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Abstract.: In this manuscript we examine the concept of left and right
self-maps in PU-Algebra and explore some further interesting prperties to
PU-Algebra.We prove thatR2

x is idempotent, isotonic and endomorphic.
We determine the condition for which the composition ofLα andRb is
equivalent toRo. We prove that under what conditionLn

x is an endomor-
phism. We define theKer(R2

x) and show that it is a subalgebra and ideal
of PU-Algebra. We also prove that theFix(R2

x) is a subalgebra and ideal
of PU-Algebra.
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1. INTRODUCTION

In 1966, Imai and Iseki [2] introduced two classes of abstract algebra: BCK-algebras
and BCI-algebras. It is known that the class BCK-algebras is a proper sub class of the
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class of BCI-algebras. In [1], Hu and Li introduced a wide class of abstract algebras:
BCH-algebras. They are shown that the class of BCI-algebras is a proper sub class of the
class of BCH-algebras. In [5], Neggers and Kim introduced the Notion of d-algebra, which
is a generalization of BCK-algebras and investigated a relation between d-algebras and
BCK-algebras. Neggers et al.[6] introduced the notion of Q-algebras, which is the gener-
alization of BCH/BCI/BCK-algebras. Magalai and Tamilarasi [3] introduced the notion of
a TM-algebra which is a generalization of BCK/BCI/BCH-algebras and several results are
presented. The foundation of the concept of PU-algebra was laid down by the mathemati-
cians Mostafa et al. in their pioneering paper [4]. PU-algebra is a dual for TM-algebra.
It lies in a category of type(2, 0) algebras.(2, 0) types algebras consist of two operations
one is binary opertaion and other is nullary operation. Algebras like BCK,BCI,BCH,TM
etc. are all the type(2, 0) algebras. Their theory about PU-algebra and related ideas and
properties are nowadays utilized extensively in different areas of science like artificial in-
telligence, information sciences, cybernetics and computer sciences. The algebras like
PU-algebras, BCK-algebras, and BCI-algebras have been inspired by two considerations,
one based on classical and non-classical propositional calculi of Meredith and other based
on set theory [2]. The concept of ideal theory of PU-algebra plays a fundamental role in
the evolution of PU-Algebra, was first introduced by Mostafa et al. in [4] while the notion
of PU-homomorphism was also first defined by Mostafa et al. in [4]. They have stated and
proved some fundamental properties of it. Moreover, they have given the concept of right
self-maps, left self-maps, weak right self-maps and weak left self-maps and investigated
some of its properties. In this paper we shall further investigate these maps and determine
further interesting properties.
We have no doubt that the research along this line can be kept up, and indeed, some results
in this manuscript have already made up a foundation for further exploration concerning
the further progression of left and right self-maps as well as to insert these results in explor-
ing the properties of weak right self-maps and weak left self-maps and their applications in
other disciplines of algebra.

2. PRELIMINARIES

This section consists of some preliminary definitions and basic facts about PU-algebra
which are useful in the proofs of our results. Throughout this research work we denote the
PU-algebra always byZ without any specification. Here we only mention those concepts
of PU-algebra which are necessary for our treatment.
Definition 2.1. [4] PU-algebra(Z, ∗, 0) is a class of the type(2, 0) algebras satisfying the
(P1) and(P2) conditions for alla, b, c ε Z, where
(P1) 0 ∗ a = a. (P2) (a ∗ c) ∗ (b ∗ c) = b ∗ a.
While the binary relation≤ onZ is defined asa ≤ b ⇔ b ∗ a = 0.
Proposition 2.2. [4] The following results hold in any PU-algebra(Z, ∗, 0) for all a, b, c ε
Z.
(P3) a ∗ a = 0.
(P4) (a ∗ c) ∗ c = a.
(P5) a ∗ (b ∗ c) = b ∗ (a ∗ c).
(P6) a ∗ (b ∗ a) = b ∗ 0.
(P7) (a ∗ b) ∗ 0 = b ∗ a.
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(P8) if a ≤ b thena ∗ 0 = b ∗ 0.
(P9) (a ∗ b) ∗ 0 = (a ∗ c) ∗ (b ∗ c).
(P10) (a ∗ b) ≤ c ⇔ c ∗ b ≤ a.
(P11) a ≤ b ⇔ (b ∗ c) ≤ (a ∗ c).
(P12) The following three results are similar in(Z, ∗, 0).
(1): b = c. (2): b ∗ a = c ∗ a. (3): a ∗ b = a ∗ c.
(P13) Both (left and right) cancellation properties hold in(Z, ∗, 0).
Proposition 2.3. [4] In PU-algebra(Z, ∗, 0) the conditions(P14) and(P15) hold for all
a, b, c ε Z. Where
(P14) (c ∗ a) ∗ (c ∗ b) = a ∗ b. (P15) (a ∗ b) ∗ c = (c ∗ b) ∗ a.
Definition 2.4. [4] Let (Z, ∗, 0) is a PU-algebra then for any fixedxεZ the mapping
Rx : Z → Z, defined byRx(a) = a ∗ x, ∀aεZ, is said to be right self- map ofZ.
Similarly the mappingLx : Z → Z, defined byLx(a) = x ∗ a, ∀aεZ, is said to be left
self- map ofZ.
Definition 2.5. [4] Let Zs is a non-vacuous subset of(Z, ∗, 0) thenZs is called PU- subal-
gebra ofZ if a ∗ b ε Zs whenevera, b ε Zs

Definition 2.6. [4] Let Zd is a non-vacuous subset of(Z, ∗, 0) is said to be ideal ofZ if it
satisfies the(P16) and(P17) conditions for anya, b ε Z, where
(P16) 0εZd. (P17) a ∗ b ε Zd andaεZd ⇒ bεZd.

3. RIGHT SELF-MAPS IN PU-ALGEBRA

In this section we prove the results of right self-maps which are useful in proving the
theorems in section-4.
Proposition 3.1.Let Z be a PU-algebra then the following results are true for alla, b ε Z.
(Pa) If Rx(0) = 0 thenx = 0, ∀xεZ.
(Pb) If Rx(b) ∗Rx(a) = Ra∗b(0) ∀xεZ.
(Pc) R2

x is idempotent i.e.R2
x ◦R2

x = R2
x ∀xεZ.

(Pd) R2
x is an endomorphism ∀xεZ.

(Pe) R2
x(a ∗ b) = Rx(b) ∗Rx(a). ∀xεZ.

(Pf ) R2
x(a ∗ b) = R2

x(a) ∗ b = a ∗R2
x(b). ∀xεZ.

(Pg) a ≤ b ⇒
{

R2
x(a) ≤ R2

x(b) if n is even natural number ∀xεZ.

R2
x(b) ≤ R2

x(a), if n is odd natural number ∀xεZ.

(Ph) For every natural numbern, Rn
x =

{
Rx if n is odd ∀xεZ.

I, if n is even ∀xεZ.

Here′I ′ is identity map.

(Pi) Rn
x(a) ∗Rn

x(b) =

{
a ∗ b, if n is even natural number ∀xεZ.

b ∗ a, if n is odd natural number ∀xεZ.

Proof .

(Pa) : If Rx(0) = 0, then0 ∗ x = 0. From proposition(P3), we havex ∗ x = 0,
sox ∗ x = 0 ∗ x. By (P13) both (left and right) cancellation properties hold in(Z, ∗, 0), so
x = 0.
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(Pb) : SinceRx(b) ∗ Rx(a) = (b ∗ x) ∗ (a ∗ x). From proposition(P2), we have
Rx(b)∗Rx(a) = a∗ b. By (P1), we haveRx(b)∗Rx(a) = 0∗ (a∗ b), soRx(b)∗Rx(a) =
Ra∗b(0).
(Pc) : Since(R2

x ◦ R2
x)(a) = R2

x(R2
x(a)), so(R2

x ◦ R2
x)(a) = R2

x(((a ∗ x) ∗ x)). From
proposition(P4), we have(R2

x ◦R2
x)(a) = R2

x(a).
(Pd) : R2

x(a ∗ b) = ((a ∗ b) ∗ x) ∗ x. From proposition(P4), we haveR2
x(a ∗ b) = a ∗ b.

By (P4), we haveR2
x(a ∗ b) = [(a ∗ x) ∗ x] ∗ [(b ∗ x) ∗ x], soR2

x(a ∗ b) = R2
x(a) ∗R2

x(b).
HenceR2

x is an endomorphism
(Pe) : R2

x(a ∗ b) = ((a ∗ b) ∗ x) ∗ x. From proposition(P4), we haveR2
x(a ∗ b) = a ∗ b.

By (P4), we haveR2
x(a∗b) = ((a∗x)∗x)∗b. By (P15), we getR2

x(a∗b) = (b∗x)∗(a∗x),
soR2

x(a ∗ b) = Rx(b) ∗Rx(a).
(Pf ) : R2

x(a ∗ b) = ((a ∗ b) ∗ x) ∗ x. From proposition(P4), we haveR2
x(a ∗ b) = a ∗ b.

Again by (P4), we getR2
x(a ∗ b) = ((a ∗ x) ∗ x) ∗ b, soR2

x(a ∗ b) = R2
x(a) ∗ b.

Similarly R2
x(a ∗ b) = a ∗ ((b ∗ x) ∗ x) = a ∗R2

x(b).
HenceR2

x(a ∗ b) = R2
x(a) ∗ b = a ∗R2

x(b).
(Pg) : If a ≤ b, then by(P11),we haveb ∗ x ≤ a ∗ x, soRx(b) ≤ Rx(a).
if we haveb ∗ x ≤ a ∗ x,then again by(P11), we have(a ∗ x) ∗ x ≤ (b ∗ x) ∗ x, so
R2

x(a) ≤ R2
x(b).

Next if we have(a ∗ x) ∗ x ≤ (b ∗ x) ∗ x, then again by(P11) we get
((b ∗ x)∗) ∗ x ≤ ((a ∗ x)∗) ∗ x, so R3

x(b) ≤ R3
x(a).

Continuing in the same way we reach to a conclusion that

a ≤ b ⇒
{

Rn
x(a) ≤ Rn

x(b), if n is even natural number ∀xεZ.

Rn
x(b) ≤ Rn

x(a), if n is odd natural number ∀xεZ.

(Ph) : Forn = 1, we haveR1
x(a) = a ∗ x ⇒ R1

x(a) = Rx(a) ⇒ R1
x = Rx.

For n = 2, we getR2
x(a) = (a ∗ x) ∗ x. From proposition(P4), we haveR2

x(a) = a, so
R2

x(a) = I.
For n = 3, we have
R3

x(a) = ((a ∗ x) ∗ x) ∗ x. From proposition(P4), we getR3
x(a) = a ∗ x ⇒ Rx = R3

x.
Forn = 4, we have
R4

x(a) = (((a ∗ x) ∗ x) ∗ x) ∗ x. From proposition(P4), we haveR4
x(a) = (a ∗ x) ∗ x.

Again by(P4), we getR4
x(a) = a, so R4

x(a) = I(a).
Continuing in the same way we reach to a conclusion that if′n′ is positive odd integer then
Rn

x = Rx. And if ′n′ is positive even integer thenRn
x = I.

(Pi) : Forn = 1, we haveR1
x(a) ∗R1

x(b) = (a ∗ x) ∗ (b ∗ x). From proposition(P2), we
haveR1

x(a) ∗R1
x(b) = b ∗ a.

Forn = 2, we haveR2
x(a) ∗R2

x(b) = ((a ∗ x) ∗ x) ∗ ((b ∗ x) ∗ x). From proposition(P2),
we haveR2

x(a)∗R2
x(b) = (b∗x)∗ (a∗x). Again by(P2), we haveR2

x(a)∗R2
x(b) = a∗ b.

Continuing in the same way we reach to a conclusion that if′n′ is positive odd integer then
Rn

x(a) ∗Rn
x(b) = b ∗ a. And if ′n′ is positive even integer thenRn

x(a) ∗Rn
x(b) = a ∗ b.
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4. LEFT SELF-MAPS IN PU-ALGEBRAS

In this section we prove the results of left self-maps which are useful in proving the
theorems related to endomorphism, subalgebras and ideals in PU-algebras.
Proposition 4.1.Let Z be a PU-algebra then the following results are true for alla, b ε Z.
(Pj) Lo is the identity map.
(Pk) Lx(a) ∗ Lx(b) = La(b) ∀xεZ.
(Pl) a ∗ L2

x(b) = L2
x(a ∗ b) ∀xεZ.

(Pm) L2
x(a) ∗ L2

x(b) = Lx(a) ∗ Lx(b), ∀xεZ.
(Pn) For all natural numbersn, Ln

x(a ∗ b) = a ∗ Ln
x(b), ∀xεZ.

(Po) For all natural numbersn, Ln
x(a) ∗ Ln

x(b) = a ∗ b, ∀xεZ.
Proof .
(Pj) : Lo(a) = 0 ∗ a. From proposition(P1), we haveLo(a) = a,soLo(a) = I(a), or
Lo = I, ∀aεZ.
(Pk) : Lx(a)∗Lx(b) = (x∗a)∗(x∗b). From proposition(P14),we haveLx(a)∗Lx(b) =
a ∗ b = La(b).
(Pl) : a∗L2

x(b) = a∗(x∗(x∗b)). From proposition(P5),we havea∗L2
x(b) = x∗(a∗(x∗b)).

Again by(P5),we geta ∗ L2
x(b) = x ∗ (x ∗ (a ∗ b)), soa ∗ L2

x(b) = L2
x(a ∗ b).

(Pm) : L2
x(a) ∗ L2

x(b) = [x ∗ (x ∗ a)] ∗ [x ∗ (x ∗ b)]. From proposition(P14), we get
L2

x(a) ∗ L2
x(b) = (x ∗ a) ∗ (x ∗ b), soL2

x(a) ∗ L2
x(b) = Lx(a) ∗ Lx(b).

(Pn) : Ln
x(a ∗ b) = a ∗ Ln

x(b).
We prove this by using the principle of mathematical induction.
So forn = 1, we haveLx(a ∗ b) = a ∗Lx(b). From proposition(P5) , we getLx(a ∗ b) =
a∗ (x∗ b)), soLx(a∗ b) = a∗Lx(b). Therefore the given statement is true forn = 1. Next
we assume that the given statement is true forn = k, such thatLk

x(a ∗ b) = a ∗ Lk
x(b).

Then Lk+1
x (a ∗ b) = Lx(Lk

x(a ∗ b)),
⇒ Lk+1

x (a ∗ b) = Lx(a ∗ Lk
x(b)) = x ∗ (a ∗ Lk

x(b)).
From (P5), we getLk+1

x (a ∗ b) = a ∗ (x ∗ Lk
x(b)), so Lk+1

x (a ∗ b) = a ∗ Lx(Lk
x(b)) =

a ∗ Lk+1
x (b),

Hence the given statement is true for all natural numbers.
(Po) : Ln

x(a) ∗ Ln
x(b) = a ∗ b.

We prove this by using the principle of mathematical induction.
So forn = 1, we haveLx(a) ∗ Lx(b) = (x ∗ a) ∗ (x ∗ b)
From proposition(P14),we getLx(a) ∗ Lx(b) = a ∗ b, so the given statement is true for
n = 1.
Now next we assume that the given statement is true forn = k, such that
Lk

x(a) ∗ Lk
x(b) = a ∗ b. Then Lk+1

x (a) ∗ Lk+1
x (b) = (x ∗ Lk

x(a)) ∗ (x ∗ Lk
x(b)).

Again by(P14),we getLk+1
x (a)∗Lk+1

x (b) = Lk
x(a)∗Lk

x(b), soLk+1
x (a)∗Lk+1

x (b) = a∗b.
Hence the given statement is true for all natural numbers.
Proposition 4.2. Let Z be a PU-Algebra then the following results are true for allxεZ.
(Pp) R2

x is isotonic, i.e.a ≤ b⇒ R2
x(a) ≤ R2

x(b), ∀ a, b εZ.
(Pq) Lx ◦ Rx = Ro, ∀ x εZ.
(Pr) R2

x(b) = 0 ⇔ Lb(x) = x, ∀ b εZ.
Proof .
(Pp) : Let a ≤ b. From proposition(P11), we haveb ∗ x ≤ a ∗ x.
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Again from(P11), we have(a ∗ x) ∗ x ≤ (b ∗ x) ∗ x, soR2
x(a) ≤ R2

x(b).
Hencea ≤ b⇒ R2

x(a) ≤ R2
x(b), ∀ a, b εZ.

(Pq) : (Lx ◦ Rx)(b) = Lx(Rx)(b)) = x ∗ (b ∗ x), ∀ b εZ.
From proposition(P6), we get(Lx ◦ Rx)(b) = b ∗ 0 = Ro(b), soLx ◦ Rx = Ro.
(Pr) : R2

x(b) = 0.Then(b ∗ x) ∗ x = 0. From proposition(P4), we haveb = 0.
By (P12), b = 0, is identical tob ∗ x = 0 ∗ x.
By (P1), we getb ∗ x = x, soLb(x) = x, ∀ b εZ.
Conversely, LetLb(x) = x , sob ∗ x = x.
From proposition(P12), we have(b ∗ x) ∗ x = x ∗ x.
By (P3), we have(b ∗ x) ∗ x = 0, soR2

x(b) = 0.
HenceR2

x(b) = 0 ⇔ Lb(x) = x, ∀ x εZ.
Theorem 4.3. Let Lx be a left map on PU-AlgebraZ. ThenLn

x is an endomorphism if
and only ifLn

x = Ln+1
x

Proof . Let Ln
x is an endomorphism then∀ a εZ.

Ln+1
a = Ln

x(Lx(a)) = Ln
x(x ∗ a) = Ln

x(x) ∗ Ln
x(a) = Ln

x(a), ∵ Ln
x(x) = 0.

Conversely: − If Ln
x = Ln+1

x then clearly we haveLn
x = Ln+m

x .
Now from proposition(Pn), we have
Ln

x(a ∗ b) = a ∗ Ln
x(b). (1)

And by (Po) we have
Lx(a) ∗ Lx(b) = a ∗ b. Replacing′b′ by ′Ln

x(b)′ we get
Ln

x(a) ∗ Ln
x(Ln

x(b)) = a ∗ Ln
x(b) ⇒ Ln

x(a) ∗ Ln+n
x (b) = a ∗ Ln

x(b) ⇒ Ln
x(a) ∗ Ln

x(b) =
a ∗ Ln

x(b). (2)
Comparing equations (1) and (2) we get
Ln

x(a ∗ b) = Ln
x(a) ∗ Ln

x(b).
HenceLn

x is an endomorphism if and only ifLn
x = Ln+1

x .
Theorem 4.4.If Z is a PU-algebra thenRa∗b = La ◦Rb, ∀ a, b εZ.
Proof . Ra∗b(c) = c ∗ (a ∗ b). From proposition(P5), we have
Ra∗b(c) = a ∗ (c ∗ b) = La(c ∗ b) = La(Rb(c)) = (La ◦Rb)(c), ∀ c εZ.
HenceRa∗b = La ◦Rb, ∀ a, b εZ.
Theorem 4.5.If (Z, ∗, 0), is a PU-Algebra anda ∗ b = 0, then La ◦Rb = Ro , ∀ a, b εZ.
Proof . Sincea ∗ b = 0. Now consider(La ◦Rb)(c) = La(Rb(c)), ∀ cεZ.
So (La ◦Rb)(c) = La(c ∗ b) = a ∗ (c ∗ b). From proposition(P5), we have
(La ◦Rb)(c) = c ∗ (a ∗ b) = c ∗ 0, so(La ◦Rb)(c) = Ro(c). ∵ a ∗ b = 0.
Theorem 4.6. If (Z, ∗, 0), is a PU-Algebra then for allxεZ theKer(R2

x) is a subalgebra
and ideal ofZ.
Proof . Let a∗b ε Ker(R2

x), thenR2
x(a) = 0 andR2

x(b) = 0. From proposition(Pd), R2
x is

an endomorphism therefore for anya, b εZ, we haveR2
x(a∗b) = R2

x(a)∗R2
x(b) = 0∗0 = 0,

soa ∗ b ε Ker(R2
x). HenceKer(R2

x) is a subalgebra.
Next we prove the second part of the theorem.
R2

x(0) = (0 ∗ x) ∗ x = x ∗ x = 0 ⇒ 0ε Ker(R2
x), so first condition of the definition

2.6 holds in Ker(R2
x). Now consider ifa, a ∗ b ε Ker(R2

x), then we haveR2
x(a) = 0,

andR2
x(a ∗ b) = 0. From proposition(Pd), R2

x is an endomorphism therefore we have
R2

x(a) ∗ R2
x(b) = 0, ⇒ 0 ∗ R2

x(b) = 0. From proposition(P1), we haveR2
x(b) = 0, so

bε Ker(R2
x). Thus second condition of definition of2.6 also holds inKer(R2

x).
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HenceKer(R2
x), is an ideal ofZ.

Theorem 4.7. If (Z, ∗, 0), is a PU-Algebra then for allxεZ the Fix(R2
x), is a subalgebra

and ideal ofZ.
Proof . Let a, b ε Fix(R2

x),thenR2
x(a) = a, andR2

x(b) = b. From proposition(Pd), R2
x

is an endomorphism therefore for anya, b εZ, we haveR2
x(a∗ b) = R2

x(a)∗R2
x(b) = a∗ b,

soa ∗ b ε Fix(R2
x). HenceFix(R2

x), is a subalgebra.
Next we prove the second part of the theorem.
R2

x(0) = (0 ∗ x) ∗ x = x ∗ x = 0, so 0 ε Fix(R2
x).

So first condition of the definition2.6 holds in Fix(R2
x).

Now consider ifa, a ∗ b ε Fix(R2
x), then we haveR2

x(a) = a andR2
x(a ∗ b) = a ∗ b.

From proposition(Pd), R2
x is an endomorphism therefore for we haveR2

x(a) ∗ R2
x(b) =

a ∗ b, soa ∗R2
x(b) = a ∗ b. From proposition(P13), we haveR2

x(b) = b ⇒ b ε Fix(R2
x).

Thus second condition of the definition2.6 holds in Fix(R2
x). HenceFix(R2

x), is an ideal
of Z.
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