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Abstract

Automated synthesis refers to design of physical systems using any of the models proposed for
machine intelligence like evolutionary computation, neural networks and fuzzy logic. Mechatronic
systems are mixed or hybrid systems as they combine elements from different energy domains.
These dynamic systems are inherently complex and capturing underlying energy behavior among
interacting sub-systems is difficult owing to the variety in the composition of the mechatronic
systems and also due to the limitation imposed by conventional modeling techniques unable to
handle more than one energy domain. Bond-Graph modeling and simulation is an advanced domain
independent, object oriented and polymorphic graphical description of physical systems. The
universal modeling paradigm offered by Bond-Graphs is well suited for mechatronic systems as it
can represent their multi energy domain character using a unified notation scheme. Genetic
programming is one of the most promising evolutionary computation techniques. The genetic
programming paradigm is modeled on Darwinian concepts of evolution and natural selection.
Genetic programming starts from a high level statement of a problem’s requirements along with a
fitness criterion and attempts to produce a computer program that provides a solution to the
problem. Combining unified modeling and analysis tools offered by Bond-Graphs with
topologically open ended synthesis and search capability of genetic programming, a novel
automated design methodology has been developed for generating mechatronic systems designs
using an integrated synthesis, analysis and feedback scheme which comes close to the definition of
a true automated invention machine. This research paper is a brief introduction to all concepts
associated with automated design of mechatronic systems using Bond-Graphs and genetic
programming and explains the novel automated design methodology with a design example.
Keywords: Automated Synthesis, Mechatronic Systems, Bond-Graphs, Genetic Programming

In this section we briefly introduce certain concepts
prerequisite for understanding the functionality and
appreciating the novelty of the automated mechatronic
systems design methodology presented in following
section.

Mechatronic systems

Typically mechanical systems with electronic control
schemes have been categorized as mechatronic systems
[1]. A servo system comprising of a voltage source, DC
motor and a mechanical load driven through a transmission
is an example of a mechatronic system based on this
classification [2]. This long standing concept can now be
extended. A generic mechatronic system is a multi domain
dynamic collection of three basic interacting sub-systems:
sensors, microprocessors or computers and actuators. On a
functional design or topological level it is a hybrid
combination of elements from different energy domains as
varied as fluid power, hydraulic, pneumatic, electronic,
acoustic, thermal and magnetic systems etc. put together to
develop any of the three basic sub-systems.

Essentially whenever we try to model a mechatronic
system we experience sheer variety attributable to the
composition and very nature of the said system. There can
be many representations of mechatronic systems but with
the help of aforementioned statement we can realize a
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generic description for any mechatronic system like the
one appearing in Figure 1. Here we are interested in over
all system model (physical and mathematical) and dynamic
response of interacting elements residing in different
energy domains [3].

A GENERAL ENGINEERING SYSTEM
System Model & Dynamic Response

' '
' '
' '
' '
! !
! !
i i
I I
! ACTUATORS SENSORS ! INPUT SIGNAL
' i.e. Solenoids, Voice i.e. Switches, Strain Gauges, ' CONDITIONING &
H Coils, DC Motors, Potentiometers, H INTERFACING
' Stepper Motors, Servo Thermocouples, ' i.e. Discrete Circuts,
\ Motors, Hydraulics, > P i ! > Filters, ADC, DAC,
! Pneumatics efc. Accelerometers, Digital ! Amplifiers efc.
. Encoders, MEMS etc. .
' '
' 4 '
' '
L a
A
OUTPUT SIGNAL DIGITAL CONTROL
CONDITIONING & ARCHITECTURES
GRAPHICAL INTERFACING i.e. Logic Circuits,
DISPLAYS i.e. ADC, DAC, Microcontrollers, SBC, PLC,

A

Sequencing and Timing,
Logic and Arithmetic,
Control Algorithms,
Communication efc.

i.e. LED, LCD, Digital
Displays, CRT etc.

Amplifiers, PWM, bl

Power Transistors,

Power Operational
Amplifiers etc.

Fig. 1. Description of a generic mechatronic system
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To design and analyze a mechatronic system and its
multi energy sub-systems we need an inter domain tool.
Analogies among interacting physical systems and energy
exchange (storage, transport and dissipation) taking place
at the proximity of each element and each sub-system
provides a basis for Bond-Graphs based modeling [4].

Bond-Graph modeling

Bond-Graphs were invented by Henry M. Paynter (1923-
2002) in 1950s while working as a civil engineer in
hydroelectric power plants and later as a faculty member at
MIT [5], [6]. They were further developed by Dean C.
Karnopp, Ronald C. Rosenberg, Jan J. van Dixhoorn, Jean
U. Thoma and Peter C. Breedveld during the period 1960-
1990 and fundamental concepts of the technique were
established, tested and extended [7], [8], [9]. Fifty years on
the technique remains a high end modeling approach and a
tool of choice for multi energy domain systems designers
with great potential for newer application avenues.

Bond-Graphs offer an advanced domain independent,
object oriented and polymorphic description of interacting
sub-systems which are combined in an over all system
model that can be simulated using computers [10]. Bond-
Graph modeling is a port based technique where ports are
places at which power can flow between sub-systems [11].
Physical systems with one or more ports are called multi
ports. Bond-Graphs are labeled di-graphs where the edges
are called bonds and represent the bilateral signal flow of
the power conjugate variables effort e(z) and flow f{z) [2].
Each bond carries power represented by the product of
effort and flow variables. Time integral of effort
momentum p(z) and time integral of flow displacement ¢(?)
are the only two other variables (referred to as energy
variables) required for system modeling with Bond-
Graphs. An example of these variables from mechanical
and electrical domains seems appropriate here. For
mechanical translational systems power variables are effort
e(t):force F(¢) and flow f{?):velocity V(t) where as energy

Fig. 2. Fundamental Bond-Graph Elements (a) 0 Junction (b) / Junction (c) Source of Effort Se (d) Source of Flow Sf (e) Resistor R for
Mechanical Translation Systems (f) Capacitor C for Mechanical Translation Systems (g) Inertia / for Mechanical Translation Systems

(h) Transformer TF (i) Gyrator GY
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variables are momentum p(¢):momentum P and
displacement ¢(?):displacement X respectively. For
electrical systems power variables are effort e(z):voltage
E(t) and flow f{?):current /() where as energy variables are
momentum p(?):flux linkage variable 4 and displacement
q(t):charge Q respectively [12].

The basic elements used in Bond-Graph modeling are
five 1-port elements namely resistor R, capacitor C and
inertia / (which dissipate and store energy respectively),
source of effort Se and source of flow Sf (which represent
sources of energy in physical systems), two 2-port
elements which can scale energy up or down (transformer
TF) and transform energy from one domain to another
(gyrator GY) and two 3-port 0 and / junctions depicting
physical or topological constraints like inter domain
connections [13].

Causality establishes the computational direction of
the effort wvariable. It is represented by a short
perpendicular line made at one end of a bond. Sources of
effort and flow have fixed causality (Se: effort out
causality, Sf: flow out causality), energy storing elements C
and [ have preferred integral causality while resistor R has
arbitrary or free causality. The junction elements have
constrained causality (only one effort out causality at a /
junction and one flow out causality at a 0 junction). Same
is the case with transformer 7F (only one effort out
causality and one flow out causality) and gyrator GY
(either two effort out causalities or two flow out
causalities) [12]. Bond-Graphs based modeling being a
graphical modeling technique provides a simplified
procedure for developing state-space models of interacting
physical systems [14]. The order of the state-space model
is determined by counting the number of energy storing (C
and /) elements in the Bond-Graph model. The derivation
can either be carried out using old fashioned pen and paper
or by using any of the software packages like 20-Sim®
where all intermediate steps between developing a Bond-
Graph representation of any dynamic physical system and
arriving at its state-space model are done by the software
and the mathematics remains in the background [15], [16].
This automated modeling approach reflects on a
mechatronic system designer’s job as he/she can now
devote more time and effort towards handling the
complicated nature and functional design aspects of the
system without getting involved with lengthy derivations.
Also software assisted modeling of physical systems using
Bond-Graphs is object oriented. Object oriented modeling
refers to physical system representation by various classes
of reusable models, sub-models, sub sub-models...
arranged in a hierarchical manner where the information
pertaining to a particular model class is accessible only
through variables associated with mathematical equations
defining the class and identification of nature of causality
on its proximities. These model classes when employed as
structural elements, blocks or objects for constructing
detailed models of physical systems carry their properties
along. Such objects can be put together to develop designs
for physical systems using a suitable tool for their
manipulation [17], [18]. Figure 2 contains notation for all
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nine elements used in Bond-Graphs based physical systems
modeling.

When using Bond-Graphs for mechatronic system
representation, the mechatronic system can be treated as an
n-port mechatronics network with ¢; and f; being system
input effort and flow signals and e, and f, being system
output effort and flow signals respectively as shown in
Figure 3 [19].

Fig. 3. A mechatronics network

Genetic programming

For developing computers (machines) that can think and
act on their own with intelligence levels identical to human
beings Alan Turing identified three basic types of search
paradigms (logical, cultural and evolutionary search) [20],
[21]. Here we are concerned with the evolutionary search
approach which is modeled on Darwinian concepts of
evolution and natural selection [22], [23].

Genetic programming invented by John R. Koza in
1990s is regarded as an extension of genetic algorithms
attributed to John H. Holland [24], [25]. Both techniques
are identical in nature except for representation of
individuals which in case of genetic programming is parse
trees based computer programs compared to fixed or
variable length character strings in genetic algorithms [26],
[27]. Representation is a major difference not only because
it distinguishes the two techniques from each other but also
because it greatly extends the problem handling
capabilities of genetic programming. It is one of the most
promising domain independent and object oriented
evolutionary computation techniques [28], [29]. In genetic
programming individuals indirectly represented as parse
trees or genotypes with in the population are hierarchical
compositions of functions and terminals pertaining to the
type of the problem being solved. Functions may include
arithmetic and logical operators and also custom user
defined functions specific to the problem domain.
Terminals are basically constants and inputs required for
successful implementation of any problem. Search space
contains all compositions of all available functions and
terminals [30], [31].

Suitability of such compositions in providing a
solution for the problem is evaluated through user defined
fitness criterion. Mimicking evolution in nature genetic
programming operating on a population of randomly
generated individuals employs operators like reproduction,
recombination or crossover, mutation, gene duplication,
gene deletion and certain other mechanisms of
developmental biology [32], [33]. In this simulated
evolution scenario only the fittest off spring will be passed
on to either join the next generation of individuals or
become the solution at the end of the evolutionary search
and synthesis process [34]. LISP has been one of the most
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Fig. 4. Generalized representation of genetic programming operations

popular medium of implementing genetic programming
problems. A generalized representation of genetic
programming operations adapted from John R. Koza
appears in Figure 4.

Avutomated design of mechatronic systems

By definition automated design is an essential part of
genetic programming paradigm. Genetic programming
receives a high level statement of a problem’s requirements
from the user and attempts to create a computer program

that provides a solution for the problem. For a true
automated and/or evolutionary invention machine it is
desirable that the user provided information should be as
minimal as possible and the topology (size and shape) of
the evolved design should be part of the answer and not the
question being supplied by the user [35].

For engineering design problems ‘“the most critical
issues are automation of the design process and use of a
unified design tool” [36], [37]. There have been a number
of research efforts aimed at exploring the combination of
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genetic programming with physical systems modeling to
find improved and even human compatible engineering
designs. John R. Koza presents a single uniform approach
using genetic programming for automatic synthesis of both
the topology and sizing of a suite of various prototype
analog circuits including low pass filters, operational
amplifiers and controllers etc. His design approach requires
a different simulation code or tool for each application
[38]. “Writing a simulation code for an application is a
very time consuming and tedious job. If the design
applications or domains are different one must be able to
write or link to a simulation code for each new application”
[39], [40].

From our previous discussion we know that object
oriented nature of Bond-Graph elements enables them to
be manipulated using a suitable tool like genetic
programming for developing statistically structured but
indirectly (parse tree) represented Bond-Graph models of
physical systems. Based on the idea of automatic
programming when these Bond-Graph elements or objects
are connected to generate models of physical systems the
simulation code contained with in the object is
automatically configured to make connections with other

Design
Specification

Bond-Graph
Representation

Generation

Genetic
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objects (observing principle of causality) while the
continuity of the hidden mathematical model is preserved.
Now the basic concept of automated design tends to
replace the role of domain knowledge and reduce
interaction between designer and design platform with the
help of abundant computational resources available these
days. “By combining unified modeling and analysis
capabilities of Bond-Graphs with powerful topologically
open ended synthesis and search capability of genetic
programming a software system and methodology that is
able to evolve innovative mechatronic (multi energy
domain dynamic systems) design solutions represented as
Bond-Graph models has been developed with ever
improving performance in an iterative loop of synthesis,
analysis and feedback to the design process” [41], [39].
Extensive development on this automated and unified
design approach has been carried out at Genetic
Algorithms Research and Applications Group of Michigan
State University, East Lansing under the guidance of Erik
D. Goodman and William F. Punch III since late 1990s.
“Genetic programming based techniques are capable of
synthesizing designs of arbitrary complexity as the
representation of designs is entirely open ended. The
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Fig. 5. A novel methodology for automated design of mechatronic
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synthesis operators will allow the algorithm to combine
building blocks of arbitrary size and shape from one design
to insert into another based on what it has learned about the
performance from Bond-Graph analysis and simulation of
both designs [42]. This synthesis process is made more
efficient because the Bond-Graph designs can be evaluated
in two stages. The first determines whether the component
connections in the candidate design satisfy certain rules of
causality in their pattern of inter connection and this can be
determined quickly using the researchers’ existing Bond-
Graph analysis tools. Then for designs which pass that
criterion more expensive calculation of their performance
in fulfilling the specified design objectives is done again
using existing tools which the researchers need only adapt
to this use” [39], [19], [43].

Figure 5 suggests an automated design approach for
generating mechatronic systems identified by Wang et al.
in 2005 [19]. According to this methodology for any
mechatronic system a start up design in an embryonic state
(represented as a Bond-Graph model) is specified at the
initial design stage. Then using generative encoding its
indirect representation (a genetic programming parse tree
or genotype) is developed and transferred to the genetic
programming software tool which evolves individuals with
in the initial population using a set of basic construction
functions, evaluates them according to the fitness criterion
(a user specified function), reconfigures the population
when required and repeats the process until the design
criterion is satisfied. The process of decoding the genotype
tree maps it into a phenotype which is an abstract
topological description of the design of the mechatronic
system using Bond-Graphs. Physical design realization is
carried out to relate each abstract element of the Bond-
Graph model to the corresponding components in various
energy domains. During this whole process information is
extensively exchanged with knowledge caches and
incorporated into initial and final stages of the design
process. The knowledge library serves as a dynamic
database of domain knowledge that is constantly updated
and the contents are accessible to designers (now
effectively in supervisory role) to verify designs in an
integrated automated design and information handling
system. The input source to the knowledge library is the set
of successful conceptual design candidates (outcome of the
genetic programming based synthesis process) which
means that only the best of all sorted information is stored
for further reference and improvement [44], [45].

Automated synthesis of a primordial
mechatronic system

In this section a design example is included which explains
the implementation and functionality of the automated
design methodology [44], [45]. Systematic procedure
followed for implementing the said automated design
methodology is outlined as follows: (a) An embryo Bond-
Graph model is specified. (b) First population of genetic
programming trees is created. (c) Each individual is
evaluated for fitness using fitness function. (d) Genetic
programming operations i.e. selection, reproduction,
crossover and mutation are performed for each population.

(e) Final design is realized if termination condition of
genetic programming run is satisfied. (f) Otherwise the
process is repeated starting from fitness evaluation of each
individual. A two step process is employed for evaluation
of evolved Bond-Graph models. First each model is
analyzed for causality and then state equations are derived
identifying whether the system is linear or not. In the
second step fitness of each model is analyzed using fitness
criterion.

Genetic Programming Studio 1.0 is employed in this
application which is based on lil-gp 1.01 kernel but offers a
visual platform for executing genetic programming code
[46], [47]. The code has been written using MS Visual
C++ 6.0. Six different types of code files have to be
developed. 1. protoapp.h contains prototypes of functions
that app.c includes. 2. appdef.h contains #defines of the
application. 3. app.h contains global data and any other
function defined by the user. 4. app.c contains software
specific functions that help in input/output procedures. 5.
function.h contains prototypes of functions and terminals
of the problem. 6. function.c contains functions and
terminals that are used for building the individual. Also
files like epgdll.h, epgdll.c, defines.h, types.h, syscon.h and
syscon.c are included for creating dll or dynamic linked
library files. These files are software kernel files and are
not to be modified. The genetic programming parameters
are saved in the problem set file with the extension .epg.
This software also offers a simulation tool which can be
used for representing the genetic programming individuals
or genotypes in LISP format. The code is compiled and the
dll file is generated through MS Visual C++ 6.0. Two
target eigen values -1£2; are selected represented by cross
marks on complex plane as in Figure 6 and a Bond-Graph
model of a physical system whose characteristic equation
on solving for roots (poles) generates these eigen values is
to be evolved.

Fig. 6. Representation of -1+2; on complex plane

Fig. 7. The embryo Bond-Graph model

In Figure 7 an embryo Bond-Graph model is specified
with only one modifiable site highlighted by a dashed oval
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marking called the write head [36]. The fitness function
includes two parameters namely raw fitness and
normalized fitness. Raw fitness Fitnessgy, is the sum of
distances between target eigen values and the nearest
solution eigen values after they have been paired.
Normalized fitness Fitnessy,., is calculated according to
the relation given as equation 1.

1
FifneSSNoi‘m: 0.5 +m N
Raw

Table I. Function and terminal descriptions

Function Description

f tree Generate a tree model

f add_C Add a C element to a junction
f add_R Add a R element to a junction
f add_I Add an I element to a junction
f_insert_JO Insert a zero junction in a bond
f_insert_J1 Insert a one junction in a bond
replace_C Replace with C element
replace_R Replace with R element
replace_I Replace with I element
f_add_ERC Add two ERCs

f_del_ERC Delete two ERCs

end_A End terminal for add element
end_I End terminal for insert element
end_R End terminal for replace element
ERC Ephemeral Random Constant

Table 2. Genetic programming parameters

Number of Generations 100-500
Population Size 100-2500
Initial Population Half and Half
Sub Populations 10
Maximum Nodes 300
Initial Depth 3-6
Maximum Depth 17
Selection Tournament
Size 7
Crossover 0.9
Mutation 0.1
11:0.35
|
R1:250 T R3:0.922
R 1—>R
T ,7 - 1 S R2:500
Se >11+——> () —>4R
C1:0.42

Fig. 8. The final simplified Bond-Graph model
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The fitness function is determined by normalizing the
relative distance based error into a fitness value between 0
and 1 through a scaling rule given as: if error/order < 0.1
then fitness = 0.1/(0.1 + error/order) otherwise it is taken
as 5.05/(10 + error/order) where order is the number of
energy storing elements in the Bond-Graph model.

A list of genetic programming functions and terminals
along with their descriptions appears in Table.1. The
function f add R requires an additional parameter called
ephemeral random constant or ERC. It is a special terminal
with a fixed value and when an ERC terminal is generated
either during the filling of the initial population or by
mutation later in the run, a value is attached to that
terminal and remains unchanged by subsequent operations
[47].

The genetic programming parameters used in the
experiment have been included in Table.2. The software
has been installed on a DELL/Pentium-11I/1.0GHz and
256MB RAM personal computer running Windows
XP/2002/SP-1. Three different random seeds were used
and the experiment was repeated three times with
population sizes of 100, 1000 and 2500 with different
number of generations [48]. When different Bond-Graph
functions can be applied to the same write head the
technique is termed as strongly typed genetic
programming. Add functions can only be applied to a
junction while insert functions are only applied to a bond.
Replace functions change the type of the Bond-Graph
element and are node specific. Arithmetic functions of
addition and subtraction are carried out by f add ERC and
f del ERC respectively.

An illustration of the developmental/generative
procedure followed for constructing a phenotype or Bond-
Graph model (appearing on lower right corner) from a
genotype or genetic programming tree (appearing on top
left corner) is included as Figure 9 [36]. One genetic
programming tree represents one individual. As mentioned
earlier using LISP format of representing genetic
programming trees the simulation tool of Genetic

Table 3. Summary of results

Target Eigen Values

-1£25

Solution Eigen Values
-0.78+1.063;

Average Distance Error

0.961

Evolved Structure on Write Head
R Elements

C Elements

I Elements

Junctions

Bonds

Bond-Graph Element Values

R Element 0.922
C Element 0.42
I Element 0.35

g N
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Programming Studio 1.0 is employed to print long hand
versions of such genotypes which are simplified and
decoded (transformed into phenotypes or Bond-Graph
models) for further processing like derivation of
mathematical models and validation of the evolved design
etc. as deemed necessary by the designer.

The average distance error e between target and
solution eigen values is calculated using distance formula
for two pairs of numbers (x;, y;) and (xp, »») given as
equation 2.

o=y —x)7 + (0, — 1))’ ®)

The best solution eigen values compared to target
eigen values are included in Table.3 along with average
distance error. This table also contains number of R, C,
and junction elements added to the write head. Numerical
values of these one port elements are also shown. It is to be
noted that eigen values are determined using the 4 matrix
of the Bond-Graph model (when state-space equations are
written in matrix form assuming the system is linear)
containing state variables contributed by the energy storing
C and / elements.

The evolved Bond-Graph model of the physical
system in Figure 8 is analyzed using 20-Sim“ modeling
and simulation software [48]. The model contains two
energy storing elements /; and C; therefore it is identified
as a second order open loop system with two state
variables. The evolved parameters are contained with in
the periphery of the dotted square box. The general state-
space representation for this Bond-Graph model is given as
appearing in equations 3 and 4 [12].

%{X} — ALX} + B} 3)
Y} = C{X} + DU} @

In equations 3 and 4 {X} is vector of states
(momentum P and displacement Q), »n is number of states,
A is nXn square matrix, B is nxm matrix (m is the number
of sources), {U} is vector of sources (Se and Sf), {Y} is
vector of observer states (outputs), / is number of observer
outputs, C is /Xn matrix and D is /xm matrix. The poles of
the physical system being represented by this Bond-Graph
model are determined by calculating eigen values from
matrix 4 in equation 3 using relation | 4 - A/ | = 0 where [ is

Fig. 9. Developmental/generative procedure for genotype-phenotype mapping
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Fig. 10. Physical design realization of the evolved Bond-Graph model

identity matrix of order nxn. In due course of the
procedure followed for dynamic analysis of the system
source of effort Se is replaced with a modulated source of
effort MSe and a motion profile tool provided by the 20-
Sim® modeling and simulation software is added to the
workspace and connected to MSe. Motion profile selected
is ramp with unit step as the input or excitation. Output
signal is position or the observed output state is
displacement x(z). Values of input parameters are included
in Table 4.

_1 2
Xitr=7 Ko, X, (s)
_—

s+ 28,5+ F

Fig. 11. Step response of a second order system with Damping
Ratio¢< 1

Table 4. Values of input parameters

Start Time | Rise Time | Stop Time | Amplitude
Os Is 10s 1

The response of the system to the unit step input is
plotted in Figure 12. The values observed from the
response curve appear as equations 5-8.

Settling Time =T,=5s 5)
Rise Time=7,=1s (6)
Peak Time=7,=2s @)
Damping Ratio = £=0.591 (8)

For evolved eigen values -0.78 + 1.063; the maximum
average distance error turns out to be 0.961. The natural
frequency ®,, damped natural frequency w, and time
period 7 of the system are calculated using equations 9-12
[49].
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T, = L’%} 1n50 ©)
r—z_ﬂ-

~ o, (10
o = 2

- a
0, =w0,\1-E* (12)

Substituting values of settling time and damping ratio
from equations 5 and 8 respectively into equation 9 gives
natural frequency of the system w, equal to 1.319 rad/s and
damped natural frequency of the system thus becomes w, =
1.064 rad/s. Value of time period 7 is calculated as 5.904
s/rad. Value of percent overshoot %0OS = 10% is
determined using equation 13 same as observed from the
output curve in Figure 12 [50].

%08 = &= (13)

Relations for value of attenuation o, rise time 7,, peak
time 7, and maximum overshoot M, appear as equations
14-18 [51].

o=¢w, (14)

T, = ”a;dﬁ (15)

B =tan™ 2L (16)
o

T, =w—’2 (17)

M, ze‘[w%j” (18)
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Second order system characteristic response X,(s) and
second order system transfer function G(s) is given by
equations 19 and 20 respectively [50].

X, () =K 19

’ s(s> + 28w, s+ w}) (1
K 2

G(s)=—Cn (20)

s2 +28w, s+ w?

Substituting values in equation 19 the system transfer
function appears as in equation 21.

Step Response

£=0591

0.9
0.8

0.7 Ts=5s

Amplitude

0.6

0.5

0.4

0.3

0.2

0.1

Time {s}

Fig. 12. System response to a unit step input

1.319)*
Gls)=— @315 2 @1
52 +2(0.591)(1.319)s +(1.319)

After simplification the system transfer function G(s)
is given by equation 22. Value of K or steady state gain is
taken as unity.

1.739
G(s9)=— (22)
s°+1.56s+1.739

From equation 22 the characteristic equation for this
particular system becomes F(s) = s> + 1.56s + 1.739.

_—byb® —dac (23)

X

2a
— 2 —
o 1.56i\/(1.56) 4(1)(1.739) (24)
2(1)
X1, =-0.78 = 1.063j (25)

Using quadratic formula roots of the system equation
or poles of the physical system s, , = -0.78 £+ 1.063; are
determined as in equations 23 and 24 respectively. The rise
time, settling time and damping ratio are typical of this

type of systems. Using equations 14, 16 and 18 value of
attenuation o is determined as 0.77 rad/s, B is 54° and
maximum overshoot M, is 10.3%.

Conclusion

The methodology discussed in preceding sections has been
proposed for unified and automated design of mechatronic
or multi domain dynamic systems using Bond-Graphs for
system representation and genetic programming for
exploring the design space in an open ended but
statistically structured manner [52]. The robustness of this
novel unified/automated design approach towards system
synthesis lies in compactness of the genetic programming
code and fitness evaluation of the evolved designs. The
complications associated with implementation of the
methodology especially code development and final
elucidation is one of the reasons that this research area
remains relatively less explored. The full potential of this
emerging automated design methodology can only be
realized through development of an integrated design
environment or IDE complete with a knowledge library
and supporting features required for handling all elements
of automated design including specification of Bond-Graph
embryo, coding, genetic programming based search/
synthesis and mapping of genotypes into phenotypes along
with an in-package tool to simplify evolved Bond-Graph
models. Physical design realization and testing can be
carried out using other well established design and analysis
platforms like 20-Sim®.

Surely the power of Bond-Graphs in representing
physical systems and genetic programming in exploring
open ended design space is revealed when these two
elegant techniques come together for automated design of
mechatronic or multi domain dynamic systems. The need
of an integrated design environment or IDE that makes
both of these techniques available in one package should
stimulate efforts among international research groups for
development of such a software which will definitely serve
as a useful tool in hands of engineers and designers
working in this exciting research area. It will also make
this intelligent automated design system incorporating
Turing’s concept of evolutionary search for machine
intelligence available for relatively complicated systems
without having to deal with linking two or more software
packages for implementing an automated design problem.
As described earlier the powerful multi energy domain
modeling features offered by Bond-Graphs come in handy
to develop detailed dynamic representations of natural
systems. Such a software can also serve as a basis for
addressing and validating reservations about the strength of
evolutionary search and state of available knowledge and
technology when it comes to design of physical systems
(appearing in form of Bond-Graph models) as complex as
found in nature. An observation pertaining to Bond-Graphs
based representation is the limitation imposed due to lack
of two port elements transformer 7F and gyrator GY on the
automated synthesis process which tends to restrict the
evolutionary search and synthesis to one particular energy
domain at any time without scaling. Direct transition from
one energy domain to the other can be made if a genetic
programming function for gyrator element is available thus
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extending the range of the design approach to nearly
complete multi energy domain systems.
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