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Abstract

A curve approximation technique, based on growing quadratic and cubic Bezier, is presented in this
paper. The approximating curve starts growing along the given curve till it reaches to the end. It
determines the suitable location of control points in its way. Some important features of proposed
algorithm, that distinguish it from previous approaches, may include use of standard Bezier curves,
efficient computation of approximating curve by exploiting the properties of Bezier curves,
efficient method of calculating the approximation error, and incremental growth of curve. Results
of proposed algorithm are compared with different approaches in terms of compression ratio,
approximation error, and computation efficiency. Proposed algorithm can lead to various
applications in computer aided design, computational geometry, and computer vision.
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Introduction

Curve approximation is an important area of research in
CAD and CAGD. These algorithms find a set of data
points that can accurately represent the given curve. Two
types of data points are the focus of any curve
approximation method, namely interpolating and
approximating data points. Interpolating points are picked
from the original curve and resulting curve is passed
through them in order [3]. These points are easy to find and
is the target of most curve approximation techniques. A
danger with interpolation is that the fitting function may
tend to exhibit unwanted fluctuations. This problem is
particularly common if the fitting function is a polynomial
defined over the entire region of interest, and becomes
more severe as the number of data points increases.
Piecewise cubic splines are often used to interpolate a large
number of data points because they reduce the
computational requirements and numerical instabilities that
arise with higher degree curves. Plass and Stone [17] used
piecewise parametric cubic polynomial for end point
interpolation with tangent vector specification. Razdan [20]
highlights the wuse of arc length and curvature
characteristics of the given curve to extract the
interpolation points. Various other techniques were
considered in [7, 8, 18, 19 ,25].

On the other hand, approximating curve is fitted to the
general path without necessarily passing through the data
points [4]. It involves significantly fewer coefficients than
the corresponding interpolants. This approach is much less
liable to produce unwanted fluctuations and can provide
better approximation results. Proposed technique falls in
this category of curve approximation. Itoh and Ohno [12]
used least square method to find intermediate control
points of approximating cubic Bezier curve and end points
were located by computing the intersection of adjoining
curves. Sohel et al. [26] proposed shape description
algorithm using Bezier curves. They used fixed length
coding scheme to find the control points. Masood, et al.
[15] proposed curve approximation with quadratic B-

splines by analyzing their opening angle plots.

Approximating data points are computationally heavy
to determine [23]. Most of the time is consumed in
calculating and minimizing the error from original curve
e.g. least square fit [12]. Some of the researches [14,21,23]
have proposed techniques to minimize this time. Sohel et al.
[21] presented enhanced Bezier curve model, with no
increase in order of computational complexity, to reduce
the distance between the Bezier curve and its control
polygon. It was ultimately applied to reduce distortion of
approximating curves. Sarfraz and Masood [14] proposed a
method to find intermediate control points along the end
point tangents. Similarly, Sarfraz, et al. [23] calculated the
ratio between two intermediate control points of cubic
Bezier and used it to estimate the position of control points.
This caused reduction of computation time in subsequent
phase of approximation.

In above techniques, although the computation time
was considerably reduced, by minimizing the number of
iterations involved in error calculation, but still most of the
computations were used in calculating and reducing the
approximation error. Reduced set of data points without
any compromise to the quality of approximation and an
efficient process are some of the properties which make
this method superior to others techniques. Proposed
algorithm is progressively developed in this paper. Some
properties of Bezier curves, useful to compute the position
of intermediate control points, are described in section 2.
Computation of approximating (quadratic and cubic) curve
is discussed in section 3. A technique of growing Bezier is
explained in section 4. Analysis of results including
comparison with other techniques is given in section 5.
Finally, section 6 concludes this presentation.

Bezier curves and its properties

Bezier curves are used in computer graphics to produce
curves which appear reasonably smooth at all scales. The
mathematics of these curves is classical, but it was a
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French automobile engineer Pierre Bezier [4] who
introduced their use in computer graphics. Bezier curves
are simple and efficient to implement and have number of
properties [2] which make them highly useful and
convenient for curve and surface design [6]. That’s why
these are widely available in various CAD systems, vector
graphics, animations, drawing and painting packages [3].
These are extensively used in curve approximation as well
[12, 14, 17, 22, 23, 26].

In general, a Bezier curve section can be fitted to any
number of control points. The number of control points to
be approximated and their relative position determine the
degree of Bezier polynomial. A Bezier curve can be
specified with boundary conditions [2], with a
characterizing matrix [9], or with blending functions [9].
For general Bezier curves, the blending function
specification is the most convenient. For a given n+l
control point positions P, = (x;, ), with k varying from 0
to n. These coordinate points can be blended to produce the
curve C(u), which describes the path of an approximating
Bezier polynomial between P, and P,. It can be given as:

Cw)=) PB,w), 0<usl (1)
k=0

The Bezier blending function By,(u) are the Bernstein
polynomials [6].
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Fig. 1. Plot of blending functions for (a) Quadratic Bezier and (b)
Cubic Bezier
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As arule, a Bezier curve is a polynomial of degree one
less than the number of control points used. Three points
generate a parabola, four points a cubic curve and so forth.
Quadratic and cubic splines are used in most applications
[2,6,9]. This gives reasonable design flexibility while
avoiding the increased calculations needed with higher-
order polynomials. Quadratic and cubic Bezier curves are
mainly focused in proposed technique as well. The plot of
blending functions for a quadratic and cubic curves are
given in Fig. 1. Some of their useful properties, which are
subsequently exploited to obtain an approximating curve,
are discussed below.

e The vector tangent to the Bezier curve at the start
(and stop) is parallel to the line connecting the
first two (and last two) control points.

e Bernstein polynomials of Bezier curve at any time
interval # sum up to 1.

> B, w)=1 (3)
k=0

e A cubic Bezier curve can simply be defined as:

C.(u)=PF,B, (u)+PB, (u)+

@)
P,B, (u) + P,B;. ()

Where By, B, By, Bs. are the Bernstein polynomials
which does not depend upon the position of any control
point(s). From eq. 4, it can be stated that each polynomial
combined with respective control points influence the
overall shape of a Bezier curve. If the position of any
control point is known, its influence on the Bezier curve
may be excluded. For example:

P,B,.(u)+PB, (u)+P,B, (u) =

(&)
Cc (u) - P383c (M)

e  Effect of first (Py) and last (P,) control points and
their respective Bernstein polynomials (By & B,,)
can be removed from any Bezier curve.

e The Bezier curve interpolates the first (Py) and
last (P,) control point. In other words, it starts
from the first control point and stops at the last.

e For a cubic Bezier curve at u = 0.5, the Bernstein
polynomial By, = B,,.

e For a given quadratic Bezier curve, if the two
control points are known position third control
point can be calculated by.

b _ Co) =Py, ()= P,B,, ()

6)
‘ B, (u)

Bezier approximation

Spline curves are defined by the set of given control points.
In other words, control points are given and a spline curve
is determined. This can be done very efficiently (eq. 1) but
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it can become very challenging if this procedure is
reversed ie. finding control points from a given curve.
This is very important area of research and is the main
objective of any curve approximation technique [20].
Calculated control points from a given curve are generally
referred as data points. A spline curve passing through
these data points is an approximated curve.
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Fig. 2. Approximation with quadratic Bezier (a) Given quadratic
curve, (b) Approximated curve (red) over original (black)

Data points of quadratic Bezier

A quadratic Bezier curve is generated with three control
points P, = (x,yx), with k varying from O to 2. These
coordinate points are blended to produce the quadratic
curve Cy(u) with u varying from O to 1. It can simply be
written as:

C,(u) = P,B,,(u)+ P,B,, (u)+ P,B, () o

0<u<l

Where By, Big, and By, are the respective blending
functions of quadratic curve which can be given as:

By, ()= (1-u)’
qu (u)=2u(l—u) (8)
B,, (u) = u’

As shown in eq. 8 that the blending functions are
Bernstein polynomials and only the function of interval u.
Fig 1(a) shows plot of these blending functions. Here, we
need to find three control points (data points) of given
quadratic Bezier curve. From eq. 7, two control points P
and P, are the two end points of quadratic curve which are
known. The only unknown in eq. 7 is control point Py,
which can be determined as:

C,(u)—P,B,,(u)— P,B, (1)
By, (u)

S, ()=
©))

O<ucx<l

where S,(u) is the array of points, representing the
unknown control point (P). This array is called as spread
of approximating quadratic Bezier curve. Area of spread is
proportional to the difference between two curves (i.e.
original and computed). Note that the spread S,(u) is not
computed for u = 0 & 1. From S,(u), position of control
point (P)) is obtained by taking its arithmetic mean. It can
be given as:

P, = mean(S (1)) (10)

Fig. 2(a) is the plot of quadratic curve
y=x2+x+5 at —2 < x<1and Fig. 2(b) shows its
approximation using above method. Fig 2 shows an
accurate approximation using this procedure. However,
results can be very different if the given curve is not
quadratic. Fig 3(a) shows a cubic Bezier curve taken for
approximation using the same method. The spread is
shown by green color in Fig. 3(b). Black spot at the center
of a green line shows the selected position of P;.
Approximating (red) curve is drawn over the original and
one can see that it lacks in accuracy.

3_(3)

Cubic Bezier

Fig. 3. Approximation with quadratic Bezier. (a) Given cubic
Bezier curve, (b) Approximated curve (red) over original (black)



Difference between the two curves (i.e. original and
computed) is the approximation error. The approximated
curve is unacceptable if the maximum error (maximum
distance between two curves) error goes beyond specified
limits. Researchers [5,8,10,21] have proposed different
methods to compute this error. Generally, these methods
involve heavy computations. A curve approximation
algorithm may need to compute this error again and again,
before validating the accuracy of approximation. In other
words, error calculation takes the major part of
computation time in curve approximation. In proposed
algorithm, spread represents the error of approximation and

it can give exact value of error at any point along the curve.

The error of approximating quadratic curve may be
obtained as:

E,(0 =S, P[xBy, @ ()

O<ucx<l

The norm represents the Euclidian distance. Maximum
error of curve from original can be given as:

1
ME = mg)x{Eq (n)} (12)

The error (ME) beyond specified threshold indicates
that the computed curve is not accurate enough. There are
two solutions to this problem. First, to use a cubic or other
higher polynomial curves and second, to use piecewise
approximating curve. Piecewise approximation, with
growing Bezier, is covered in section 4. Using cubic Bezier
for approximation is a better choice than quadratic as it can
approximate more flexible curves with lesser data points
and without much increase to computation complexity.
Approximation with cubic Bezier can be employed using
similar methodology (as shown in section 3.2). Other
higher polynomials are not used to avoided heavy
calculations.

Data points of cubic Bezier

A cubic Bezier curve is defined by four control points P, =
(X Y1), with k varying from O to 3. The cubic curve C.(u),
can be written as:

C.(u)=PF,B,.(u)+ PB, (u)+
P,B, (u) + P,B, (u) (13)

0<u<l

Where By, Bi., By and Bj. are the respective blending
functions of cubic Bezier, which can be obtained as:

B, ,(u)=(1-u)’
B, (u) =3u(l-u)’
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B, (u)=3u’(1—u)

(14)
B, (uw)=u’

Fig. 1(b) shows plot of these blending functions.
Position of control points does not cause any effect to the
blending functions. Therefore, if the position of any control
point is known its effect from the overall curve may be
eliminated. As we know that end points of a cubic Bezier
curve are the two control points (Pyand P;). Thus, we can
remove effect of Pyand P; from a given curve as:

PB, (u)+ P,B, (u)=C'(u) (15)
where
C'(u)=C,.(u)- P,B,.(u)— P,B;.(u) (16)

By observing the plot of blending function (Fig. 1(b)),
we can conclude that B; = B, at u=0.5. It can be stated as:

B,s = B, (0.5)= B, (0.5) (17
From eq. 15 and eq. 17
B+P =C" (18)
where
» C(0.5
cr=£0 19)
Bs

By simultaneously solving the eq. 15 and eq. 18, we
have:

C'(u)—B,, (u)xC”

S1c () = B, (u)— B, (u)

at
O<ux<l (20)

S, (u)y=C"=S, (u)

Where S;. and S, are the two spreads (array of points),
which represent the control point P; and P, respectively.
Note that the point P; and P, are ignored (not computed)
for u = 0, 0.5, & 1, as it will produce zero on the
denominator. The position of P; and P, is obtained by
taking the mean. It is given as:

P, = mean(S,.(u))

21
P, = mean(S,, (u))
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Fig. 4. Curve fitting to a cubic curve. (a) Given cubic curve. (b)
Fitted cubic Bezier (red) over original (black)
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Fig. 5. Approximation with cubic Bezier. (a) Given sin(x) curve,
(b) Approximated curve (red) over original (black)

This procedure results is accurate approximation if the
given curve is cubic. This can be seen in Fig 4. Fig. 4(a)

shows the given cubic curve y=x3 —2x"+x at

—1<x<2.5 and Fig. 3(b) shows the fitted curve (red)
drawn over original (black). Respective control points of
computed curve are also shown in this figure. Accuracy of
computed curve may deteriorate if the given curve is not a
cubic. For example, sin-curve y =sin(x) at 0 < x <4,
shown in Fig. 5(a). Its approximation is shown in Fig. 5(b).
Again, the approximation error between two curves can be
calculated from the spread Sy, and S,.. This can be given as:

(IS, ) - P|x B, )~

(IS, 1) = P |x B,. () =

E_(u)=abs

The maximum error between two curves is used to
validate the approximated curve. Computed curve is
accepted only if the maximum error (ME) does not go
beyond specified threshold error. Maximum error is
obtained as:

1
ME = m_%x{EC (n)} (23)

A growing Bezier curve

Curve approximation method, proposed in section 3.1 &
3.2, does not guarantee an accurate representation of any
given curve. Sometimes, it may not be possible to compute
an accurate (quadratic or cubic) curve for complex and
higher order curves. Highly recommended solution is to
implement it through piecewise approximation. In other
words, to subdivide the given curve into sections and to
approximate each section separately. One needs to handle
many issues in this implementation like finding position of
subdivision points, maintaining required continuity
between each section and computational efficiency.
Proposed growing Bezier technique handles all such issues
automatically.

A growing Bezier method using cubic Bezier
approximation is explained in this section. Same method
can be implemented for quadratic Bezier as well. In this
method, initially a small section (may be 20 points) of
given curve is approximated with cubic Bezier and the
maximum error (ME) between two curves is checked. If
the error is below threshold then few more points of curve
are added to that section and so on. The process will
continue till error goes beyond threshold. When it reaches
to the specified threshold level, one curve section at this
point will complete and its data points are added to the list
of data points. Next section of curve will start expanding
from this point onward. This process will continue till the
given curve is exhausted completely. Piecewise cubic
Bezier curve through recorded list of data points would be
an approximating curve.

Error threshold means the maximum distance (ME)
allowed at any point along the two curves (i.e. original and
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Fig. 6. Different stages of growing Bezier (red) over original curve (black)

computed). Specification of error depends upon the size,
resolution, and smoothness/noise (eg. jaggies) of given
curve. Different steps of growing Bezier are shown in Fig.
6. Error threshold for this curve was 0.1. Fig 6(a) is the
original curve and its approximation consists of four cubic
Bezier sections. Fig. 6(b) is the snapshot before reaching to
the end of first curve section and Fig. 6(c) shows end of
first curve section. The Bezier curve continues to grow in
next section. Fig 6(d) is the snapshot between section 1 and
2, and Fig. 6(e) is the end of second section. Similarly Fig.
6(f) and 6(g) shows end of third and fourth section. The
computed curve is shown in Fig. 6(h). It is accurate,
smooth and data points are well expanded.

In proposed algorithm, speed of growth of
approximating curve is proportional to the difference of
ME from specified threshold level. Growth increment is
higher for large differences and vice versa. After each
iteration, expected length (in terms of curve points) of
approximating quadratic or cubic Bezier is computed by
ratio and proportion. The growth increment for next
iteration is taken at 70% of the expected length.
Computation of expected length becomes more accurate
with the growth of curve. This method enables the fasted
growth in start and it slows down near destination.
Proposed methodology of controlling the growth (of
approximating Bezier curve) makes the algorithm highly
efficient.

Results analysis

A curve approximation produces curves of given shape
which are size effective and can be very useful in many
applications like vector graphics, computer
drawing/painting, font designing and animations.
Efficiently finding a set of data points (control points)
without loosing quality of approximation is the main task

of research in this area. The proposed approximation
technique, by growing Bezier, is very simple and efficient
method of approximating the higher degree polynomial
and complex curves. It has been compared with different
algorithms on the basis of below parameters.

e Number of Segments. The boundary is segmented
if approximated curve goes beyond specified error
threshold. Increase in segmentation means less
compression and more data points. Least number
of segments is desired.

e Number of Control Points. This parameter is
important to compare the segmentation of
approximating quadratic and cubic curves. Each
quadratic and cubic segment consists of 3 and 4
control points respectively.

e [Integral Square Error (ISE). This error is used to
assess the total distortion/error caused by the
approximating curve. It is defined as:

ISE =Y e} 24)
i=1

Where e; is the Euclidian distance of ith point.

o Maximum Error (ME). It is the maximum distance
of computed curve from original, measured as
Euclidian distance. Integral square error gives the
total distortion and does not reflect the sudden
increase in error at small portion of curve. Such
deviations are covered in this parameter. It is
given as:

ME = max{e, } (25)
i=1
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Fig. 7. Comparison of results. (a) Original curve, (b) Approximation with [27], (c) Approximation with [28], (d) Approximation with [29],
(e) Approximation with proposed algorithm (growing quadratic Bezier), and (f) Approximation with proposed algorithm (growing cubic

Bezier)

e Computation Time. Amount of time taken by the
machine highly depends upon the implementation
technique and speed of processor. However, some
general conclusions can still be drawn. The
algorithms were run for at least ten times on 1.7
GHz computer and the average time was taken.

Fig. 7 shows the approximation results with different
algorithms [27,28,29]. Following curve was taken for
testing the results.

4
yzx——2x2+4

4 (26)
at —3<x<3

Plot of eq. 26 is shown in Fig. 7(a). Quantitative
comparison of results, with different algorithms, is shown

in Table 1. Approximating curve in Fig. 7(b) is computed
using the algorithm of Sarfraz et al. [27]. This algorithm
[27] computes the approximating piecewise cubic Bezier
curve. It is based on search of intermediate control points
(P & P,) along the tangents at the start and end of curve.
If error between two curves is beyond specified threshold,
it is divided into two from the maximum error point. The
curve (Fig. 7(b)) computed by this algorithm [27] consists
of two segments ie. maximum compression when
compared to other results. On the other hand,
approximation error of [27] (ISE & ME) is higher than all
algorithms except [28]. Some deviations (marked with
arrows) from original curve may be observed is Fig. 7(b).
Computation time is another disadvantage of this algorithm
[27], which is higher than all algorithms except [29].

Fig. 7(c) shows the curve approximation result using
quadratic B-splines [28]. It uses opening angle plot to
determine the position of unknown control points/knots.
This algorithm [28] computes the curve in 6 segments (13

Table 1. Comparison of curve approximation results shown in Fig. 7

Algorithm No. of No. of Control Integral Maximum Computation
Segments Points Square Error Error Time (sec)
Sarfraz et al.
127] 2 7 0.756 0.318 1.237
Masood et al. 6 13 2391 0.384 0.975
[28]
Plass et al.
129] 2 7 0.528 0.257 2.548
Proposed
(Quadratic) 7 15 0.393 0.186 0.043
Proposed
(Cubic) 3 10 0.406 0.197 0.084




control points). Its approximation error is very high, which
can be seen (marked with arrow) in Fig. 7(c). Although its
[28] computation time is better than [27] & [29], but does
not look very attractive when compared to proposed
algorithm. Fig. 7(d) shows the approximation with least
square fit using cubic splines. This algorithm [29] produces
optimal curve which is the main cause of highest
computation time. The optimal curve is expected to
produce approximating curve with minimum error (ISE). It
can be observed that its error is higher than proposed
algorithm because the curve (Fig. 7(d)) consists of two
segments only. Main drawback of least square fitting is
high computation time.

Fig. 7(e) and Fig. 7(f) show the curve approximation
with proposed algorithm using growing quadratic and
cubic curves respectively. The growing quadratic curve
takes least computation time, which looks very attractive
when compared to other algorithms. Approximation error
with growing quadratic is also lowest. The compression
ratio of this technique looks little high. Main reason for
high compression ratio is use of quadratic curve which is
not very flexible. On the other hand, growing cubic Bezier
using same approach produces the approximation in 3
segments. The computation time of cubic Bezier is also
better than other algorithms.
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Fig. 8. Comparison of results. (a) Original curve (with noise), (b)
Approximation with [27], (c) Approximation with [28], (d)
Approximation with [29], (e) Approximation with proposed
algorithm (growing quadratic Bezier), and (f) Approximation
with proposed algorithm (growing cubic Bezier)
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Another set of results are shown in Fig. 8 and Table 2.
Fig. 8(a) shows the curve taken for approximation. This
curve was obtained by introducing some noise on the curve
of Fig 7(a). The noise was obtained by decreasing the
resolution and passing it through a scanner (300dpi) once.
Addition of noise produces irregularities (jaggies) along
the curve. Now each point along the curve is represented in
terms of pixels. Thus, error (ISE & ME) shown in Table 2
is also in pixels. An error threshold at 5 pixels was used for
computing the curve by different algorithms. In other
words, ME value in Table 2 cannot go beyond 5. Fig. 8(b)
shows the approximation with algorithm [27]. It computes
the curve with 4 segments and its approximation error is
less than proposed algorithm using cubic Bezier. High
computation time is the main disadvantage of this
algorithm [27].

Fig. 8(c) shows the approximation using algorithm
[28], which employs quadratic B-splines. Approximating
curve consist of 11 segments whereas proposed algorithm
computes the quadratic curve in 8 segments and with lesser
integral square error. Also the computation time of
algorithm [28] is much higher than proposed algorithm.
Fig. 8(d) shows optimal approximating curve with 4
segments using least square fit. All comparative results of
this algorithm [29] look better than others except
computation time, which is the main drawback of least
square fit. This drawback was observed in Table 1 as well.
Fig. 8(e) & 8(f) shows the approximation results with
proposed algorithm. Although the computed curves with
proposed algorithm lacks in accuracy but low computation
time is its biggest advantage.

Some curve approximation results by proposed
algorithm are shown Fig. 9, 10, & 11. A cubic B-spline
generated with 10 control points is shown in Fig. 9(a).
Approximation with growing quadratic and cubic Bezier is
shown in Fig 9(b) & 9(c) respectively. Growing Bezier
algorithm reconstruct the curve with 11 quadratic and 7
cubic Bezier sections. It can be seen that the number of
segments are relatively lesser for low curvature areas of
curve given curve. Thus, the algorithm automatically takes
care of curvature characteristic of without studying it
explicitly.

Fig. 10 shows approximation of cardioid curve
r=1-cos@ with 0<80<2xr . Its

coordinates can be given as; x =rcos@ & y=rsinf.

Cartesian

The curve is shown in Fig. 10(a). Approximation with
growing quadratic Bezier is shown in Fig. 10 (b). It
consists of 8 curve sections and 16 data points in total.
Similarly, approximation with growing cubic Bezier (Fig.
10(c)) consists of 5 curve sections and 15 data points in
total. Left half of cardioid curve is relatively smoother and
results in lesser number of data points. Fig. 11 shows the
approximation of sin curve, which is given as:
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Table 2. Comparison of curve approximation results shown in Fig. 8

Algorithm No. of No. of Control Integral Maximum Computation
Segments Points Square Error Error Time (sec)
Sarfraz, et al. [27] 2 7 0.756 0.318 1.237
Masood, et al. [28] 6 13 2.391 0.384 0.975
Plass, et al. [29] 2 7 0.528 0.257 2.548
Proposed (Quadratic) 7 15 0.393 0.186 0.043
Proposed
3 10 0.406 0.197 0.084
(Cubic)

(a)

Fig. 9. Approximation with growing Bezier. (a) Given cubic B-
spline generated with 10 control points, (b) Approximation with
growing quadratic Bezier, and (c) Approximation with growing
cubic Bezier

y=[sin(x) at —1.8<x<7.8 27)

Plot of curve using eq. 27 is shown in Fig. 11(a).
Absolute value of sin function creates corners in the curve.
Proposed algorithm tends to smooth the abrupt change in
curvature (like corners). The algorithm needs minor
changes to handles such curves. In proposed algorithm,

growth of Bezier curve stops when the maximum error
reaches the specified error threshold and next piece of
approximating curve starts growing from there. Another
condition (for breaking the segment) is imposed to handle
the corners i.e. growth of Bezier curve will stop if sudden
increase in error is detected. Fig. 11 shows the result after
this modification. This methodology detects the corner
points successfully and improves quality of approximation.
Fig. 11(b) and 11(c) shows approximation with growing
quadratic and cubic curve.

Some important features of proposed algorithm which
distinguish it from other curve approximation techniques
are summarized below.

e Computational efficiency: Most of the proposed
curve approximation techniques waste lot of time
in  curvature  analysis, calculating the
approximation error and bringing curve closer to
original iteratively [12, 14, 17, 22, 23]. The
proposed method can calculate the exact value of
error directly from the spread. This property is
very useful for efficient calculation of unknown
control points and subdivision points.

o Incremental  growth:  The  growth  of
approximating Bezier curve is not constant rather
it depends upon the difference between current
value of error and specified error threshold. In
other words, it is very fast in the start and slows
down as the growing curve reaches close to it
destination.  This  feature  enables quick
determination of next subdivision point.

e Curve subdivision: Curve subdivision is needed if
the algorithm 1is wunable to produce the
approximation within specified error limitations.
Most curve approximation algorithms
[11,12,15,16] select the maximum error point for
subdivision of curve into two. Calculation of
maximum error points is a time consuming
process and subdivision from this point is not
optimal. The growing Bezier, in proposed
algorithm, is designed to look for the maximum
length of curve that can be approximated within
specified error limits. However, the algorithm
may leave the last segment very small. In such
situations, decrease in the specified threshold will



1 s
05 /

0
05 { "\

2 15 1 05 0

1 n

\

) ;
®) «( © <

IR

,.')

NUST Journal of Engineering Sciences, Vol. 1, No. 1, 2008

™
d X
/ |

4

Fig. 10. Approximation with growing Bezier. (a) Given cardioid curve. (b) Approximation with growing quadratic Bezier. (c)
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Fig. 11. Approximation with growing Bezier. (a) Given sin
curve. (b) Approximation with growing quadratic Bezier. (c)
Approximation with growing cubic Bezier

reduce the length of all sections hence increasing
the length of last section. Thus, overall error
between the two curves will reduce without
increasing the number of segments.

e Approximation error: Determination of
approximation error is very important to validate
the quality of approximation. Calculation of error
(e.g. Hausdorff distance) is time consuming
process. Proposed algorithm gives an efficient
method of error calculation (eq. 11 & 22) which
can give exact value of error at any point along
the curve.

e Approximation of Corner Points: Generally, curve
approximation algorithms smoothes down the
sharp turns and corners along given curve. The
growing Bezier method can handle the corners as
well. It detects the sudden change in error and
marks this point as subdivision point. The

methodology results in better approximation of
curves having corners.

e Curvature analysis: Most curve approximation
techniques are based on curvature analysis.
Crampin’s et al. [5] curve approximation
technique was based on the notion that few points
should be placed where radius of curvature is
large and many where it is small. Some other
good techniques were presented in [10,15,20]
using similar ideas. The proposed algorithm does
not specifically study the curvature but the
detection of data points generally follows the
same rule.

e Approximation overhead: Some curve
approximation techniques use some additional
parameters like tension [8,18,19,25], bias [1,13],
local information [1,21] and some other control
parameters [24] to increase flexibility. These
parameters add complexity while calculating the
approximation curve and needs for reconstruction
of approximated curve. The proposed technique is
based on standard Bezier curve with no additional
overhead/parameters.

e Quality of approximation: In addition to above
advantages, the proposed technique makes no
compromise to the quality of approximation. The
approximated curve is smooth, and accurate and
the results are compatible to any other
technique(s).

Conclusion

Curve approximation is a very useful technique in CAD,
CAGD, painting and drawing packages, vector graphics,
capturing 2D objects and animation. The proposed curve
approximation technique uses Bezier curves which is
simple and efficient and used in most graphic packages. In
this technique, a quadratic or cubic Bezier curve starts
growing along the given curve till it reaches to the end and
determine the set of data points in its way. Most of the
computation time of tradition curve approximation
techniques was wasted in computing/analyzing curvature
and approximation error. The proposed technique has no
such limitations. In addition, incremental growth of
approximating Bezier curve ensures high efficiency of
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computation. Proposed technique can lead to various
applications like representing shape outlines, font
designing, handwriting recognition, signature recognition
and OCR of various languages.
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