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Abstract 5 

 6 

This work deals with the development and testing of a low latency Animation Transmission 7 

Technology (ATT) for augmented reality applications. This web-based transmission system 8 

based on AutoBahn Pyhton web server and WebSocket LibrarY (WSLAY) integrated clients 9 

has been studied to reduce packet header size and to simultaneously allow a large number of 10 

Users to interact with each other. The transmission system in the proposed system architecture 11 

allows motion sensor’s acquisition software to easily send compressed 3D quaternion-based 12 

data from transmitter to the rendering softwares at receiver side to generate real time 3D 13 

animation on an avatar. Furthermore, effects of lossy compression of quaternion data and 14 

server limitation have also been considered. 15 

Initial simulation test results with the Python server alongside WSLAY integrated clients 16 

with virtual motion sensors have been presented in this work. It has been evaluated that the 17 

network delay (ND) has a huge improvement from more than 300 ms to less than 25 ms at 100 18 

Hz sensor sampling rate once lossy compression of 3D quaternion data is implemented. 19 

Furthermore, the effect of motion sensor sampling frequency and broadcast server limitation 20 

on maximum number of simultaneous users/sensors is also described in this work. 21 

 22 
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1. Introduction  1 

Recent advances in electronic sensors, wireless communication and mobile technologies 2 

has resulted in development of many ‘Internet Of Things’ (IOT) based systems covering a 3 

wide range of applications. In particular, the use of wearable motion sensors to form Body 4 

Sensor Networks (BSN) has gained much popularity. Such systems have been fundamental to 5 

capture human motion in applications like biomedical research [1-3] and augmented reality 6 

[4]. Such wearable inertial sensors based on MicroelEctroMechanical Systems (MEMS) are 7 

also used for motion tracking [5] and gesture recognition [6].  8 

In addition to acquisition of human body motion and its analysis, Virtual/Augmented 9 

Reality (VR/AR) networks have also been devloped to share such information in runtime over 10 

a network [7]. Consequently, there is an increase in demand for real time transmission systems 11 

which could reduce the transmission delay when such information is communicated over the 12 

network [8]. This is typically achieved through implementation of a hybrid network where a 13 

dedicated local Body Sensor Network (BSN) with a gateway/sink node gathers motion 14 

information from individual sensor nodes and communicates with remote gateway nodes of 15 

other BSNs over the Internet Protocol (IP) [9]. This hybrid network allows utilization of 16 

cheaper sensor nodes with limited memory and computation capacity while still allows the 17 

BSN to be easily accessible over IP.  18 

Recent Advancements in wireless communication technology with corresponding higher 19 

bandwidth has resulted in an overall reduction in transmission delays between nodes of a 20 

Wireless Sensor Network (WSN). However, a real time transmission system protocol, which 21 

can be easily integrated with both motion acquisition and rendering software at the transmitter 22 

and receiver to improve communication efficiency can also play a vital role in this regard. 23 

There are a wide range of binary, image-based and domain specific Animation Transmission 24 

Technologies (ATT) [10] available nowadays, however, they are limited by the bulky over 25 

headers which effect the highly interactive real-time applications and introduce Network 26 

Delay (ND). There is also a need of such ATTs which also facilitate the multiuser transmission 27 

by broadcasting data from a central server to multiple users. Additionally, use of animation 28 

compression algorithms in the ATTs to compress 3D data before transmission can also be 29 

utilized. This reduces the network delay and also improves the real time interactive behavior 30 

at the receiver side. 31 

The system architecture proposed in this paper tries to tackle all of the above mentioned 32 

issues. It uses Web Socket LibrArY (WSLAY) [11] written in C, which can be easily 33 

integrated with any motion acquisition and rendering software at the transmitter and receiver 34 

respectively. It is also free from the bulky over headers and provides full duplex transmission 35 

at high data rates. Its network delay is minimal when compared to the other existing 36 

transmission technologies. It is also integrated with some animation compression algorithms 37 

in order to ensure fast data transmission. It not only provides efficient point to point 38 

communication but also can be used for multiuser communication when used in collaboration 39 

with the AutoBahn python broadcast server [12]. 40 

This work is aimed at quantitatively studying the use of Python server and WSLAY 41 

integration with clients transmitting and receiving 3D motion animation data over the network. 42 

In this scope, a generic system architecture compatible with the proposed server has been 43 

described. Here, the requirements of a wearable motion sensor and acquisition system, the role 44 

of the web broadcasting server and compatible 3D rendering system have been discussed in 45 

Section 2. Later, the integration of the three systems using WSLAY library functions and the 46 
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data transmission/reception protocols needed for system operation have been explained in 1 

Section 3. 2 

Section 4 describes the experimental setup used to evaluate the performance of the 3 

proposed system architecture while Section 5 has been used to explain the obtained results 4 

pertaining to network performance. At the end, Section 5 concludes and summarizes this 5 

research activity. 6 

2. System architecture 7 

In the proposed system architecture, remote animation of a 3D avatar can be achieved in real 8 

time by transmitting animation data and other key parameters over the network using Internet 9 

Protocol (IP). The graphical parameters pertaining to movement are extracted from a set of 10 

motion sensors which can be worn by the users. To interpret this information, Web socket 11 

library has been integrated into the motion sensors’ acquisition front-end on one side, and in 12 

renderer on the other side of the established communication network.  13 

The proposed design can be described by a set of three subsystems based on their operation. 14 

These include the acquisition system, the transmission system and the rendering system. These 15 

subsystems are depicted in Fig. 1 and described in the following subsections. 16 

3.1 Motion sensing and animation acquisition 17 

The subsystem acquires the information related to user motion and processes it so that it can 18 

later be passed to the renderer using the transmission subsystem. To acquire user’s motion 19 

information, standard Micro-Electro-Mechanical-Systems (MEMS) devices can be used [13]. 20 

To appropriately capture the motion information of a user, a total of 𝑁 number of wearable 21 

motion sensors have been considered in this work. Furthermore, a total of 𝑀 number of users 22 

have been simultaneously interacting with each other as depicted in Fig. 1. This brings the 23 

total number of motion sensors in the system architecture to be 𝑁 ×𝑀 and greatly adds to the 24 

complexity of the transmission system. 25 

 
Fig. 1. Block diagram depicting the proposed system architecture and its individual components. 
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The construction of a generic wearable motion sensor compatible with our system 1 

architecture can be seen in Fig. 2. Here, MEMS sensor chip, a micro-controller, compact 2 

rechargeable battery and a wireless sensor module and its driver have been depicted as blocks 3 

on a wearable motion sensor’s Printed Circuit Board (PCB). Here, the micro-controller 4 

programs and receives/interprets the motion information provided by the MEMS sensor. It 5 

also converts this information into quaternions (if not already done so by the MEMS chip) and 6 

passes it to the acquisition system using the wireless module. Additionally, time-stamp 7 

information is also added by the micro-controller. The inter chip communication on the 8 

wearable sensor PCB can be achieved using either I2C and or SPI communication [14].  9 

To appropriately capture and track motion of the user, commercial MEMS sensors with 9-10 

DOF (Degrees Of Freedom) can be utilized. This can be achieved by using MEMS sensors 11 

having an integrated 3D Gyroscope, a 3D Magnetometer and a 3D Accelerometer. 12 

Alternatively, separate MEMS sensors with one or more of these motion sensing capabilities 13 

can be mounted on the wearable motion sensor PCB. To name a few 9-DOF MEMS chips, 14 

Inven-Sense MPU-9250 Motion processing unit [15] or STMicroelectronics 9-DOF 15 

LSM9DS1 [16] are compatible with the proposed system architecture. 16 

Among the proposed MEMS chips, the 9-DOF MPU-9250 chip and others like it, also have 17 

a built-in mode where it provides a 32-bit 9-axis quaternion alongside heading accuracy 18 

thereby providing us with output in Attitude Heading Reference System (AHRS) [17]. This 19 

additional processing within a single chip greatly simplifies the later stages of the acquisition 20 

system which also assists in reducing system latency. 21 

As far as the battery module is concerned, a standard 3.7 V 150 mAh rechargeable battery 22 

can be utilized. Considering the typical components of wearable motion sensor described 23 

above, the system is expected to operate continuously for around 7 hours. However, low power 24 

 
Fig. 2. Block level diagram depicting individual components in a generic wearable motion sensor. 
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data transmission protocols and reduction of maximum sampling frequency to 100 Hz 1 

(sufficient for seamless user experience) can easily improve the battery life to several days. 2 

Acquisition software runs on a PC where it communicates with each motion sensor node 3 

to acquire data and to program the firmware. This communication is established between the 4 

wearable motion sensor and the PC using the wireless modules available to both of them. This 5 

quaternion based 3D motion data contains information regarding motion of user’s limbs and 6 

performed gestures and must be transmitted to other clients. 7 

As there are a total of 𝑁 sensors per user, to acquire quaternion information from all the 8 

sensors, the acquisition software must connect to each sensor’s wireless module. This can be 9 

done both sequentially or in parallel. However, sequential data transfer adds to the latency of 10 

the overall system operation at User end, even before the network is considered. In both 11 

scenarios, once received, the information gathered from all motion sensors is arranged in a 12 

queue like data structure block as shown in Fig. 3. Each information block comprises of four 13 

floating point quaternion data 𝑞𝑖,𝑗  followed by a floating-point time stamp 𝑡𝑖  of all the 𝑁 14 

motion sensors utilized by the User. Here, 𝑖 represents the quaternion index while 𝑗 represents 15 

sensor number. 16 

To enhance, data throughput of each user and consequently to reduce network delay, lossy 17 

quaternion compression of the data structure shown in Fig. 3 can be performed by the motion 18 

acquisition stage. In lossy compression, instead of four floating point numbers, three 19 

quaternions in short integer format are transmitted. As the quaternions have values between 20 

+1 and -1, this conversion is done simply by multiplying the floating-point quaternion by 2(16-21 
1) = 32,768 and then storing it in short integer format. This way quaternion precision is limited 22 

to ±2-(16-1) and smaller values are lost to compression. As an advantage, the data size is reduced 23 

from 4 x 4 = 16 bytes in case of no compression to 3 x 2 = 6 bytes in case of compression 24 

which results in reduction of system latency. The missing fourth quaternion component for 25 

𝑗𝑡ℎ sensor can be evaluated using the quaternion property described in (1). This information 26 

is later communicated to the web socket transmission system to be shared with other users on 27 

the network. 28 

1 = q0,𝑗
2 + q1,𝑗

2 + q2,𝑗
2 + q3,𝑗

2        (1) 29 

3.2 Web socket transmission 30 

 
Fig. 3. Structure depicting quaternion-based motion sensor and time stamp information for a total 

of 𝑁 sensors per user. 
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To achieve real-time operation, transmission of motion sensor data to and from multiple 1 

clients over the network is handled by a Web socket server. In the proposed system architecture, 2 

the utilized web socket transmission system is based on a Python web server and WSLAY 3 

libraries running on multiple clients. The WSLAY libraries are used by the clients to 4 

send/receive quaternion-based motion sensor information to/from the web server. The 5 

Autobahn Python web server, on the other hand, is tasked with receiving this data from 6 

WSLAY clients and later to broadcast it to all the connected Users. While using the web socket 7 

protocol, C- based WSLAY can support up to 63 runtime users at a time [11]. The Web server 8 

maintains a separate session for each connection with a new user through a dedicated socket 9 

(assigned randomly). This allows server to avoid conflicts in case of simultaneous 10 

transmissions from multiple users. In addition, the proposed architecture is easily scalable and 11 

can be extended through various load-balancing techniques to handle multiple user requests 12 

simultaneously. 13 

Furthermore, this WSLAY library provides us with both, an event-based and a frame-14 

based Application Programming Interface (API) and can transfer User/Server data without 15 

HyperText Transfer Protocol (HTTP) handshake [18]. This helps in reducing the overhead 16 

which would otherwise be present in HTTP and can increase ND. In addition, external event 17 

looping and callback interface options of the WSLAY library also make them a suitable choice 18 

for low latency applications like the one described in this work.  19 

Fig. 4 depicts how motion sensor information is transferred to the web server using the 20 

WSLAY native applications running on the clients. Here, a single quaternion corresponding 21 

to a single motion sensor has been depicted for simplicity. In a generic system, each User 22 

transmits up to 𝑁 quaternions in the form of data structure shown in Fig. 3. For a single user, 23 

once the data corresponding to all sensors has been transmitted from the wearable motion 24 

sensors to the acquisition software, it is pushed by the local WSLAY client to the central 25 

Python web server node. This is done independently by all clients connected to this web server. 26 

Once the Python server receives the provided data, a callback function is immediately called 27 

to broadcast the received information to all the connected client nodes as depicted in Fig. 5. 28 

 
Fig. 4. Information diffusion from clients to server. 
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Once each client receives this data, locally run WSLAY client generates a callback directed at 1 

the 3D graphics player to read the input WSLAY buffers. This allows the 3D renderer to 2 

process and animate the 3D avatar/model in run-time.  3 

3.3 3D Rendering and animation 4 

In the proposed system architecture, once a client receives the quaternion based motion data 5 

broadcasted from the Python webSocket node, it is passed on to the 3D graphics player for 6 

animation as depicted in Fig. 5. These 3D rendering tools interpret the motion information into 7 

animation of Client Models/avatars to allow users to interact with each other in a 3D 8 

environment. These 3D rendering and animation  latforms can be either standalone, web based 9 

or can even be a combination of the two. The compatibility of the system architecture 10 

described in this work includes, but is not limited to, the popular open source and licensed 3D 11 

graphic players described in Table 1. 12 

Here, Orbisnap [19] only supports standalone platform for visualizing 3D virtual 13 

environment while Cortona VRML [20] and X3DOM [21] only support Plugin application 14 

platforms. The remaining 3D rendering tools described in Table 1 can be used both as 15 

Table 1. Compatible 3D rendering tools. 

3D Rendering tools Operating Systems Application Platform 

Orbisnap [19] Windows, Mac & Linux Standalone 

Cortona VRML [20] Windows Plugin 

X3DOM [21] Windows Plugin 

Bit Management [22] Windows & Linux Plugin & Standalone 

Flux player [23] Windows Plugin & Standalone 

InstantReality [24] Windows & Linux Plugin & Standalone 

View3DScene [25] Windows, Mac & Linux Plugin & Standalone 

 

 
Fig. 5. Information broadcasting from server to clients. 
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standalone and as web based plugins. 1 

3. System integration and operation 2 

The augmented reality applications considered in this work require a versatile and efficient 3 

web transmission system to have an overall reduced network delay. This is necessary to allow 4 

all users to experience smooth system operation. This system requirement means that 5 

integration of the transmission system with both the motion sensor side and the graphic player 6 

side needs to be optimized as well. This integration needs to be cost effective in terms of 7 

additional overhead bytes added to the motion sensor data to facilitate communication between 8 

the server node and the clients. In this section, the algorithms used for server-client 9 

communication have been described. 10 

Multiple functions of the WSLAY used for system integration are depicted in Fig. 6. Here, 11 

two instances of the WebSocket library have been shown in a single figure. One instance is 12 

integrated with user #1 which is only acting as a Capturer i.e. it acquires the motion sensor 13 

data and has to transmit it to the Python server over the network using Websocket library 14 

functions. For this instance, no data is being received by the Renderer of User #1. The second 15 

instance is that of User #2 which is acting only as a Renderer i.e. it has to receive the motion 16 

sensor data provided by the Python server present on the network to be rendered by its 3D 17 

graphic player. Contrary to User #1, User #2 has nothing to transmit as shown in Fig. 6. 18 

Once the WSLAY is initialized, it enters a loop function and waits for an event. Within 19 

this loop function, it continuously checks whether any data has been received from or needs 20 

to be transmitted to the network. Once the motion acquisition system in case of User #1 writes 21 

some data in the WSLAY library using WriteData() function, an OnMsgSend callback 22 

function is activated. This function is responsible for transmitting the available data onto the 23 

network using Websocket I/O port as shown in Fig. 6. The motion sensing and acquisition 24 

system has an embedded routine which calls this WriteData() function once quaternion-based 25 

structure shown in Fig. 3 has been received so that this information can be transmitted over 26 

 
Fig. 6. WSLAY Library functionality. [11] 
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the network to other users. This integration protocol is depicted in detail in Fig. 7. 1 

In case of User #2, once the animation data has been received from the network by the 2 

Websocket I/O port, an OnMsgRcv callback function of WSLAY library is activated. This 3 

means that there is valid data available to be rendered by 3D graphic player of User #2. This 4 

animation data is copied into the 3D renderer software data structure using the WSLAY library 5 

function ReadData(). The event while loop inside the WebSocket libray, continues to 6 

receive/transmit data to/from the network as long as any valid data is available and moves 7 

back to the wait state afterwards. This integration protocol is depicted in detail in Fig. 8. 8 

4. Experimental Setup 9 

In the proposed system architecture, the transmission system i.e. the python web server and 10 

its integration can be tested independent of the motion sensing/ acquisition and the 3D 11 

rendering system. Thereby, to analyze the performance of the web server and the WSLAY 12 

library integration on both ends with the capturer and the renderer, a simulation test has been 13 

performed. 14 

The experiment has been performed with simulated wearable motion sensors. To achieve 15 

 
Fig. 8. 3D renderer and WSLAY Integration. [11] 

 
Fig. 7. Motion Sensor and WSLAY Integration. [11] 
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this, within the acquisition system, quaternion data has been added into the queue shown in 1 

Fig. 3 and this information is later read by the integrated WSLAY library. 2 

Three Laptop devices have been utilized where one of them acts as a broadcast server while 3 

the other two are used as transmitter and receiver respectively. All Laptop devices (with Intel 4 

Core i3 i3-M350/2.27GHz processor and 4 GB RAM) have Linux operating system running 5 

on them. These Laptop devices are connected to public Internet network through an 802.11g 6 

Wi-Fi router. During the experimental tests, the network speed was monitored and was 7 

evaluated to have an average speed of 9 Mbps with maximum of 20 Mbps and minimum of 8 

3.5 Mbps. These tests have been carried out at data frequencies of 25, 50 and 100 Hertz and 9 

with the simulated number of sensors 𝑁 being 1, 5 and 10 to study the effects of change of 10 

data rate and network loading on the web transmission system. 11 

The tests were designed to analyze the effect of increased number of virtual sensors, their 12 

sampling frequencies and quaternion data compression on the ND experienced by the users. 13 

In addition, maximum number of simultaneous users 𝑀  and sensors 𝑁  supported by the 14 

broadcast server were also evaluated as a function of sensor sampling frequency. In case of no 15 

compression scenario, four floating point numbers are transmitted per sensor sample, while 16 

with lossy compression enabled each quaternion is represented by means of three short 17 

integers respectively. A time-stamp is present with the data structure in all scenarios to 18 

calculate ND. 19 

5. Simulation Results 20 

A comparison of ND versus number of sensors at different frequencies under no compression 21 

and lossy compression scenarios can be seen in Fig. 9 and Fig. 10 respectively. In no 22 

compression scenario, ND at 25 or 50 Hz was nearly the same and less than 12 ms for up to 23 

10 number of sensors. At 100 Hz, ND increases exponentially with the increase in number of 24 

sensors and approaches 150 ms and 300 ms for up to 5 and 10 number of sensors. Considering 25 

100 ms as maximum acceptable delay [26], in particular for telepresence in gaming scenarios, 26 

the system showed poor performances during experiments at 100Hz. 27 

 
Fig. 9. Network Delay vs. number of sensors for a single user with no quaternion compression. 
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In lossy compression scenario, ND at 25 and 50 Hz remain almost same and less than 12 1 

ms for up to 5 number of sensors. When number of sensors are increased to 10, the ND at 50 2 

Hz increase linearly up to 14 ms compared to12 ms at 25 Hz. ND at 100 Hz increases abruptly 3 

with the number of sensors and approaches a maximum of 23 ms for 10 number of sensors. 4 

Results show that by adding compression the ND reduce under 100 ms even with 10 number 5 

of sensors. 6 

 In lossy compression scenario, ND at 25 and 50 Hz remain almost same and less than 12 7 

ms for up to 5 number of sensors. When number of sensors are increased to 10, the ND at 50 8 

Hz increase linearly up to 14 ms compared to12 ms at 25 Hz. ND at 100 Hz increases abruptly 9 

 
Fig. 10. Network Delay vs. number of sensors for a single user with lossy quaternion compression. 

 
Fig. 11. Broadcast server limitation depicted as a relationship between no. of users and no. of 

sensors/user to ensure network delay < 100ms. 
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with the number of sensors and approaches a maximum of 23 ms for 10 number of sensors. 1 

Results show that by adding compression the ND reduce under 100 ms even with 10 number 2 

of sensors. 3 

Fig. 11 depicts the limitations of broadcast server on the number of users or connections. 4 

Broadcast server allows a maximum of up to 20 users with 1 sensor each at 25 Hz. Number of 5 

users decrease with the increase in number of sensors at 25 Hz until it arrives at 7 for 10  6 

number of sensors. Similarly maximum number of users turn out to be 14 and 12 at 50 and 7 

100 Hz respectively. Number of users decrease with increase in number of sensors and reach 8 

6 and 5 at 50 and 100 Hz respectively. Results predict that number of users is a function of 9 

frequency and number of sensors and inversely proportional to both of them. The most ideal 10 

case is the one with 1 number of sensors at 25 Hz allowing maximum number of users to 11 

connect with broadcast server while the worst case is with 10 number of sensors at 100 Hz 12 

allowing 5 number of users to connect with the server. The broadcast server adopted does not 13 

properly scale in term of number of connections supported, and did not allow to properly test 14 

the system with large number of users.  15 

6. Conclusion 16 

In this work a system architecture based on Autobahn Python web server and 3D motion 17 

sensors/Renderer with WSLAY integration has been proposed for low latency augmented 18 

reality applications. Additionally, first results regarding the performance of the server have 19 

also been presented. It has been evaluated through simulation that at 25 Hz sensor sampling 20 

frequency, the proposed system can handle up to 7 users with 10 sensors each while at 100 Hz 21 

up to 5 users with 10 sensors each can be supported by the network with acceptable network 22 

delay less than 100 ms [26]. These results can further be improved with algorithm optimization 23 

at both the server and the client end in future works. 24 

Further tests with sensors and renderer software is to be performed to validate the presented 25 

simulation test results. Also effect of lossy compression, which significantly improves network 26 

delay, needs to be studied with the rendering software in full system tests. 27 

7. Acknowledgements 28 

The authors would like to thank Higher Education Commission (HEC), Pakistan for their 29 

support in the form of Grant no. 21- 1784 SRGP/R&D/HEC/2017 to facilitate research on this 30 

topic. 31 

References 32 

[1] S. Qiu, Z. Wang, H. Zhao and H. Hu, "Using Distributed Wearable Sensors to Measure and 33 

Evaluate Human Lower Limb Motions," in IEEE Transactions on Instrumentation and 34 

Measurement, vol. 65, no. 4, pp. 939-950, April 2016. 35 

[2] C. L. Pulliam, D. A. Heldman, E. B. Brokaw, T. O. Mera, Z. K. Mari and M. A. Burack, 36 

"Continuous Assessment of Levodopa Response in Parkinson's Disease Using Wearable Motion 37 

Sensors," in IEEE Transactions on Biomedical Engineering, vol. 65, no. 1, pp. 159-164, Jan. 2018. 38 

[3] Y. C. Kan and C. K. Chen, "A Wearable Inertial Sensor Node for Body Motion Analysis," in IEEE 39 

Sensors Journal, vol. 12, no. 3, pp. 651-657, March 2012. 40 



13 

[4] P. Jatesiktat and W. T. Ang, "Recovery of forearm occluded trajectory in Kinect using a wrist-1 

mounted Inertial Measurement Unit," 39th Annual International Conference of the IEEE 2 

Engineering in Medicine and Biology Society (EMBC), Seogwipo, 2017, pp. 807-812.  3 

[5] D. L. Arsenault and A. D. Whitehead, "Quaternion based gesture recognition using worn inertial 4 

sensors in a motion tracking system," 2014 IEEE Games Media Entertainment, Toronto, ON, 2014, 5 

pp. 1-7. 6 

[6] D. Arsenault and A. D. Whitehead, "Gesture recognition using Markov Systems and wearable 7 

wireless inertial sensors," in IEEE Transactions on Consumer Electronics, vol. 61, no. 4, pp. 429-8 

437, November 2015. 9 

[7] X. Ge, L. Pan, Q. Li, G. Mao and S. Tu, "Multipath Cooperative Communications Networks for 10 

Augmented and Virtual Reality Transmission," in IEEE Transactions on Multimedia, vol. 19, no. 11 

10, pp. 2345-2358, Oct. 2017. 12 

[8] E. Bastug, M. Bennis, M. Medard and M. Debbah, "Toward Interconnected Virtual Reality: 13 

Opportunities, Challenges, and Enablers," in IEEE Communications Magazine, vol. 55, no. 6, pp. 14 

110-117, 2017. 15 

[9] B. K. Maharrey, A.S. Lim, and S. Gao, “Interconnection between IP networks and wireless sensor 16 

networks,” in International Journal of Distributed Sensor Networks, vol. 8, no. 12, p. 567687, 17 

2012. 18 

[10] Amit L. Ahire, Alun Evans, and Josep Blat, “Animation on the web: a survey”. In Proceedings of 19 

the 20th International Conference on 3D Web Technology (Web3D '15). ACM, pp. 249-257, 2015. 20 

[11] I. Fette and A. Melnikov, “The websocket protocol,” RFC Editor, RFC6455, December 2011. 21 

[12] Autobahn python. [Online]. Available: http://autobahn.ws/python  22 

[13] K. D. Wise, “Integrated microelectromechanical systems: A perspective on mems in the 90s,” in 23 

[1991] Proceedings. IEEE Micro Electro Mechanical Systems, Jan 1991, pp. 33–38. 24 

[14] F. Leens, “An introduction to I2C and SPI protocols,” IEEE Instrumentation Measurement 25 

Magazine, vol. 12, no. 1, pp. 8–13, February 2009. 26 

[15] InvenSense. ”MPU-9250 Nine-Axis (Gyro + Accelerometer + Compass) MEMS 27 

MotionTrackingTM Device”. [Online]. Available: https://www.invensense.com/products/motion-28 

tracking/9-axis/mpu-9250/ 29 

[16] STMicroelectronics. ”iNEMO inertial module: 3D accelerometer, 3D gyroscope, 3D 30 

magnetometer”. [Online]. Available: http://www.st.com/en/mems-and-sensors/lsm9ds1.html 31 

[17] J. Bartholomeycz, S. Zimmermann, U. Breng, W. Gutmann, M. Hafen, E. Handrich et al., “Mems 32 

based inertial measurement unit for attitude and heading reference systems,” in 2nd European 33 

Conference Exhibition on Integration Issues of Miniaturized Systems - MOMS, MOEMS, ICS and 34 

Electronic Components, April 2008, pp. 1–8. 35 

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach et al., “Hypertext Transfer 36 

Protocol – HTTP/1.1,” United States, 1999. 37 

[19] ”Orbisnap”. [Online]. Available: http://www.orbisnap.com 38 

[20] ”Cortona 3D Viewers”. [Online]. Available: http://www.cortona3d.com/cortona3d-viewers 39 

[21] J. Behr, P. Eschler, Y. Jung, and M. Zollner, “X3DOM: A DOM- ¨based HTML5/X3D Integration 40 

Model,” in Proceedings of the 14th International Conference on 3D Web Technology, ser. 41 

Web3D ’09. ACM, 2009, pp. 127–135. 42 

[22] ”Bit Management”. [Online]. Available: http://www.bitmanagement.com/ 43 

[23] ”Flux 3D Player”. [Online]. Available: http://fluxplayer.software.informer.com/ 44 

[24] ”Instant Reality”. [Online]. Available: http://www.instantreality.org 45 

[25] ”View 3D Scene”. [Online]. Available: http://castleengine.sourceforge.net/view3dscene.php 46 

[26] Westphal, Cédric. “Challenges in Networking to Support Augmented Reality and Virtual Reality.” 47 

(2016). 48 

http://autobahn.ws/python
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/
http://www.st.com/en/mems-and-sensors/lsm9ds1.html
http://www.orbisnap.com/
http://www.cortona3d.com/cortona3d-viewers
http://www.bitmanagement.com/
http://fluxplayer.software.informer.com/
http://www.instantreality.org/
http://castleengine.sourceforge.net/view3dscene.php



