
NUST Publishing, © (2016), ISSN: 2070-9900

A Smart Card Based Security Extension for The Bitcoin Wallets
Majid Amjad Hussain, Sadia Khalil and Shahzad Saleem

National University of Science and Technology
School of Electrical Engineering and Computer Science

Islamabad, 44000
majidamjad.h@gmail.com, shahzad.saleem@seecs.edu.pk

Submitted: Accepted:

Abstract

With the increase in the use of virtual currencies across the globe, the security of Bitcoin wallets has
become a serious concern for the Bitcoin community. The developers are trying to implement concrete
security solutions in Bitcoin wallets to ensure that no vulnerability gets exploited. However, a large
number of known, as well as zero-day attacks, are launched on the Bitcoin wallets on a daily basis,
resulting in a loss of bitcoins. In this regard, this paper presents a security analysis of existing Android
wallets. We demonstrate how the implemented security practices can be bypassed by malicious entities,
causing financial loss to Bitcoin users. As a countermeasure, we present a smart card based
authentication scheme which will protect the users from all of the identified attacks.
Keywords: Bitcoin Wallet, Smart Card, Authentication, Encryption

Introduction

Crypto-currencies like Bitcoin have redefined the
meaning of financial transactions by providing a
virtual platform for creation, circulation and
transformation of bitcoins through anonymous and
irrevocable transactions. In 2015 more than 100,000
merchants were accepting bitcoin. People are
adopting Bitcoin for transfer of money due to its
convenience and lesser transaction fees. At the time
of writing Bitcoin’s market capitalization is $5.7
billion (Crypto-Currency Market Capitalizations,
2016). However, with this increase in market
acceptance, Bitcoin has to face a lot of security
challenges.

Bitcoin wallets are very important entities in the
Bitcoin architecture. Just like physical wallets, they
are used for storing cash and are responsible for
keeping a record of all transactions. The security of a
Bitcoin wallet is critical to the whole Bitcoin
architecture as it is responsible for creating Bitcoin
addresses as well as for storing private keys
associated with the addresses. If the private key gets
compromised, all of the bitcoins associated with that
Bitcoin address get lost. Therefore, the major focus of
most of the developers is to ensure that private keys
in the Bitcoin wallets are secured.

A strong encryption scheme is a prime solution for
preventing the wallets from attacks by malicious
entities. However, the attackers have still found ways
to bypass such schemes. If an adversary gets hold of
the phone, he/she can bypass authentication and then
can carry out transactions on user’s behalf. A number
of schemes have been proposed for the protection of
Bitcoin wallets, each having its merits and demerits.

Nowadays, attackers are writing malware which can
extract and send private keys from the local storage of
a user’s device. In the case of device theft, an attacker
can simply carry out a transaction, as there is no
security mechanism implemented. Keys can also be
stored offline, such as in a USB. This provides
security but at the same time creates usability and
availability issues. The offline media should be
available all the time in order to carry out
transactions. Password protected (encrypted) wallets
provide much more security than any other wallets. A
key is derived from the password chosen by the user
and then the whole wallet is encrypted with that key.
The security of the wallet is dependent on the key,
which is dependent on the password chosen by the
user. Normally users don’t use best password
practices and choose passwords which have a very
low entropy. This motivates an attacker to perform
brute force or dictionary attacks. Another threat to
wallets is spyware or keyloggers which can log the
keys and send it to the attacker. The attacker then
generates the key with the help of the password.
Sometimes keys for bitcoin transaction are derived
with the password, which can be compromised by the
above-discussed methods. Hosted wallets are the
wallet services provided by third party vendor via a
web application. In these types of wallets, the user
does not need to manage or secure the private key as
key management is handled at service provider’s end.
In this case, the user is dependent on the service
provider’s security.

Literature Review

Shayan Eskandari et al. (Shayan Eskandari, 2015)
propose a scheme in which the keys can be stored in

NUST Journal of Engineering Sciences, Vol 9, No 2, 2016, pp 60-67

NUST Publishing, © (2016), ISSN: 2070-9900

the phone’s local storage which can be accessed by
the application at any time in order to carry out the
transactions. Despite this offline/local storage benefit,
any other application that has access to the physical
storage can steal the private keys. Such scenario is
prone to malware attack in which malware can extract
and send private keys to any malicious entity.

Angelica Montanez (Montanez, 2014) examines
different bitcoin wallets with respect to forensics
aspect. The paper discusses different techniques that
can be used to get useful information about any
installed Bitcoin wallet. This information can be the
date of installation, updating or deletion. Log files can
be manipulated to find transaction information, IP
addresses of peers as well as a number of bitcoins in
the wallets. During the examination of Litecoin wallet
application, it is found that .93 file contains the
private key as well as date and time stamp. Any entity
who has access to this file can steal the money easily.
This file is accessible to everyone after rooting the
device. With the help of public key found in the log
file, one can search the address the public ledger to
check all previous transactions to connect to address.

Christopher Mann et al. (Loebenberger, 2014) present
a thresh hold scheme as a solution to device theft in
case of unencrypted wallets installed on it. In order
for a transaction to take place, more than one
signature are required. To prevent a single point of
failure, n out of m signature is needed to proceed with
a transaction. This resolves the problem of theft in a
way that in the case of theft of one device, then the
attacker cannot spend bitcoins. However, this solution
causes a problem of increased transactions size which
ultimately leads to increase in transaction fees.
Another solution provided is of splitting the key to
two devices, one mobile phone, and another desktop.
The user needs to use a desktop application to initiate
the transaction; then it generates a QR-code to be
scanned by the mobile application for the purpose of
authenticity. A secure TLS connection is built, and
part of the key is exchanged to proceed with the
transaction. This solution takes less internet and file
system usage, as well as less transaction fee as
transaction size it small. The drawback of this
solution is the availability of both devices is required
at one time.

Steven Goldfeder et al. (Steven Goldfeder, 2014)
provide a mechanism to secure bitcoin wallet via
threshold digital signatures. The technique is based on
a threshold value ‘t’ which is actually predefined in
the system. First, we have to provide a private signing
key to each entity in the system. If we want to carry

out a bitcoin transaction, we need the digital
signatures of at least ‘t’ entities in order to carry out
the transaction. The mechanism implements the
‘separation of privileges’ principle where multiple
privileges are required to perform a task. This
solution is feasible for office environments where the
consent of more than one person is required for a
transaction to be made. Multiple signatures also
create a problem of increased transaction size and
transaction fees.

Rostislav Skudnov et al. (Skudnov, 2012) describe
different types of bitcoin clients w.r.t. their usability
and security. Full clients are those who download the
whole blockchain and require excessive storage and
more network bandwidth. Mobile based clients need
to download block headers and hence require less
storage space and the network is required. Bitcoinj is
java library used for this purpose. Thin clients are the
browser based clients, where no computation is on the
client side, most of the tasks are being done on server
side. In this type, the user doesn’t need to secure the
private key. As most of the things are managed on the
server side, therefore if the server is compromised
then all the system is compromised. Mining clients
provide high CPU or GPU based computation in
order to run bitcoin system. Some other clients
include signing-only clients, deterministic wallets,
and brain wallet. The bitcoin release 0.4.0 provides
the facility to encrypt the wallet with a passphrase to
prevent the wallet from an attacker since 0.4.0 release
bitcoin wallets are able to read the encrypted wallet
and decrypt it at the run time if correct passphrase is
provided. Paper backup is a technique where the user
takes the backup of his/her private key on paper
instead of digital media. For this purpose, QR-code is
being used in order to avoid the typing mistake. The
printed paper with the correct QR-code having private
key can be accepted as payment. The receiver can
send a transaction by scanning the QR-code and
signing it with the scanned private key.

Bitcoin Wallets contain public and private crypto
keys, other passcodes, and PIN. This makes them
prone to a large number of theft attacks. If an
adversary gets hold of the phone, he/she can easily
bypass authentication and then can carry out
transactions on user’s behalf.

The authentication process used by the Bitcoin
Wallets to make sure that only the authorized person
is using the application can be bypassed. The existing
authentication scheme stores passcodes and PIN in
internal storage (shared preferences as XML file or as
SQL database) and believes that the information

61Majid Amjad

NUST Publishing, © (2016), ISSN: 2070-9900

stored cannot be accessed by another application not
even by the owner of the phone. However, the files
can easily be accessed by anyone who can get root
access to the device. The existing authentication
scheme can be analyzed using the application logic
written in code. This can be exploited by simply
decompiling the Android .APK file. Some Bitcoin
Wallets are storing the hash (MD5 and SHA1) of
passcode and PIN which can be easily cracked within
seconds with the help of web-based cloud service
which already have the computed hash chains
(CrackStation - Online Password Hash Cracking -
MD5, SHA1, Linux, Rainbow Tables, etc., 2016).

Sometimes application developer relies on a
cryptographic solution (encryption, decryption). With
this approach, the developer accepts PIN code from
the user and generates a key from this PIN code and
then encrypts all data with it and stores nothing in the
internal memory of the phone, except the encrypted
file. At the time of decryption, the application again
accepts the PIN, generates the key, and then decrypts
the file. If the file is decrypted into a correct format,
this means that the provided PIN is correct; otherwise,
the PIN is considered incorrect. Normally the length
of the PIN is 4 digits, what means an adversary only
need 104 tries to log into to the system successfully.
To overcome this issue, the applications put a limit of
2-5 on the number of unsuccessful tries for the PIN.
An attacker can still bypass this mechanism, the
attacker simply roots the device, then extract the
encrypted file and brute force on his/her system
without the limitation of no of tries. He/she can
achieve results within few seconds with a simple
laptop.

Motivation

Case Study 1: Coinbase Authentication
Bypass
Coinbase is an Android based Wallet which contains
a design flaw which leads to a severe vulnerability
which allows an adversary to bypass PIN
authentication. This allows the adversary to open an
Android Wallet without knowing the PIN. With this
design flaw, the adversary can steal and manipulate
user information (e.g. username and email). Apart
from that, this allows the adversary to steal all the
Bitcoins present in the wallet.

Android applications can store data in either and
SQLite3 database or and XML file (called shared

preferences). Coinbase Android Wallet makes use of
the XML file to store information regarding PIN.

By making certain changes in the
menShared_Preferences.XML file we can bypass PIN
authentication. By deleting the XML statement used
for storing pin related information, an attacker can
mislead the application into launching with a home
page instead of the application pin authentication
page. The home offers the ability to steal Bitcoins
from Wallet. The steps used for exploitation are
explained below and are shown in the figure no 1.

1. Set PIN for authentication.
2. User logs into the system.

a. User data is stored in
com.coinbase.android_preference.xm
l

3. Login successful and the home screen is
prompted.

4. The attacker edits
com.coinbase.android_preferences.XML
accordingly and replaces the actual file with
the edited one.

5. Attacker opens the app and sees the home
page instead of authentication screen.

6. Case Study 2: Bitcoin Wallet Security
Bypass

7. ‘Bitcoin Wallet’ is an Android-based open-
source Wallet application, which can be
downloaded from the official site of Bitcoin
as well as on Android Play Store. On Android
Play Store it has 500,000 - 1,000,000
downloads which mean this Wallet is popular
among Bitcoin users. For the purpose of
safety, this wallet uses a PIN code to put a
lock on spending of Bitcoins. Wallet only
accepts the numeric value, which means that
we can only enter digits in the range zero to
nine. Figure 2 shows that the application
marks the pin “strong” even when the user
enters only 8 digits. This application also
implements the tries policy, which means that
a user cannot enter a PIN code after a certain
number of tries. With this PIN, the
application generates a key and encrypts the
whole wallet and saves it to internal storage.
An adversary can root the device, pull the
encrypted file and apply brute force using 108

combinations.

NUST Journal of Engineering Sciences62

NUST Publishing, © (2016), ISSN: 2070-9900

Figure 1 Coinbase Bitcoin Wallet Authentication Bypass

Figure 2 Bitcoin Wallet

Problem Statement

Once an adversary gains physical access to the device
running Android based bitcoin wallets, it can bypass
the authentication mechanism and can steal Bitcoins
by carrying out transactions on the behalf of users’.
This creates a need for an efficient and secure
solution which can ensure the security of the wallet
security even if the device is not in possession of the
user.

Proposed Solution

We have noted that the Android device is not safe for
storing users’ credentials and important keys. So we
are proposing which involves keeping the keys and
other necessary data out of the Android device for the
purpose of authentication. For this, we propose a
smart card based authentication scheme for Android
based wallets. Figure no 3 shows the architecture of
scheme proposed for a secure authentication for
Android-based Bitcoin Wallets.

63Majid Amjad

NUST Publishing, © (2016), ISSN: 2070-9900

Figure 3 Smart Card based Bitcoin Application’s Architecture

Go-Trust Technologies launched microSD secure
memory card, which combines advanced features of
smart card technology and USB mass storage into a
convenient microSD form. This is a very smart
solution to secure portable devices. Go-Trust
launched the SDK for accessing smart card chip
through file-system based interface for different
mobile platforms. Its extended benefits include for
application security in JavaCard based solution, PKI
support (i.e. digital certificates and cryptographic
keys storage, strong authentication, digital signature,
data encryption for a perfect PKI integration) and
standard mass storage facility (i.e. 2 GB to 8 GB)
(GO-Trust Encrypter Family, 2016).

There are two types of Bitcoin Wallets: “heavy–
weight” – (full application) Wallets and “light–
weight” (GUI / communications only) Wallets. Both
the types can be used with PC stations as well as
smartphones. Two main characteristics of the two
types of Wallets are:

1. Full Wallet stores all security credentials and
blockchain transactions locally; and has direct
connection with the Bitcoin network

2. Lightweight Wallets provide only a GUI-
based communication with users and a
connection to the Wallet server. The security
credentials and blockchain transactions are all
stored at the Wallet server. Wallet Server also
performs communication with the Bitcoin
networks.

For local security extensions, both types of Wallets
are equivalent, but the approach is different. In the
case of full application wallets, all security extensions
are local (at PCs and smartphones), whereas in the
case of lightweight Wallets, security extensions are
implemented at the server.

In this research, both the types of Wallets will be
considered. As a full application, the open–source
application Bitcoin Wallet will be used.

Design

Table no 1 shows the issues/challenges and their
solution which we are proposing:

NUST Journal of Engineering Sciences64

NUST Publishing, © (2016), ISSN: 2070-9900

Table 1: Issues/challenges and their solutions

Sr. Issues/challenges Solution

1 Poor/weak or no Authentication while accessing the Bitcoin
Wallet

Smart Card Based Authentication

2 Encryption of Bitcoin Wallet with weak key, which can be
derived from Password/PIN

Encrypt wallet with smart card’s key

3 Protection of the Backup Encrypt backup with Smart card’s key

4 Prevention from Malware Attacks Custom keyboard

5 Prevention from Social Engineering Attacks Random keyboard every time

For the problems discussed above, we propose a
smart card. Solution is derived from FIPS 196 (This
standard specifies challenge-response protocols by
which entities in a computer system may authenticate
their identities to one another and a paper “Smart
Card Authentication for Mobile Devices” (Jansen,
Smart Card Authentication for Mobile Devices, 2016)
and its report (Jansen, NISTIR 7206, Smart Cards and
Mobile Device Authentication: an Overview and
Implementation, 2016), published by NIST.

Poor/Weak or No Authentication
Existing bitcoin applications either use no
authentication or use weak/poor authentication. By
poor or weak authentication we mean a simple pin
code, which can be found easily either in
preferences.XML file or in the database file. This pin
can also be brute forced easily. To overcome this
problem we are proposing a smart card-based
authentication.

Steps:

1. The first user downloads the android bitcoin
application from android play store. This
application has a CA certificate.

2. The user requests the service provider to
provide a smart card. The service provider
provides the smart card, which has a private
key (KR) as well as a user certificate.

3. The application retrieves the certificate from
the smart card and stores it. After retrieving
the certificate from the smart card, it first
verifies it. As the application has a CA
certificate, it matches the CA signature on the
certificate provided by the smart card.

4. The user enters the default pin code to
authenticate with smart card and sets a new
pin code.

5. The initial or registration process ends here.
Now it’s time for authentication.

6. At first, the user enters pin code, if the pin
code is correct the smart card will allow the
user to proceed, otherwise it will terminate
the authentication process and lock the smart
card after three unsuccessful attempts.

7. If the pin code is correct, the application
generates a random number “A” and sends it
to the smart card.

8. The smart card generates a random value “B”
signs “A||B” with the private key on the card
(‘||’ denotes concatenation), and returns “B”
and the signature to the application.

9. The application retrieves the user certificate
and extracts the public key “KU”, verifies it,
and then verifies the card’s signature over
“A||B” using the public key contained in the
certificate.

10. If everything verifies successfully, the
authentication succeeds; otherwise, the
authentication attempt fails.

Figure no 4 explains the flow of different
activities.

65Majid Amjad

NUST Publishing, © (2016), ISSN: 2070-9900

Fig. 4: Smart Card based Authentication

Encryption of Bitcoin Wallet with Weak Key
BTC Wallet provides protection to the wallet by
encrypting it. BTC Wallet encrypts the wallet with the
PIN provided by the user. It is very easy to brute
force only numeric values.

Our proposed solution is that, first, the smart card
takes the hash of the user’s pin, then encrypts it with
the private key stored on the smart card.

New Key = ENCKR (HASH (PIN))

The newly generated key is sent back to the
application for wallet encryption.

Another solution is that by using a smart card with a
good processing power and memory, we could send
the wallet file to the smart card and the smart card
would encrypt it with its own private key. ENCKR

(Wallet File).

Protection of the Backup

NUST Journal of Engineering Sciences66

NUST Publishing, © (2016), ISSN: 2070-9900

BTC Wallet provides the mechanism for backup in
the case of a lost phone or if some malware corrupts
the Wallet’s data or its private payment key. BTC
Wallet, at the time of backup, asks for a password to
encrypt the Wallet, so that only the true owner can
access the data. The wallet is useless for others as it is
encrypted. But it is observed that people often don’t.
As users use low entropy passwords, the attacker
takes advantage of this and figure out the passwords
easily in most of the cases. To provide enhanced
security, we propose the encryption of the Wallet at
the time of backup, with the private key of the smart
card.

Prevention against Malware Attacks
Android has 82.8% market share of smartphones.
Attackers are writing much more malware for
Android as compared to that for any other mobile
operating system. Nowadays, a number of malware
and rootkits are infecting Android devices. Most of
the malware install a key logger on the device and try
to capture credentials. Keylogger gets the root-level
privilege and listens to system calls made by the
application and capture keystrokes. The solution to
this problem is writing a custom keyboard.

Prevention against Social Engineering
Attack
Humans are known to be the weakest link in security.
For example, imagine a person sitting in front of you,
observing you while you enter the PIN into to BTC
Wallet application. By carefully observing the
movement of fingers, he/she can detect the correct
pin. To avoid this, we propose a custom keyboard
which shows random keys every time.

Implementation

We took an open source android bitcoin application
(bitcoin-wallet, 2016) and implemented our security

extensions according to the given architecture. Smart
card and android emulators were used to test the
whole scenario.

Conclusion

Phone storage is not a secure place to store important
credentials, especially in the case of rooted phones.
The use of a smart card provides much more security.

67Majid Amjad

