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Penalized regression methods for simultaneous variable selection and coefficient estimation have received a great deal of 

attention in recent years. Especially those based on the least absolute shrinkage and selection operator (LASSO), that 

involves penalizing the absolute size of the regression coefficients. The ordinary least square and LASSO methods were used 

for selection of most significant traits contributing towards seed yield in mungbean plants with 18 morphological and yield 

associated traits and to develop the prediction model . Bayesian information criterion was applied to choose minimum tuning 

parameter. Results indicated that dry weight biomass and harvest index were highly significant characters towards seed yield 

while days to maturity, days to flowering, number of nodes per plant, pods per plant and degree of indetermination had a 

significant affect on response variable. Based on the results, it was rational to conclude that high yield of mungbean crop 

could be obtained by selecting the breading materials with these important characters on seed yield. 
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INTRODUCTION 

 

Mungbean (Vigna radiata (L.) Wilczek) is an important 

pulse crop of Asia which is widely grown in India, 

Bangladesh, Sri Lanka, Thailand and Pakistan. In Pakistan, 

it is grown as a supplemental and cash crop on 245.9 

thousand hectares with a total production of 177.7 thousand 

tons and an average yield of 636 kg ha
-1
. Maximum average 

yield of 663 kg ha
-1
 from an area of 9.5 thousand hectare 

was obtained in the Khyber Pakhtunkhwa Province of 

Pakistan due to suitability and proper adaptation of 

mungbean to the agro-climatic conditions of the area 

(Anonymous, 2009). To improve the genetic architecture of 

mungbean plant, several efforts have been made. 

Resultantly, some improved mungbean cultivars have been 

developed with desirable yield related traits like total dry 

matter and harvest index. These parameters were given 

maximum importance in improving per unit area seed yield 

in mungbean as these were found to be positively associated 

with grain yield per plant (Sadiq et al., 2000). 

 Various applied statistical techniques like correlation, path 

coefficient analysis, multivariate analysis are used for 

selection of most important traits towards yield for breeding 

programs (Massart et al., 1997; Mohammad et al., 2005; 

Mohammad et al., 2008; Tejbir et al., 2009; Hussain et al., 

2012). Most of the crop improvement programs are to 

realize a marked improvement in crop yield. Since yield is a 

complex character which is controlled by association of 

various traits therefore, information on association of yield 

attributes and their direct and indirect effects on seed yield 

are of great importance. In view of this, correlation and path 

coefficient analysis are important statistical tools to evaluate 

breeding programs for high yield, as well as to examine 

direct and indirect contribution of the yield variables 

(Mohamed, 1999). 

 The path analysis has the advantage to partition the 

correlation coefficient into two components, one component 

measures the direct effect while the second component is the 

indirect effect of a predictor variable on the response 

variable (Dewey and Lu, 1959). This technique has been 

used in agriculture by plant breeders to assist in identifying 

traits that are useful as selection criteria to improve crop 

yield (Milligan et al., 1990; Surek and Baser, 2003; Ilahi et 

al., 2009). There are two essential goals in statistical theory; 

discovery of relevant and most important predictive 

variables having high prediction accuracy. Variable selection 

is fundamental to statistical modeling, it can significantly 

increase the performance of the fitted model and is an 

important area in linear regression analysis. A perfect 

variable selection can lead to better risk assessment and 

model interpretation. 

Numerous studies has been reported about variable 

selection. Identification of true significant estimates can 

enhance the prediction accuracy of the fitted model. 

Penalized likelihood framework to approach the problem of 

variable selection was proposed by Fan and Li (2001). In 

practice, a large number of predictors are usually included at 

the initial stage of modeling to get the possible modeling 
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biases. But, to enhance predictability and to select 

significant variables, statisticians and researchers usually 

prefer to use stepwise deletion and subset selection methods. 

Six statistical methods including stepwise deletion method 

were permored for evaluation of signifcant variables on 

different wheat genotypes as reported by Pirdashti et al. 

(2012). Although they are practically useful, these selection 

procedures ignore stochastic errors inherited in the stages of 

variable selections. Hence, their theoretical properties are 

somewhat hard to understand. Furthermore, the best subset 

variable selection suffers from several drawbacks, the most 

severe of which is its lack of stability as analyzed by 

Breiman (1996a). Let us consider the matrix form of linear 

regression model  

y Xβ ε= +                                                                          (1) 

where X nn p×  is design matrix representing data set of 18 

predictors or independent variables, β is a Pn×1 vector of 

unknown coefficients, ε is a vector of identically 

independent distributed (i.i.d) random variables with means 

zero and finite variance σ² and y is value of response 

variable. Here it is assumed that the data are centered, 

therefore, intercept is not included in the regression model. 

The ordinary least square (OLS) method can be used to 

estimate the regression unknown coefficients. The OLS 

estimates are not preferred by the data analysts due to two 

main reasons. The first one related with prediction accuracy, 

these estimates have often low bias but large variance. The 

prediction accuracy sometimes can be improved by 

shrinking or setting some regression coefficients to zero. In 

this way one can sacrifice a little bias to reduce the variance 

of the predicted values and may improve the overall 

prediction accuracy. The second one is related to 

interpretation. When model has a large number of predictors, 

researchers often would like to determine a smaller subset 

that describes the strongest effects. The two standard 

techniques subset selection and ride regression were used to 

improve the OLS estimates, but both have drawbacks. 

Although subset selection method provides interpretable 

models but can be extremely variable due to its discreteness, 

regressors are either retained or dropped from the model 

(Breiman, 1996b; Fan and Li, 2001). Therefore small 

changes in the data can result in very different models being 

selected and this can reduce its prediction accuracy. In 

contrast ridge regression is a continuous process that shrink 

coefficients and hence more stable. But it can not set any 

coefficients to exactly zero. So, it does not give an easy 

interpretable model. These selection procedures ignore the 

stochastic errors or uncertainty during the stage of variable 

selection (Fan and Li, 2001; Shen and Ye, 2002). A new 

technique called least absolute shrinkage and selection 

operator (LASSO) was proposed by (Tibshirani, 1996). 

According to this some coefficients shrink and others are set 

to zero. It contains the good features of both subset and ride 

regression. The LASSO estimates can be defined as  
2

1 1

ˆ( ) argmin
p p

j j j

j j

LASSO y x
β

β β λ β
= =

= − +∑ ∑         (2) 

Where λ  is a nonnegative regularization parameter, the 

second term in the above equation is called “l1 Penalty”. The 

current study is carried out to determine the most effective 

yield components by LASSO method. This work is expected 

to help the crop breeders to find out the most important traits 

towards seed yield. 

 

MATERIALS AND METHODS  

 

The studies were conducted with thirty mungbean genotypes 

and three check cultivars in randomized complete block 

design (RCBD) with three replications. The seeds for this 

study were obtained from Nuclear Institute for Food and 

Agriculture, Peshawar, Pakistan. The experiments were 

carried out during two years (2007-2008). Plot size for a 

mungbean genotype in each replication was 3.6 2m . Eight 

morpho-physiological traits and eleven yield associated 

traits were studied like X1 = days to flowering (DF), X2 = 

plant height (PH), X3 = days to maturity (DM), X4 = number 

of nodes plant
-1
 (NPP), X5 = leaf area (LA), X6 = pods plant

-

1
 (PPP), X7 = seeds pod

-1
 (SPP), X8 = fresh weight of 

biomass (FW), X9 =1000-seeds weight (TSW), X10 = harvest 

index (HI), X11 = dry weight of biomass (DW), X12 = degree 

of indetermination (DIT), X13 = number of leaves plant
-1
 

(LPP), X14 = petiole length (PTL), X15 = peduncle length 

(PDL), X16 = clusters plant
-1
 (CPP), X17 = pods cluster

-1
 

(PPC), X18 = pod length (PL), and Y = seed yield (SY). 

Proper management practices were adopted throughout the 

growing seasons to ensure good crop growth.  

     Residual analysis is an essential tool for checking 

whether the statistical models fit to meet the data underlying 

model assumptions, like normality of residuals, linearity of 

the regression model, homoscedasticity, autocorrelation and 

multicollinarity. It is often obsevred that some observations 

do not seem to fit in the overall pattern of the data. The 

leverage value and mahalanobis distance are good devices to 

asses the multivariate outliers with respect to other x's values. 

The leverage value of the ith observation is defined as:  
1( )ii i ih X X X X−′ ′=               (3) 

where iih  is the diagonal entry of the hat matrix H, which 

provides a measure of distance of the i
th
 case from the 

centroid of the x observations. In general, If 2iih h>  then 

iih observation is considered as outlying observation. 

Mahalanobis distance is defined as:  
1. ( ) ( )M D X X X X−′ ′ ′= − ∑ −        (4)           
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where 
1−∑ is inverse covariance matrix of independent 

variables. The outlying or extreme observations with respect 

to y values are detected by the studentized deleted residuals 
*

ir , this method is preferred over the ordinary deleted 

residuals. The i
th
 studentized deleted residual is defined as:  

* ( )i i ir d S d=                                                                      (5) 

 It is not enough to asses whether the observation is or not an 

outlier. The next step is to ensure whether or not these are 

influential observations. The methods like Cook's distance 

(Di) and DFFITSi which is an abbreviation for "difference in 

fits" are used for the identification of such observations. It is 

obtained as:  

( )
ˆ ˆ( )i iD Y Y p MSE= − ×                                                       (6) 

If 
( , , )i P n pD Fα −>  then relative observation is defined as 

influential. The values of DFFITSi is defined as:   

( ) ( )
ˆ ˆ( )

i i i i ii
DFFITS Y Y MSE h= − ×                                    (7) 

 As a rule of thumb the observation is considered influential 

if the 1iDFFITS >  but this criteria is applicable only for 

small to medium data sets and for large data sets when 

2iDFFITS p n> ×  then the observation will be considered 

as influential. Shapiro-Wilk Test is used to test the 

normality. The test statistics is defined as:  
2

1 ( 1) ( )( ) 1n i n i iW x x SD nα − + − +
  = ∑ − −  

                         (8) 

where n = total number of observations, SD = standard 

deviation, x(i) = ordered sample from smallest to largest, 

x(n-i+1) = ordered sample from largest to smallest and α(n-i+1)= 

coefficient for observed n. 

A matrix of simple pearson’s correlation coefficients was 

computed between seed yield and its associated traits of 

mungbean as proposed by Steel and Torrie (1987). Dewey 

and Lu (1959) proposed path coefficient anaylsis technique 

to compute direct and inderect effects of component traits on 

seed yield. This is the extension of the regression model 

which partion the simple correlation coefficients into direct 

and inderect effects. 

Stepwise regression methods are traditional approaches 

which consider one covariate on each step. The resulting 

model selected by cross-validation or generalized cross-

validation may have lower prediction error to the future 

observation. Information theoretic approaches such as 

Akaike Information Criterion (AIC) by (Akaike, 1974) and 

Bayesian Information Criterion (BIC) by Schwarz and 

Gideon (1978) can select the best model from all the 

candidate models. The relative new methods based on 

penalized likelihood, such as the LASSO (Tibshirani, 1996), 

mainly consider the computational efficiency and stability. 

To measure the estimation accuracy, we follow Tibshirani 

(1997) and summarize the standard errors for the nonzero 

coefficients. The covariance matrix of the estimates can be 

written as:  
1 1 2ˆ( ) ( )T T TX X W X X X X Wλ λ σ− − − −+                              (9) 

where (.)−  
means the generalized inverse of a matrix, λ  is 

the tuning parameter, W  is a diagonal matrix with diagonal 

elements β̂  and 
2σ̂  is the estimation of the error variance. 

The optimal tuning 1( )T TX X W X Xλ − −+  parameter λ  was 

estimated by BIC method:  

( ) log( ) *log( )BIC SSE d n nλ = +                              (10)  

where SSE is the sum of the residuals and d is the number of 

nonzero parameters.  

 

RESULTS AND DISCUSSIONS 

 

Residual analysis: The values of 
iih  of sixty observations 

were calculated using equation (3) and the mean of these 

values was computed to be 0.30. The value of 2 0.6h =  was 

also calculated to point out high leverage observations from 

the given observations. No value was found to be greater 

than the mean value so it can be inferred that there was no 

such outlying observation in data set. These results have 

been verified by the mahalanobis distance method defined in 

equation (4) as well. To set out the criteria about the 

outlying observations as 2

( , 1). pM D αχ −> , the value of 

2 28.27tabulatedχ =  was noted from its table using p = 18, 

where p is the number of fitted parameters including 

intercept and with 0.05α =  as value of level of 

significance. Here again, no value greater than specified 

value of 2

tabulatedχ  was observed, therefore, no observation can 

be considered as outlier with respect to x's values. To access 

the outlying observations with respect to y values, 

studentized deleted residuals *

ir  were computed by equation 

(5). The detection criteria for outlying observation based on 
*

(1 , 1)i n p
r t α− − −> , the ttabulated=2.01 was taken from t-sistribution 

table with 0.05α =  and 41 degree of freedom. It was 

observed from the results that five observations were 

outliers. The observations numbered 2, 33, 49, 51 and 60 

were outlying with respect to response variable. The cook's 

distance, Di, values were calculated as formula defined in 

equation (6). The F = 1.80 value was taken from 

F distribution−  table. The values of DFFITSi were 

computed by equation (7). By applying the rule of thumb no 

observation was recorded having value exceeding 1. The 

value of 2 1.25p n =  was calculated and the same results 

were observed. No observation was observed to be greater 

than the specified value, so it was concluded that no 

influential observation was present in our data set. Same 
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results were obtained when the other test DFFITSi was used. 

It was clear from both tests that none of the five outlying 

observations are influential, so one may decide that their 

influence is not so strong to call for any remedial measures. 

Similar tests of residual analysis were applied on wheat data 

as reported by Ammara and Aslam (2010). The graphical 

representation of leverage values, mahalanobis distance 

values, studentized deleted residual values, cook's distance 

values and DFFITS values are shown in Figure 1. The 

outlying observations with respect to y values were observed 

outside the limits. Shapiro-Wilk test mentioned in equation 

(8) was used to test the normality of response variable y. The 

test statistics was calculated as w = 0.98 with P = 0.652. The 

test passed the assumption of normality that response 

variable follows normal distribution. This formula was 

published by Samuel Shapiro and Wilk (1965).  

Simple correlation analysis: To get an idea about overall 

pattern of the data set used in current study, descriptive 

statistics (minimum and maximum values, mean and 

standard deviation) of all the estimated variables was 

calculated and is presented in the Table 1. The minimum and 

maximum seed yield over two years were recorded as 1.0 

Table 1. Basic statistics (minimum and maximum values, mean and standard deviation) for estimated variables of 

mungbean genotypes 

Variables  Minimum   Maximum   Mean   Std. Deviation 

Days to flowering (X1)   38   56   47.2   5.1 

Plant height (X2)   38   88   55.5   10.3  

Days to maturity (X3)   77   97   86.5   4.8  

Number of nodes plant-1 (X4)   8   17   10.5   1.4  

Leaf area (X5)   117   271   181.8   31.8  

Pods plant
-1
 (X6)   8   29   15.7   4.6  

Seeds pod
-1
 (X7)   8   12   10.2   1.1  

Fresh weight of biomass (X8)   21   42   29.9   4.9  

1000-seed weight (X9)   45   75   58.7   6.1  

Harvest index (X10)   22   37   27.6   3.5  

Dry weight of biomass (X11)   5   10   7.7   1.1  

Degree of indetermination (X12)   12   71   43.0   12.0 

Number of leaves plant-1 (X13)   7   14   8.1   1.1  

Petiole length (X14)   9   21   13.8   2.1  

Peduncle length (X15)   6   14   9.2   1.5  

Clusters plant
-1
 (X16)   4   10   6.1   1.2  

Pods cluster
-1 

(X17)   2   5   3.5   0.5  

Pod length (X18)   7   10   9.1   0.6  

Seed yield (Y)   1.0   3.0   2.1   0.4  

 

 
Figure 1. The plotted diagramme mahalanobis distance, studentized deleted residual, leverage values, DFFITSi 

are ploted, observations outside uper and lower limits are outlying observations 
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ton per ha and 3.0 tons per ha respectively with 0.4 value of 

standard deviation, though the yield was comparatively 

highier as compared to the national average yield but as 

stated eralier mungbean was not grown as a major crop in 

Pakistan. Moreover, the crop was not receiving good 

practices, fertilization and was grown on marginal or fallow 

land. The Pearson's correlation matrix for the estimated 

significant traits of mungbean are given in Table 2. The 

correlation coefficient r value requires both a magnitude and 

a direction of either positive or negative. It may take on a 

range of values 1 1r− ≤ ≤ + . Results revealed that 

characters in the current study like days to flowering (0.29), 

pods per plant (0.44), seeds per pod (0.50), fresh weight of 

biomass (0.47), 1000-seeds weight (0.41), harvest index 

(0.63), dry weight of biomass (0.78), clusters per plant 

(0.37) and pod length (0.27), showed significantly positive 

correlation with seed yield of mungbean. Some positive and 

negative but weak correlations of different characters 

towards seed yield were observed which were not 

statistically significant because these traits have a little 

contribution in the selected germplasm. Seed yield was 

found to be strongly correlated with dry weight of biomass. 

Seed yield has positive and significant correlation with pods 

per plant and harvest index similar findings were reported by 

Mallikarjuna et al. (2006). A significantly positive 

association was recorded with number of pods per plant, 

number of seeds per pod, 100-seeds weight and harvest 

index towards seed yield as reported by Tijbir et al. (2009) 

contrary to negative and non significant correlation observed 

with seed yield. The study carried out by Mondal et al. 

(2011) points out that seed yield shows strong positive and 

significant correlation with total dry mass. In the currenct 

study we found that pod length and 1000-seeds weight have 

positive association but 1000-seeds weight was negatively 

correlated with seeds per pod as reported by Rohman et al. 

(2003) as well. Harvest index was found to be negatively 

correlated with plant height and days to maturity however 

correlation between harvest index and biomass yield was not 

significant, similar findings have been reported by Sharma 

and Smith (1986). 

Path coefficient analysis: The correlation coefficients were 

partitioned into direct and indirect effects. Total, direct and 

indirect contribution of yield traits on seed yield of 

mungbean estimated through path coefficient analysis are 

shown in Figure 2. Direct (diagonal) and indirect (off-

diagonal) effects among the yield traits are given in Table 3. 

The results show that dry weight of biomass and harvest 

index had high direct positive effects (0.79, 0.63) on seed 

yield. Positive direct effects of these traits on yield indicate 

their importance in determining these complex characters 

and therefore these factors should be kept in mind while 

practicing selection aimed at the improvement of seed yield. 

Similar results have been reported for maximum positive 

direct effect on yield by other workers (Tejbir et al., 2009). 

The dry weight of biomass and harvest index were shown to 

be strongly and significantly correlated with seed yield, and 

the direct effects of these two characters were high and 

positive. Munawar et al. (2001) have reported that dry 

biomass trait can be considered best yield component 

towards yield in mungbean, which supports our findings. 

This stresses that high yielding mungbean genotypes could 

be obtained by considering dry weight biomass and harvest 

index. The direct selection through mentioned traits can be 

effective. The highest positive indirect effects on seed yield 

of mungbean were recorded for fresh weight biomass (0.50) 

and seeds per pod (0.48) on seed yield of mungbean. 

Correlation coefficients between days to flowering, pods per 

plant, seeds per pod, fresh weight of biomass, 1000-seeds 

weight, clusters per plant and pod length were positive but 

their direct effects on seed yield showed negative or 

negligible impact. The results showed that seed yield was 

less associated with these traits. It can be concluded that 

direct selection through these characters would not be 

effective but these could be considered simultaneously as 

indirect causal factors. According to Sharma and Smith 

(1986) harvest index, the ratio of grain yield to total biomass 

yield, may be a useful selection trait for yield improvement, 

and this too supports our results. 

Penalized regression analysis: The LASSO method defined 

in equation (2) was used to estimate and select regression 

Table 2. Pearson’s correlation coefficient (r) matrix for the estimated traits of mungbean genotypes 

Traits Days to 

flowering 

Days to 

maturity 

Nodes 

plant
-1
 

Pods  

plant
-1
 

Harvest 

index 

Dry weight 

of biomass 

Degree of 

indetermination 

Days to maturity 0.39
**
       

No. nodes plant
-1
 0.02

NS
 0.51

**
      

Pods plant
-1
 0.58

**
 0.03

NS
 -0.14

NS
     

Harvest index -0.01
NS

 -0.23
*
 -0.03

NS
 0.18

NS
    

Dry weight of biomass 0.37
**
 0.04

NS
 -0.28

*
 0.41

**
 0.01

NS
   

Degree of 

indetermination 

0.25
*
 0.67

**
 0.50

**
 -0.21

NS
 -0.22

NS
 -0.13

NS
  

Seed yield 0.29
*
 -0.10

NS
 -0.20

NS
 0.44

**
 0.63

**
 0.78

**
 -0.20

NS
 

*, ** = Significant at 5 and 1% probability level, respectively, NS=Non Significant 
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coefficients among all predictors with different values of 

tuning parameter by using the R-language package (glmnet). 

The package was written by Friedman et al. (2008). A linear 

regression model with seed yield as response variable was 

fitted but first centering the predictors. The least square and 

LASSO estimates along their respective standard errors are 

given in Table 4.  For every nonzero regression coefficient 

estimation, several values of tuning parameter were 

calculated. Initial or final value of λ  for consideration of 

nonzero coefficient can be taken, and in this study we took 

initial value for this purpose. One nonzero estimate in the 

regression model was observed for the highest value of 

tuning parameter. The lowest value of tuning parameter was 

recorded when all the predictor variables are having nonzero 

coefficients. Dry weight of biomass was found to have high 

value of regression coefficient followed by harvest index. 

Table 3. Path coefficient analysis showing direct (diagonal) and indirect (off-diagonal) effect of the estimated yield 

components on seed yield of munbean 

Var X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 Y 

X1 -0.06   0.00  0.02  0.00  0.00  0.04  0.00   -0.01   0.00  -0.01   0.29   0.01   0.00   0.00  0.00  -0.01   -0.01   0.00   0.26 

X2  -0.02   0.00  0.04  0.04  -0.01  0.00  0.00   0.00   0.00  -0.03   -0.08   0.04   -0.03   -0.01  0.00  0.00   0.00   0.00   -0.06 

X3  -0.02   0.00  0.05  0.03  -0.01  0.00  0.00   0.00   0.01  -0.14   0.00   0.03   -0.03   -0.01  0.00  0.00   0.00   0.00   -0.09 

X4   0.00   0.00  0.03  0.06  -0.01  -0.01  0.00   0.00   0.00  -0.02   -0.22   0.03   -0.04   -0.01  0.00  0.00   0.00   0.00   -0.19 

X5  -0.01   0.00  0.03  0.03  -0.03  0.00  0.00   0.00   0.00  -0.06   -0.01   0.03   -0.03   -0.01  0.00  0.00   0.00   0.00   -0.06 

X6  -0.03   0.00  0.00  -0.01  0.00  0.07  0.01   -0.01   0.00  0.11   0.32   -0.01   0.01   0.00  0.00  -0.02   0.00   0.00   0.44 

X7  -0.03   0.00  0.01  -0.01  0.00  0.04  0.01   -0.01   0.00  0.22   0.27   -0.01   0.01   0.00  0.00  -0.01   0.00   0.00   0.49 

X8  -0.02   0.00  0.01  -0.01  0.00  0.03  0.00   -0.02   0.00  -0.04   0.53   0.00   0.01   0.00  0.00  -0.01   0.00   0.00   0.48 

X9   0.01   0.00  -0.02  -0.01  0.00  0.00  0.00   0.00   -0.02  0.19   0.26   -0.01   0.00   0.00  0.00  0.00   0.00   0.00   0.40 

X10   0.00   0.00  -0.01  0.00  0.00  0.01  0.00   0.00   -0.01  0.63   0.01   -0.01   0.00   0.00  0.00  -0.01   0.00   0.00   0.61 

X11  -0.02   0.00  0.00  -0.02  0.00  0.03  0.00   -0.01   -0.01  0.01   0.79   -0.01   0.01   0.00  0.00  -0.01   0.00   0.00   0.76 

X12  -0.01   0.00  0.03  0.03  -0.01  -0.01  0.00   0.00   0.00  -0.14   -0.10   0.05   -0.03   -0.01  0.00  0.01   0.00   0.00   -0.19 

X13  0.00   0.00  0.03  0.05  -0.01  -0.01  0.00   0.00   0.00  0.00   -0.21   0.03   -0.05   -0.01  0.00  0.00   0.00   0.00   -0.18 

X14  0.00   0.00  0.03  0.04  -0.02  -0.01  0.00   0.00   0.01  -0.10   -0.24   0.03   -0.03   -0.02  0.00  0.00   0.00   0.00   -0.31 

X15  0.00   0.00  0.01  -0.01  -0.01  -0.01  0.00   0.00   0.00  -0.28   0.00   0.01   0.00   0.00  0.00  0.01   0.00   0.00   -0.28 

X16  -0.01   0.00  0.00  0.00  0.00  0.05  0.00   0.00   0.00  0.18   0.19   -0.01   0.00   0.00  0.00  -0.03   0.00   0.00   0.37 

X17   0.02   0.00  -0.01  0.00  0.00  0.00  0.00   0.00   0.00  -0.07   -0.07   0.00   0.00   0.00  0.00  0.00   0.02   0.00   -0.11 

X18  -0.01   0.00  0.00  0.01  -0.01  0.02  0.00   0.00   -0.01  0.28   -0.02   0.00   -0.01   0.00  0.00  -0.01   0.00   0.00   0.24 

 

 
Figure 2. Direcct, indirect and total effect of estimated yield components on seed yield varaion of mungbean 
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The smallest value was observed regarding pods per plant 

and seeds per pod. Regression coefficients estimated through 

least square method showed that dry weight matter and 

harvest index were highly significant contributing traits 

towards seed yield. Days to flowering, days to maturity, 

number of nodes per plant, pods per plant and degree of 

indetermination were significant characters. The LASSO 

method gives nonzero coefficients to days to maturity, pods 

per plant, seeds per plant, harvest index and dry weight 

biomass, these are almost the same predictors selected 

throgh least square method. By noticing the standard errors 

for LASSO method that were estimated using defined 

criterion in equation (9), these standard errors were 

computed by fixing λ , by equation (10), at its optimal value 

0.0078 for the original data set, a substantial percent 

decrease in standard errors was observed over least square 

method. It can be concluded that the results of LASSO are 

more reliable and give accurate prediction. Figure 3 shows 

the LASSO estimates as a function of the tuning parameter 

λ , it indicates that the absolute value of each coefficient 

tends to be 0 as the tuning parameter goes to infinity, the 

curves almost increase in a monotone fashion to their least 

square estimators. The scale of λ is changed to log λ
 
to 

make picture more clear for users. The vertical broken line 

in Figure 3 shows the model for optimal value of tuning 

parameter, this line represents that five predictors are 

selected as important traits for improving the seed yield of 

mungbean. Tibshirani (1996) was concluded that for 

moderate size of predictors the LASSO give better results 

followed by ridge regression and then subset method, These 

findings supports our results.  

    

 
Figure 3. Shrinkage of LASSO coefficients correspond-

ing to value of loglambda (logλ). Each curve 

represents estimated coefficient with its 

corresponding label. The dashed line shows the 

model for logλ=-4.85 selected by BIC 

 

 

Table 4. Results from ordinary leat squares and LASSO for seed yield of mungbean genotypes 

Least Square LASSO  Predictors 

Coefficient S. Error Coefficient S. Error Decrease (%) 

Days to flowering (X1)   -0.0046*   0.0021   0  0.0017   18.42  

Plant height (X2)   -0.000039   0.0011   0  0.0009   17.92  

Days to maturity (X3)   -0.0044*   0.0024   0.0012  0.0020   18.15 

Number of nodes plant-1 (X4)   0.0180*   0.0087  0 0.0073   16.64 

Leaf area (X5)   -0.0033   0.0028  0 0.0002   91.73  

Pods plant
-1
 (X6)   0.0061*   0.0029   0.0007  0.0023   22.02  

Seeds pod
-1
 (X7)   0.0031   0.0088   0.0008  0.0050   43.38  

Fresh weight of biomass (X8)   -0.0015   0.0015  0 0.0013   14.21  

1000-seeds weight (X9)   -0.0016   0.0014  0 0.0011   18.21  

Harvest index (X10)   0.0700**   0.0022   0.072  0.0018   18.06  

Dry weight of biomass (X11)   0.2800**   0.0072   0.2709  0.0060   17.22  

Degree of indetermination (X12)   0.0017*   0.0019  0 0.0008   57.81  

Number of leaves plant-1 (X13)   -0.0170   0.0120  0 0.0101   15.77  

Petiole length (X14)   -0.0031   0.0049  0 0.0041   16.61  

Peduncle length (X15)   -0.0005   0.0051  0 0.0042   16.93  

Clusters plant
-1
 (X16)   -0.0091   0.0086  0 0.0070   18.56  

Pods cluster
-1
 (X17)   0.0140   0.0120  0 0.0103   13.98  

Pod length (X18)   0.0012   0.0120  0 0.0094   21.79  

*, ** = Significant at 5 and 1% probability level, respectively 
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Conclusions: The path analysis and penalized regression 

analysis used in this study showed that dry weight of 

biomass and harvest index are the most important yield 

contributing components to be considered for selection of 

mungbean genotypes in later stages after gene fixation, as 

the additive effects cannot be eliminated. It is concluded that 

penalized regression techniques can give the best prediction 

results than ordinary least squares technique. Every 

statistical technique has its assumptions and constraints. The 

special care should be taken before using such techniques. In 

this study we introduced the LASSO method for variable 

selection in agricultural research. As this method defines the 

continuous shrinkage operation that can produce coefficients 

that are exactly zero. The beauty of this technique is that 

crop breeders can interpret their model very easily, this 

study will also be helpful to select plant traits that contribute 

more towards seed yield, and for the selection of best and 

stable model. 
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