normalized center
displacement vs. number of monomial terms in the basis function
having quadrature rule 8 x 8 for various domain of influence
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Fig. 6. SS-C thin square plate (L/D=100): normalized center
displacement vs. number of monomial terms in the basis function
having quadrature rule 6 x 6 for various domain of influence
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Fig. 9. CL-C thin square plate (L/D=100): normalized center
displacement vs. number of monomial terms in the basis function
having quadrature rule 4 x 4 for various domain of influence
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Fig. 10. CL-C thin square plate (L/D=100): normalized center
displacement vs. number of monomial terms in the basis function
having quadrature rule 5 x 5 for various domain of influence
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Fig. 11. CL-C thin square plate (L/D=100): normalized center
displacement vs. number of monomial terms in the basis function
having quadrature rule 6 x 6 for various domain of influence
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Fig. 12. CL-C thin square plate (L/D=100): normalized center
displacement vs. number of monomial terms in the basis function
having quadrature rule 7 x 7 for various domain of influence

Fig. 13. CL-C thin square plate (L/D=100): normalized center
displacement vs. number of monomial terms in the basis function
having quadrature rule 8 x 8 for various domain of influence

Investigation of shear locking in square plates

To confirm the absence of the shear-locking phenomenon
in the proposed version of EFGM, the thickness of the
plate was varied. Figures 14-16 show SS-C square plate
center displacement normalized with respect to thin plate
solution against the length over thickness aspect ratio for
domain of influence equal to 1, 2 and 3 layers respectively.
While Figures 17-19 show CL-C square plate center
displacement normalized with respect to thin plate solution
against the length over thickness aspect ratio for domain of
influence equal to 1, 2 and 3 layers respectively.
Numerical results reveal that shear locking is completely
eliminated for quadratic and cubic basis having DOI equal
to 2 and 3 layers respectively. This also confirms that the
radius of DOI must be large enough to cover n, layers of
cells surrounding the associated node, where n,, is the order
of basis function, to maintain adequate numerical
conditioning of system.

Exact Solution

—e&—— Layer 1

1.8
1.6
1.4
1.2

0.8 -
0.6 -
0.4 |
0.2 A

Center displacement wrt thin plate

1 10 100 1000 10000 100000
Length over thickness ratio (L/D)

Fig. 14. SS-C square plate: normalized center displacement with
respect to Kifchhoff plate solution vs. length-thickness aspect
ratio for various domain of influence with linear basis
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Fig. 15. SS-C square plate: normalized center displacement with
respect to Kifchhoff plate solution vs. length-thickness aspect
ratio for various domain of influence with quadratic basis
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Fig. 16. SS-C square plate: normalized center displacement with
respect to Kifchhoff plate solution vs. length-thickness aspect
ratio for various domain of influence with cubic basis
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Fig. 17. CL-C square plate: normalized center displacement with
respect to Kifchhoff plate solution vs. length-thickness aspect
ratio for various domain of influence with linear basis

Fig. 18. CL-C square plate: normalized center displacement with
respect to Kifchhoff plate solution vs. length-thickness aspect
ratio for various domain of influence with quadratic basis
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Fig. 19. CL-C square plate: normalized center displacement with
respect to Kifchhoff plate solution vs. length-thickness aspect
ratio for various domain of influence with cubic basis

Comparison between MK and MLS shape
functions

Figures 20-21 compare the performance of MK versus the
MLS shape functions, both using the quadratic basis
function. It is clear that MK shape functions gives better
results than MLS shape functions. It is therefore confirmed
that the use of MK shape functions is superior to the use of
MLS shape functions in EFGM.

Correlation parameter theta (0)

Results in tabular format for the SS-C and CL-C cases are
presented in Tables 2-3. One can observe that the
correlation factor ‘0’ is different for different influence
layer(s).

If number of coupling nodes, n, is too greater than the
number of basis term, m, as

n>m,

The smaller value of ‘0’ is needed to diminish the
effect of exceeding nodes which locate in the far distances.
This yields the smaller of ‘0> when number of layer(s) is
increased. However, if too small value of ‘0 s
employed, the shape functions tend to anomalous and the
solutions are inaccurate consequently.
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Fig. 20. SS-C square plate: normalized center displacement with
respect to Kifchhoff plate solution vs. length-thickness aspect
ratio

Conclusion

An improved version of the EFGM with MK shape
functions is proposed in this study to address the problem
of transverse shear locking in shear-deformable plates. The
advantage of MK interpolation over MLS approximation in
the EFGM is further confirmed. In fact with the MK
interpolation, the implementation of EFGM using finite
elements as integration cells can be viewed as a subclass of

Fig. 21. CL-C square plate: normalized center displacement with
respect to Kifchhoff plate solution vs. length-thickness aspect
ratio

FEM with shape functions untied to the element structure.
This study also reveals that as more coupling nodes are
used, the lower value of ‘0’ has to be applied to satisfy the
consistency. In other words, it tends to neutralize the effect
of exceeding coupling nodes to the polynomial basis
component. The correlation factor theta (0) give best
results in the range 0.001-5.

Table 2. Effect of DOI in the form of Layered System on Correlation Factor Theta for SS-C

Linear Basis Quadratic Basis Cubic Basis
(3 monomial terms) (6 monomial terms) (10 monomial terms)
L/D ‘ Correlation Parameter (0) ‘ Correlation Parameter (0) ‘ Correlation Parameter (0) |
1 2 3 1 2 3 1 2 3
layer layers layers layer layers layers layer | layers layers

3 0.2 0.2 0.05 0.4 0.2 0.1 0.4 0.09
5 1 1 0.3 0.05 0.5 0.4 0.9 0.2
10 24 0.74 0.55 0.01 1.1 0.5 0.1 0.58
100 7.5 0.7 0.08 3 0.9 0.5 0.5 0.08
1000 7.5 1 0.4 3 0.9 0.5 0.02 0.008
10000 10 0.01 0.007 0.05 0.004 0.004 0.001 0.005
100000 0.001 0.001 0.001 | 0.001 0.001 0.001 0.001 0.005
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Table 3. Effect of DOI in the form of Layered System on Correlation Factor Theta for CL-C

Linear Basis Quadratic Basis Cubic Basis
(3 monomial terms) (6 monomial terms) (10 monomial terms)
| L [ Correlation Parameter (0) |  Correlation Parameter () |  Correlation Parameter (0) |
wer | tpers | tpers | mer | tpers | vers | er | s | tapers

| 3] 01| oos| 005 02 | 05|  008] | 003 0.02 |
| s| 027 o025 02 | 03 | 03 | 02 | | 03] 0.1 |
| 0]  os] 02 | 0.1 | 3] 02 | 0.1 | | 1| 0.14 |
| 10| 03] 02 | 02|  0.009 11 0.1 | KE 0.009 |
| 1000]  09] 09 | 02|  0.009 02 | 02 | | 03] 02 |
| 10000 | 2| oot 0007  oor| 0009|  0.007 | | 01| 0.004 |
| 100000 [ 002] 0o001]  0001]  oo0or] 0005|0005 | 0005 | 0.005 |
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