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Introduction

To meet the increasing demand of food, insecticides are 
used for the management of agricultural insect pests 

throughout the world (Tilman et al., 2001; Gupta et al., 
2019). But the use of insecticides have adversed affectes 
on the density and diversity of natural predators in agro-
ecosystems by killing them directly or by reducing their 
prey and leading to starvation (Pekar, 2012; Zhang et al., 
2015). Extensive use of insecticides decline the population 
of pollinators (Henry et al., 2012; Whitehorn et al., 2012), 
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seed dispersers (Donald et al., 2001) and biological control 
agents in agroecosystems (Geiger et al., 2010). As a result, 
natural enemies cannot perform up to their full potential 
in integrated pest management programs. The situation is 
even worse in developing countries where banned or re-
stricted insecticides are available in the market and still use 
in crop fields (Ekstrom and Ekbom, 2011). 

Spiders are most diverse and abundant generalist 
predators in many agroecosystems (Suenaga and 
Hamamura, 2015; Birkhofer et al., 2016). They are 
extremely effective in the management of insect pest 
population and ultimately controlling the damage to the 
crops (Bucher et al., 2014; Beleznai et al., 2017). Spiders 
cause direct mortality of pests through their consumptive 
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effect (Lefebvre et al., 2017). They capture and kill more 
prey than they actually consume. This high rate of capture 
can reduce the pest number more significantly in the 
fields (Michalko et al., 2017). Spiders also cause indirect 
mortality in insects through their non-consumptive effect. 
They dislodge insect pests (aphids and caterpillars); which 
increased the mortality of insect pests due to their exposure 
to harsh environmental conditions and other predators 
(Sunderland, 1999). 

Spiders can also control prey populations because 
they often capture and kill more prey than they consume. 
Riechert and Lockley (1984) report that a spider may kill 
as many as 50 times the number of prey it consumes. 

  
Insecticides have acute as well as chronic effects on 

spiders. In case of acute poisoning, contact or ingestion 
of insecticides cause the death of individual. Many field 
and laboratory studies reported mortality in spiders when 
exposed to different insecticides (Deng et al., 2006; Pekar 
and Benes, 2008; Elzen and Pfannenstiel, 2009; Marko 
et al., 2009; Hanna and Hanna, 2014). Chronic exposure 
to insecticides not only causes the death directly; but it 
also bring several behavioral and physiological changes 
in spiders (El Hassani et al., 2008). Sub lethal effects of 
insecticides disturb the activity level of spiders (Wrinn et 
al., 2012), courtship behaviors (Griesinger et al., 2011), 
development time (Deng et al., 2006), reproductive rate 
(Desneux et al., 2007) and modify their web structure 
(Benamu et al., 2013; Pasquet et al,. 2016).

There are many factors that affect the mortality of 
spiders due to application of insecticides in the field i.e. 
concentration or dose, exposure duration, abiotic conditions 
and insecticide bioavailability. In agroecosystems, possible 
routes of uptake of insecticides by spiders are via contact with 
droplets of spray (Haughton et al., 2001), via oral uptake by 
feeding on insecticide contaminated prey (Navarro-Silva et 
al., 2010) and via residual contact (Dinter, 1995; Amalin 
et al., 2000). Some insecticides have long residual activity 
like chlorinated hydrocarbons, organophosphates and 
pyrethroids (Sherma, 2001). However, residual effect of 
few insecticides on spiders is also known but require more 
investigation (Mansour et al., 1992; Pekar and Haddad, 
2005; Pekar and Benes, 2008).

Thiamethoxam is a second generation neonicotinoid. It 
belongs to thianicotinoil sub class and affect acetylcholine 
receptors of insect nervous system (Maiensfisch et al., 
2001). It has both contact and systemic activity and used 
for drench, foliar, soil and seed treatment (Maiensfisch 
et al., 2001). It is very effective for the control of aphid, 
leafhopper and white fly in agroecosystem (Torres et al., 
2003; Acda, 2007). However, it is toxic for naturel enemies 
like Serangium japonicum (Yao et al., 2015), Hippodamia 
convergens, Coleomegilla maculate (Moscardini et al., 

2015), Coccinella septempunctata (Shankarganesh et al., 
2015), Chrysoperla carnea (Gontijo et al., 2014) and stink 
bug (Torres et al., 2003). The sublethal concentrations of 
thiamethoxam adversely affect life table parameters of 
predatory beetle Hippodamia variegata (Rahmani and 
Bandani, 2013) and Coccinella septempunctata ( Jiang et 
al., 2018). It impairs the navigation and homing ability 
of honey bee (Tosi et al., 2017). It also reduces colony 
initiation in bumble bees (Elston et al., 2013).

Spiromesifen (tetronicacid derivative) is a growth 
regulator, acts as an inhibitor of lipid biosynthesis (Sparks 
and Nauen, 2015). Spiromesifen is very effective against 
sucking insect pests in many cropping systems including 
vegetables, cotton and ornamentals (Liu, 2004; Palumbo, 
2009). It causes lethal and sublethal effects on natural 
enemies e.g. predatory mite Neoseiulus californicus, (Kaplan 
et al., 2012; Salman and Ay, 2014; Mollaloo et al., 2016). It 
affects the life table parameters of predatory mite (Sarbaz et 
al., 2017). It reduces reproductive potential of Galendromus 
occidentalis (Irigaray and Zalom, 2007).

Oxyopes javanus (Oxyopidae) is an abundant lynx spiders 
in many agroecosystems throughout the world including rice 
(Tahir and Butt, 2008), wheat (Butt and Sherawat, 2012), 
tea fields (Das et al., 2010; Basnet and Mukhopadhyay, 
2015) and cotton (Taqi et al., 2019). It is the predator of 
many important insect pest species including white back 
planthopper, armyworm, pink graminous stem borer, cereal 
aphids, leafhoppers, grasshopper nymphs and tea mosquito 
bug (Tahir and Butt, 2009; Sherawat and Butt, 2014; 
Basnet and Mukhopadhyay, 2014; Butt and Xaaceph, 2015).

Spiromesifen and thiamethoxam both insecticides 
are widely used in Pakistan to control insect pests in 
different agroecosystems (Naveed et al., 2010; Khan et 
al., 2013, 2015; Ma et al., 2019; Khan, 2019). The present 
study was designed to assess the acute and residual toxicity 
of insecticides spiromesifen and thiamethoxam on the 
population of O. javanus. 

Materials and Methods

Specimens
Specimens of O. javanus were randomly collected 

from chemically untreated wheat fields of University 
of the Punjab, Lahore, Pakistan by sweep net and direct 
hand picking. Collected spiders were transferred to 
the laboratory and placed singly in glass container (50 
mm height and 25 mm diameter). For acclimation with 
laboratory conditions, spiders were kept in laboratory at 
27 ± 5 °C room temperature, 60-65 % relative humidity 
and 14:10 h light and dark period for atleast two days. To 
each spider three larvae of drosophila were provided daily 
as food until used in experiment. Water was continuously 
provided via moistened cotton wicks. 
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Table 1: Tested insecticides; grouped by MOA (Mode of action) on the bases of classification by Insecticide 
Resistance Action Committee (IRAC), their commercial name, active ingredient (A.I) content and formulation 
type. 
Commercial 
name

Chemical sub-
group

Active ingredi-
ent  (A.I)

Mode of action (MOA group) Formulation FR/ Hec-
tare

Actara Neonicotinoids Thiamethoxam  Nicotinic Acetylcholine receptor (nAChR) 
agonists Nerve action (4)

250 g A.I/ Kg WG a 80 g

Oberon Tetronic acid 
derivatives

Spiromesifen Inhibitors of acetyl CoA carboxylase, Lipid 
synthesis. Growth regulation chemical (23)

228.6 g A.I/ L SCb 250 ml

a SC, Suspension concentrate; bWG, Wettable granules.

Insecticides
Commercial formulations of thiamethoxam (Actara® 

25 WG by Syngenta) and spiromesifen (Oberon® SC by 
Bayer crop science) were purchased from local market 
(Table 1).

Acute toxicity assay
To check the acute toxicity, spiders were exposed 

directly to the insecticides by dipping method as describe 
by Tanaka et al. (2000). To prepare stock solution 
(spiomesifen 10 ml/ 500 ml and thiamethoxam 10g/ 500 
ml), insecticide was dissolved in acetone and required 
concentrations (Field Rate, ½ Field Rate, ¼ Field Rate, 1/8 
Field Rate and 1/16 Field Rate ) were prepared by diluting 
this stock solution in water. A plastic vial with screen lid 
was used for dipping the specimens in the insecticide 
solution for 10 seconds. Spiders in control group were 
treated with the water that contain acetone in the same 
quantity as present in the field rate concentration. After 
treatment spiders were shifted into their containers with 
paper towel to absorb dripping insecticide and were placed 
in the laboratory. 

Prior to experiment preliminary range finding tests 
were carried out to find appropriate concentration range 
that produce zero to 99% mortality and six doses were 
selected to perform experiment. Tests for all concentrations 
were performed simultaneously. Mortality of the spiders 
was assessed at 2, 4, 8, 16, 24, 36, 48, 60, and 72 hours after 
exposure. Absence of any response in spiders after being 
stimulated by fine camel hair brush was declared as dead 
(Sherawat et al., 2015). All tests were replicated thrice and 
in each replicate ten spiders were present. No food was 
offered to spiders during the experiment.

Residual toxicity assay
To assess the residual toxicity of both insecticides 

against O. javanus, 1 L solution of tested insecticide was 
prepared according to maximum field application rate 
Table 1 (Pekar and Benes, 2008). Whatman (No. 2) filter 
paper sheets (10 × 10) were dipped into solution of tested 
insecticide for two minutes and dried. Toxicity of both 
insecticides residues of age <1, 5, 10 and 20 days old was 
assessed. For this purpose, insecticide treated sheet was 

rolled in the form of tubes. A single spider was released 
into a roll of filter paper and ends of the roll were folded 
to ensure permanent contact with insecticide residues. The 
mortality of the spiders exposed to the residues of tested 
insecticides was checked for three consecutive days at 
regular intervals i.e., after 6, 12, 24, 36 48, 60 and 72 hours. 
For the control group similar test was performed using 
water. All tests were replicated thrice and in each replicate 
ten spiders were present.

Statistical analysis
For analysis, mortality data was divided in three 

groups i.e., only adult male, only adult female and whole 
population (65% immature of all instars, 25% adult female 
and 10% adult male). Population structure was based 
on our field collection. LC50 and LT50 was calculated for 
all the three groups. Concentration-mortality data was 
subjected to logistic model of probit analysis to calculate 
LC50 and residues age-mortality data to loglogistic model 
to calculate LT50. The formula of probit analysis (Finney, 
1971) is as following:

P = α + β[log10 (Dose)]
Toxicity and Persistance categories for laboratory 

bioassays are given in Table 4. Toxicity and persistence 
of these insecticides was categorised according to IOBC 
(Sterk et al., 1999). 

The susceptibilities of male, female and whole 
population of spiders towards both insecticides were 
analysed by Complete Randomized Design One-way 
ANOVA following Tukeys post hoc test. Normality of the 
data was tested using Shapiro-Wilk test. To perform all 
statistical analysis Minitab 16 was used. 

Results

Acute toxicity
Median lethal concentration (LC50) of tested 

insecticides after 24 hours of application against O. javanus 
is given in Table 2.

At field rate of spiromesifen, only 75 % mortality was 
recorded after 72 hours of treatment. LC50 values showed 
least tolerance of males than female and whole population 

Toxicity of Insecticides against O. javanus
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against spiromesifen (F 2, 6 = 452.73; P < 0.001). According 
to IOBC classification, spiromesifen appeared slightly 
harmful towards O. javanus as it has caused less than 
80% mortality (Table 4). Survival rate of the spiromesifen 
treated spiders is shown in Figure 1A.

Figure 1B: Survival (%) of Oxyopes javanus population 
when exposed to different concentrarion of Spirome-
sifen (A) and Thiamethoxam (B).

Application of thiamethoxam at recommended field 
rate caused 100% mortality of spiders after 72 hours of 
treatment. Highest susceptibility was recorded in male 
spiders followed by total population and female spiders (F 
2, 6 = 109.15; P < 0.001). According to IOBC classification, 
thiamethoxam also appeared slightly harmful towards O. 
javanus (Table 4). Survival rate of Thiamethoxam treated 
spiders is shown in Figure 1B.

The assessment of LC50 values as fraction of maximum 
field recommended concentrations ranges approximately 
from 0.7 to 1.0 for both insecticides. It also showed that 
both insecticides are slightly harmfull for this spider (Table 
2). Survival of the control group was 100% after 24 hours 
of treatment (Figure 1A, 1B).

Residual toxicity
In residual contact bioassays, mortality decrease 

in spider when exposed to more aged residues of both 

insecticides, in all categories of spiders i.e male, female and 
whole population, Table 3.

The effect of different aged residues of spiromesifen 
was significantly different on all categories ( residue age, 
F 3, 35 = 115.51, P < 0.001 , categories of spiders, F 3, 35 = 
11.93, P < 0.001). The female spiders were least affected by 
aged residues of spiromesifen as 10 days old residues did 
not caused mortality in this category. According to IOBC 
classification spiromesifen was placed in class A i.e., short 
lived insecticide because its 5 days old residues produced < 
30% mortality in O. javanus (Table 4, Figure 2A).

The effect of different aged residues of thiamethoxam 
on all tested categories was significantly different (residue 
age, F 3, 35 = 460.49, P < 0.001 ; categories of spiders, F 3, 

35 = 258.25, P < 0.001). Female spiders were least effected 
by aged residues of thiamethoxam as 20 days old residues 
did not caused any mortality in spiders. According to 
IOBC classification thiamethoxam was placed in class B 
i.e. slightly persistent because less than 30 % mortality was 
recorded in O. javanus at 5-15 days old residues (Table 4, 
Figure 2B).

Figure 2: Mortality (%) of O. javanus population when 
exposed to different age residues of Thiamethoxam (A) 
and spiromesifen (B).
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Table 2: Concentration of insecticide formulation tested for acute toxicity to male, female and total population of 
spiders.
Compound Population sex 

number
Formulation 
Con.tested 
(ppm)

  LC50 (ppm) LC50 as-
fraction of 
MFRC 

LC90 as 
Fraction of 
MFRC 

α β χ2 P-value

Male 180 63 – 2000 799.933c 0.799 1.913 1.579 0.002 31.742  < 0.001

Spiromesifen Female 500 63 – 2000  1048.20a 1.048 2.407 1.695 0.002 29.149  < 0.001
Population 800 63 – 2000  922.444b 0.922 2.160 1.637 0.002 30.187 < 0.001
Male 180 18.9 – 600  212.027c 0.707 1.655 1.638 0.007 58.748  < 0.001

Thiamethoxam Female 540 18.9 – 600 325.590a 1.085 2.277 1.999 0.006 30.926  < 0.001

Population 900 18.9 – 600 2 266.399b 0.888 1.978 1.788 0.007 42.839 < 0.001
Median lethal toxicity (LC50) after 24 hours of insecticide exposure, and LC50 as the fraction of the maximum field recommended concentration 
(MFRC), α is the intercept and β is the slope while χ2 is showing goodness of fit of the model.

Table 3: Toxicity of aged insecticide residues of field rate concentration tested for male, female and total population 
of spiders, their median lethal time (LT50) after exposure to insecticide residues, α is the intercept and β is the slope 
while χ2 is showing goodness of fit of the model.
Insecticide Population category number Residue age (Days)  LT50 (Hours)  α  β  χ2 P-value
Spiromesifen Male 30 < 1  81.586 0.999 0.012 0.001 <0.001

30  5  89.653 1.784 0.012 0.495 <0.001
30  10  94.136 10.200 2.244 0.151 <0.001
30  20 No mortality -  -  - -

Female 30 < 1 147.153 5.477 1.097 0.613 <0.001
30  5 258.470 6.117 1.101 0.038 <0.001
30  10 No mortality -  -  - -
30  20 No mortality -  -  - -

Population 30 < 1 120.670 2.543 0.531 0.109 <0.001
30  5 223.173 2.701 0.499 0.407 <0.001
30  10 129.270 8.849 1.820 0.173 <0.001
30  20 No mortality -  -  - -

Thiamethoxam Male 30 < 1 29.214 2.693 0.798 2.334 <0.001
30  5  58.077 4.010 0.987 0.416 <0.001
30  10  79.843 5.180 1.182 4.388 <0.001
30  20  216.680 5.539 1.030 4.683 <0.001

Female 30 < 1  39.901 3.590 0.974 0.531 <0.001
30  5  79.843 5.180 1.182 4.388 <0.001
30  10  79.063 11.437 2.617 0.116 <0.001
30  20  No mortality -  -  - -

Population 30 < 1   33.587 3.148 0.896 0.014 <0.001
30 5   69.109 4.444 1.049 1.811 <0.001
30 10   84.051 6.453 1.456 3.142 <0.001
30 20   392.461 5.353 0.896 2.362 <0.001

Discussion

Natural enemies are usually more sensitive to 
insecticides, because in them resistance against insecticides 
develop slowly as compared to their prey (Hill and Foster, 
2000; Xu et al., 2001). In this study acute and residual 
toxicity of insecticides Thiaethoxam and Spiromesifen on 
hunting spider O. javanus was investigated. Both of these 
insecticides are used to control wide range of insect pests 

in various crop systems (Karmakar et al., 2009; Gontijo et 
al., 2014; Simon-Delso et al., 2015). 

Lethal effect of any insecticide depends upon its 
type of active ingredient, dose and exposure time. In this 
study, commercial insecticides were used instead of their 
pure active ingredient, as this condition corresponds to 
field situation more closely. Thus, resulting toxicity effects 
cannot be solely referred to active ingredient, as it may be 
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caused by additives present in composition of commercial 
insecticides (Pekar, 2012). The concentration mortality 
relationship for both insecticides was also studied. Such 
detailed analysis help to estimate mortality at other 
concentrations too, as concentration of insecticides vary 
among crops (Pekar, 2012). 

Table 4:  IOBC Classification based acute and 
persistence toxicity of tested insecticides.
Compound IOBC Category* 

(Acute toxicity)
IOBC Category** 
(Residual toxicity)

Thiamethoxam Slightly harmful Slightly persistent 
Spiromesifen Slightly harmful Short lived

* Harmless, < 30% mortality; slightly harmful, 30–79% mortality;  
moderately harmful, 80– 99% mortality; harmful, > 99% mortality. 
** Harmless in <5 days, short lived; 5–15 days, slightly persistent; 16–30 
days, moderately persistent and >30 days, persistent.

Results of present study showed that thiamethoxam 
is slightly harmfull for O. javanus. The LC50 value for 
population is near to its field application rate. Studies 
are available on the bad effect of thiamethoxam on 
naturel enemies (Cloyd and Bethke, 2011; Prabhaker 
et al., 2011; Tirello et al., 2013). Sabry et al. (2014) 
reported thiamethoxam toxicity to the natural enemies 
trichogramma, lacewing and seven spotted lady bird 
beetle. Amirzade et al. (2014) reported that thiamethoxam 
is less toxic to predatory ladybird beetles as compared 
to other neonicotinoids acetamaprid and imidacloprid. 
According to Van deVeire and Tirry (2003) thiamethoxam 
was harmful to predators Orius laevigatus and Amblyseius 
californicus. Thiamethoxam have potential to severely 
harm predatory bug Macrolophus pygmaeus (Rahmani et 
al., 2016). According to Yao et al. (2015) thiamethoxam is 
severely toxic for predator Serangium japonicum. Bostanian 
and Laurin (2008) reported that thiamethoxam was not 
toxic towards predator Anystis baccarum. Its application 
decrease the abundance of the soil Oribatida, Gamasida 
and Actinedida (El-Naggar and Zidan, 2013) So, 
thiamethoxam acute toxicity is vary from species to species 
of naturel enemies. 

According to our findings thiamethoxam is slightly 
persistant in the form of residues and its residues also 
affect O. javanus. Bonmatin et al. (2015) reported that 
thiamethoxam is a persistent insecticide. The reported 
halflife of thiamethoxam is variable from 7–92 days (Wood 
and Goulson, 2017). Result of present study show that 5 
days old residues of thiamethoxam are detrimental for 
O. javanus. The residues of thiamethoxam were found in 
various environmental components e.g water, nectar, pollen 
and soil (Girolami et al., 2009; Hladik et al., 2016). It is 
reported that residues of thiamethoxam inhibit feeding 
in adult and cause mortality in nymphs of predatory bug 
Podisus maculiventris (Tillman and Mullinix, 2004). Yao 
et al. (2015) reported that residues of thiamethoxam have 

slightly affected the predatory beetle Serangium japonicum. 
Thus residues of the thiamethoxam harm the nontarget 
organisms in different ways in agroecosystem.

Spiromesifen is a modern acaricide and insecticide 
used to control mites and sucking insects (Beers and 
Schmidt, 2014). It inhibits lipid biosynthesis and reduces 
the fertility in insects (Lefebvre et al., 2012). Our results 
indicate low of toxicity of spiromesifen towards O. javanus 
as compared to thiamethoxam. Shah et al. (2016) showed 
that spiromesifen was less toxic to mosquitos in comparison 
to pyrithroids and neonicotinoids. Wahengbam et al. 
(2018) reported that spiromesifen is harmless towards 
Trichogramma sp. Spiromesifen did not affected the 
parasitoid ability of Eretmocerus mundus white fly (Bielza et 
al., 2009). It reduces the number of thrips on pepper fruits 
(Srivastava et al., 2008). It is considered safe for pollinators 
(Nauen et al., 2002; Bielza et al., 2005). Wanumn et al. 
(2016) classified spiromesifen as slightly harmful towards 
two mirid predators N. tenuis and M. basicornis. Khan 
(2019) reported spiromesifen did not affect the parasitism 
ability of Tricogramma chilonis in laboratory.

This study showed short time bioavailability of 
insecticides spiromesifen for O. javanus. Residues of 
spiromesifen dissipate rapidly on fruit and vegetables 
but persist in soil for 15 days (Sharma et al., 2006, 2014). 
Wanumen et al. (2016) classified spiromesifen as shortlived 
insecticide because its thee days old residues did not 
caused significant mortality in mirid bug. Kutuk and Yigit 
(2009) reported the residue of spiromesifen was harmless 
towards adult lady bird Serangium parcesetosum but caused 
some mortality in larvae. Similar results were reported 
by Schmidt et al. (2005) towards larvae of the Coccinella 
septempunctata when exposed to spiromesifen. 

In this study, age of the insecticide residue was 
positively correlated with survival of the O. javanus. 
However, residues of thiamethoxam were more toxic 
than the residues of spiromesifen. And thiamethoxam is 
slightly persistent. Wanumen et al. (2016) reported that 
neonicotinoids are more persistent and toxic than tetronic 
acid derivatives. 

Spiders show variable response towards toxic chemicals 
depending upon size and sex of the spider (Shaw et al., 
2005). In present study both acute and residual toxicity 
assays showed that male spiders were more vulnerable than 
female spiders. It may be due to lower weight to body area 
ratio of male spiders than females (Dinter and Poehling, 
1995). Hof et al. (1995) reported lambda cyhalothrin 
affected male spider’s more than female wolf spiders. 
Pekar (1999) reported application of permethrin causes 
mortality directly related to body size of spiders. VanErp 
et al. (2002) reported male spiders are more susceptible 
to application of chlorpyriphos and diazinon than female 
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wolf spider. According to an assumption of IOBC working 
group insecticides found harmless for a particular predator 
in laboratory testing have great chance of being low risk to 
population in field (Bigler , 1994). 

Unfortunately in developing countries, there is lack of 
up to date information that are required to measures the 
total economic and agronomic outcomes and benefits of 
insecticides against their potential hazards and drawbacks. 
IPM approaches help to use insecticides wisely. For that 
purpose field based analysis are required to get reliable 
results that enable the application of insecticide in real 
environmental situation. Similarities of our results with the 
results of other studies on predacious arthropods indicate 
that the impact of insecticides on the existing pest/natural 
enemy complex must be taken into consideration when 
insect pest management strategies are planned.

Conclusion

The broad-spectrum insecticides should be used 
carefully. Instead of their vide spread use, they must be 
applied at hot spots of pests to save the natural predators 
like spiders. Even though when these insecticides are 
slightly harmful for natural enemies like spiders, they can 
have advers sublethal effects on them. This will decrease 
their fumctional role in agroecosystem. That is why only 
those products should be used in agroecosystems which 
are more specific against target pests and harmless for 
beneficial organisms. This would be helpful to reduce long 
term detrimental effects of insecticides on naturel enemies.
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