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Abstract.: In this manuscriptwe examinethe conceptof left andright
self-mapdn PU-Algebraandexploresomefurtherinterestingprpertiesto
PU-Algebra.We prove thak? is idempotent, isotonic and endomorphic.
We determine the condition for which the compositioniof and R, is
equialent toR,_. We prove that under what conditidif; is an endomor-
phism. We define th&er(R2) and show that it is a subalgebra and ideal
of PU-Algebra. We also prove that tIF@((Ei) is a subalgebra and ideal
of PU-Algebra.
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1. INTRODUCTION

In 1966, Imai and Iseki [2] introduced two classes of abstract algebra: BCK-algebras
and BCl-algebras. It is known that the class BCK-algebras is a proper sub class of the
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class of BCl-algebras. In [1], Hu and Li introduced a wide class of abstract algebras:
BCH-algebras. They are shown that the class of BCl-algebras is a proper sub class of the
class of BCH-algebras. In [5], Neggers and Kim introduced the Notion of d-algebra, which
is a generalization of BCK-algebras and investigated a relation between d-algebras and
BCK-algebras. Neggers et al.[6] introduced the notion of Q-algebras, which is the gener-
alization of BCH/BCI/BCK-algebras. Magalai and Tamilarasi [3] introduced the notion of

a TM-algebra which is a generalization of BCK/BCI/BCH-algebras and several results are
presented. The foundation of the concept of PU-algebra was laid down by the mathemati-
cians Mostafa et al. in their pioneering paper [4]. PU-algebra is a dual for TM-algebra.
It lies in a category of typ€2, 0) algebras.(2, 0) types algebras consist of two operations
one is binary opertaion and other is nullary operation. Algebras like BCK,BCI,BCH,TM
etc. are all the typé2, 0) algebras. Their theory about PU-algebra and related ideas and
properties are nowadays utilized extensively in different areas of science like artificial in-
telligence, information sciences, cybernetics and computer sciences. The algebras like
PU-algebras, BCK-algebras, and BCl-algebras have been inspired by two considerations,
one based on classical and non-classical propositional calculi of Meredith and other based
on set theory [2]. The concept of ideal theory of PU-algebra plays a fundamental role in
the evolution of PU-Algebra, was first introduced by Mostafa et al. in [4] while the notion

of PU-homomorphism was also first defined by Mostafa et al. in [4]. They have stated and
proved some fundamental properties of it. Moreover, they have given the concept of right
self-maps, left self-maps, weak right self-maps and weak left self-maps and investigated
some of its properties. In this paper we shall further investigate these maps and determine
further interesting properties.

We have no doubt that the research along this line can be kept up, and indeed, some results
in this manuscript have already made up a foundation for further exploration concerning
the further progression of left and right self-maps as well as to insert these results in explor-
ing the properties of weak right self-maps and weak left self-maps and their applications in
other disciplines of algebra.

2. PRELIMINARIES

This section consists of some preliminary definitions and basic facts about PU-algebra
which are useful in the proofs of our results. Throughout this research work we denote the
PU-algebra always by without any specification. Here we only mention those concepts
of PU-algebra which are necessary for our treatment.

Definition 2.1. [4] PU-algebra(Z, x,0) is a class of the typ€, 0) algebras satisfying the
(Py) and(P,) conditions for alla, b, c € Z, where

(P1) Oxa=a. (Py) (a*c)x(b*xc)="bx*a.

While the binary relatior< on Z is defined ag < b < bxa = 0.

Proposition 2.2. [4] The following results hold in any PU-algeb(&, «, 0) for all a, b, c €
Z.

axa=>0.

(a*xc)*c=a.

ax(bxc)=bx*(axc).

ax(b*xa)=0>bx0.

(axb)x0=bx*a.
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(Ps) ifa<bthenax0=>bx*0.
(Py)  (axb)0=(axc)x(bxc).
(Pro) (axb)<c&cexb<a.

(P11) a<bs (bxc)<(axc).

(P12) The following three results are similar (i, x, 0).

Q): b=c (2): bxa=cxa. (3): axb=axc.

(P13) Both (left and right) cancellation properties hold(if, x, 0).

Proposition 2.3. [4] In PU-algebra(Z, ,0) the conditiong P4) and (P;5) hold for all
a,b,ce Z. Where

(P1s) (cxa)x(cxb)=axb. (Pi5) (axb)*xc=(cxb)*a.

Definition 2.4. [4] Let (Z,*,0) is a PU-algebra then for any fixectZ the mapping
R, : Z — Z, defined byR_(a) = a * z, VaeZ, is said to be right self- map aof.
Similarly the mappingL, : Z — Z, defined byL,(a) = z * a, VaeZ, is said to be left
self- map ofZ.

Definition 2.5. [4] Let Z, is a non-vacuous subset (@, x, 0) thenZ; is called PU- subal-
gebra ofZ if a x b e Z, whenevel, b e Z,

Definition 2.6. [4] Let Z; is a non-vacuous subset @, «, 0) is said to be ideal of if it
satisfies th€ Py¢) and(P;7) conditions for any:, b € Z, where

(Pig) 0eZyg. (P17) axbeZgandaeZy = beZ,.

3. RIGHT SELF-MAPS IN PU-ALGEBRA

In this section we prove the results of right self-maps which are useful in proving the
theorems in section-4.
Proposition 3.1.Let Z be a PU-algebra then the following results are true fou dile Z.

(P,) If R,(0)=0thenz =0, VreZ.
(Po) I R, (b) * R, (a) = Ry, (0) VreZ.
(P,) R?isidempotenti.eR? o R2 = R? VueZ.
(P;) RZ2is an endomorphism VaeZ.
(P.) Ri(axb)= R (b) * R (a). VaeZ.
(P;) R2(axb)=R:(a )*b—a*PB( ). VaeZ.
(P) a<bo {Ri( a) < R%(b) if n is even natural number VzeZ.
7 - R2(b) < R%(a), if n is odd natural number  VzeZ.
(P,) Forevery natural number, R = &, I,f " I_S odd  VreZ.
I, if niseven VzeZ.
Here'I’ is identity map.
() R'a)sR'(b) = a*Db, if.n i§ even natural number VzeZ.
b*a, if n is odd natural number VzeZ.

Proof.

(P,) : If R,(0) = 0, then0 x x = 0. From proposition(Ps), we havez « z = 0,
soz x x = 0 z. By (P;3) both (left and right) cancellation properties hold i3, x, 0), so
z = 0.
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(Py) : SinceR,(b) * R, (a) = (bx*xz) * (a* x) From proposition(P;), we have
R, (b)xR. (a )—a*b By (P1), we haveR,(b) * R,(a) = 0% (axb), SOR,(b)* R (a) =
R *b( )
(Pe) : Since(R] o R7)(a) = Ri(R3(a)), SO(R o RY)(a) = Ri(((a x x)  x)). From
proposition(P,), we have(R2 o R2)(a) = R2(a).
(Py): R2(axb) = ((a*b)*x)*x. From propositior(P,), we haveR? (a x b) = a * b.
By (Py), we haveR? (a * b) = [(a * z) * ] * [(b * z) * z], SOR? (a % b) = R (a) * R%(b).
HenceR? is an endomorphism
(P,) : R%(a % b) = ((a*b) * ) * 2. From propositior(P;), we haveR? (a * b) = a * b.
By (P;), we haveR? (axb) = ((axz)*x)*b. By (Pi5), We getR> (axb) = (bxx)*(a*z),
SOR%(a*b) = R,(b) * R, (a).
(Py) : R2(a*b) = ((a*b) * ) * x. From propositior( P,), we haveR?(a * b) = a * b.
Again by (P,), we getR2(a * b) = ((a * ) * ) * b, SOR? (a * b) = R (a) * b.
Similarly R?(a xb) = a * ((b* z) * z) = a * R2(b).
HenceR2(a x b) = R%(a) b = a * R%(b).
(Py) : If a <b,thenby(Pi1),we haveb*z < ax*z,S0R,(b) < R,(a).
if we haveb x x < a * z,then again by(Pi;), we have(a xx)xx < (bxx)*x, SO
R2(a) < R2(b).
Next if we have(a x ) * © < (b * x) x x, then again by P;;) we get
(b z)%) * x < ((a* x)*) * x,s0 R (b) < R>(a).
Continuing in the same way we reach to a conclusion that

b= R2(a) < R(b), if n is even natural number VzeZ.

R (b) < RY(a), if n is odd natural number VzeZ.

(P,): Forn =1,we haveR.(a) =a*z = R.(a)=R,(a) = R. =R,.
For n = 2, we getR?(a) = (a * z) * . From proposition(P;), we haveRQ( ) =a, SO
Ri(a)=1.
For n = 3, we have
R3(a) = ((a* x) * x) * x. From proposition(P;), we getR>(a) = axz = R, = R>.
Forn = 4, we have
R(a) = (((a * ) * ) x ) * 2. From propositior( P,), we haveR’ (a) = (a * ) * z.
Again by (P;), we getR*(a) = a, s0 R%(a) = I(a).
Continuing in the same way we reach to a conclusion tHat iis positive odd integer then
R = R.. And if 'n’ is positive even integer theR! = I.
(P)) : Forn =1, we haveR. (a) * R:(b) = (a * x) * (b 2). From propositior( P,), we
haveR’ (a) * RL(b) = b * a.
Forn = 2, we haveR? (a) * R2(b) = ((a* ) x x) * (b x) * ). From proposition( P,),
we haveR? (a) * R2(b) = (b*x) * (a * ). Again by(P;), we haveR? (a) x R?(b) = a *b.
Continuing in the same way we reach to a conclusion tHat ifs positive odd integer then
RY(a) x R?(b) = bxa. And if 'n’ is positive even integer theR” (a) * R} (b) = a * b.
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4. LEFT SELF-MAPS IN PU-ALGEBRAS

In this section we prove the results of left self-maps which are useful in proving the
theorems related to endomorphism, subalgebras and ideals in PU-algebras.
Proposition 4.1.Let Z be a PU-algebra then the following results are true fordlle 7.
(P;) L, isthe identity map.

(Pr)  Ly(a) * L,(b) = L,(b) VaeZ.
(P) axL2(b) = L2(axb) VreZ.
(Pw) L2(a) % L2(b) = L,(a) L, (b), VreZ.
(P,) Forall natural numbers, L7 (axb) =ax L. (b), VzeZ.
(P,) Forall natural numbers, L) (a) * L} (b) = a * b, VreZ.
Proof
(P;) : L,(a) = 0+ a. From proposition(P; ), we haveL,(a) = a,50L,(a) = I(a), Or
L, =1,VaeZ.
Py): L,(a)*L,(b) = (xxa)*(xxb). From propositio Py4),we haveL . (a)* L, (b) =
axb=L,(b).

(P)) : axL2(b) = ax(xx(zxb)). From propositior{ Ps),we haveixL? (b) = zx(ax(xxb)).
Again by (Ps),we geta x L2 (b) = % (z * (a * b)), S0a * L2(b) = L2(a % b).

(Pp) = L2(a) x L2(b) = [z * (x * a)] * [z * (z * b)]. From proposition(P1,), we get
L2(a) % L2(b) = (z * a) * (x%b), SOL2(a) * L2(b) = L,(a) * L,(b).

(P,): Ly(a%b) =axLy(b).

We prove this by using the principle of mathematical induction.

Soforn =1, we haveL, (axb) = ax L,(b). From propositior(Ps) , we getL_(a*b) =
a*(xxb)),soL,(axb) = ax L, (b). Therefore the given statement is truefor= 1. Next
we assume that the given statement is truenfor k, such thatL¥(a = b) = a x L*(b).
Then L¥ ! (a % b) = L, (L"(a * b)),

= Ly (axb) = L,(ax L;(b)) = z * (ax Ly (b)).

From (Ps), we getL¥* ! (a « b) = a  (x * LX(b)), so LF* (a +b) = a = L (LF (1)) =
axLyt'(b),

Hence the given statement is true for all natural numbers.

(P,): Ll(a)* L2(b) =axb.

We prove this by using the principle of mathematical induction.

Soforn =1, we haveL_(a) x L, (b) = (x x a) * (z * b)

From proposition P4),we getL,(a) * L,(b) = a x b, so the given statement is true for
n=1.

Now next we assume that the given statement is true ferk, such that

LE(a) * LE(b) = axb. Then L (a) = LE¥ (b) = (2 * LE(a) * (2 % LE (D).

Again by (P;,),we getLF ! (a)« L5 (b) = LF(a)+ L (b), soLF ! (a) « L5 (b) = axb.
Hence the given statement is true for all natural numbers.

Proposition 4.2. Let Z be a PU-Algebra then the following results are true forall'.
(P,)  RZisisotonic,i.ea < b= R%(a) < R%(b), ¥V a,beZ.

(Pq) Lmoﬂxzﬁo'v reZ.

(P.) Rb)=0% Ly(z)=x,V beZ.

Proof.

(Pp) : Leta < b. From propositior(P;1), we haveb x z < a * .
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Again from(Py;), we have(a  z) * 2 < (b* ) * =, SOR>(a) < R2(b).

Hencea < b= R2(a) < R:(b),V a,beZ.

(Pp): (Lyo R,)(b) = L,(R,)(b) =+ (bx2),¥ beZ.

From proposition(Ps), we get(L, o R,)(b)) =b* 0= R,(b),s0L,o R, = R,.

(P.): R%(b) = 0.Then(b * =) * x = 0. From propositior( P;), we haveh = 0.

By (Pi2), b =0, is identical tob x x = 0 x .

By (P;),wegethxx =x,50L,(x) =z,V beZ.

Conversely, Lefl, (z) =z, S0bx z = x.

From proposition(P12), we have(b « z) * x = x * .

By (P3), we have(b * x) « = = 0, SOR?(b) = 0.

HenceR2(b) =0 < Ly(z) =z, V zeZ.

Theorem 4.3. Let L, be a left map on PU-AlgebrZ. ThenL is an endomorphism if
and only if L7 = L"*!

Proof. Let L7 is an endomorphism thel¥ aeZ.

LotV = L7(L,(a)) = L2 (¢ % a) = L7 (x) * L (a) = L'(a), . Li(z) =0.
Conversely: — If L = L™ then clearly we havé” = L™,

Now from proposition( P,,), we have

Li(axb)=axL2(b). (1)

And by (P,) we have

L.(a)*L,(b) =axb. Replacingd’ by’L (b)’ we get

L7(a) * LE(L2(V)) = ax LE(B) = Ll'(a) % LIF™(B) = ax L2(b) = L (a) * L2 (D) =
a* Ly (D). (2)

Comparing equations (1) and (2) we get

L7 (axb) = L(a) * L7 (b).

HenceL! is an endomorphism if and only ff, = L;?“.

Theorem 4.4.If Z is a PU-algebratheR,,,, = L, o R,, YV a,beZ.

Proof. R,,,(c) = c¢* (a+b). From propositior{ Ps), we have

Ryp(c) =ax (cxb) = Ly(cxb) = L,(Ry(c)) = (L, 0 R,)(), ¥ ceZ.

HenceR,., =L,o R,V a,beZ.

Theorem 4.5.1f (Z,%,0), is a PU-Algebraand «b = 0,thenL, o R, =R, ,V a,beZ.
Proof. Sincea x b = 0. Now considelL, o R;)(c) = L,(R,(c)), V ceZ.

So (L, o Ry)(¢) = L,(c*b) = ax* (cxb). From propositior( Ps), we have
(LyoRy)(c) =cx(a*xb) =cx0,50(L, o By)(c) = R,(c). o axb=0.
Theorem 4.6.1f (Z, %,0), is a PU-Algebra then for altcZ the Ker (R?) is a subalgebra
and ideal ofZ.

Proof. Let axbeKer (R?2), thenR2(a) = 0 andR2(b) = 0. From proposition{P,), R is
an endomorphism therefore for amyb €Z, we haveR? (axb) = R2(a)*R2(b) = 0%0 = 0,
soa * b e Ker (R?). HenceKer(R?) is a subalgebra.

Next we prove the second part of the theorem.

R2(0) = (0Oxz)xx = 2 xx = 0 = OcKer(R2), so first condition of the definition
2.6 holds in Ker (R%). Now consider ifa, a * b e Ker(R2), then we havek?(a) = 0,
and R2(a * b) = 0. From proposition P;), R? is an endomorphism therefore we have
R2(a) * R2(b) = 0, = 0% R(b) = 0. From proposition( P, ), we haveR?(b) = 0, so
be Ker (R?). Thus second condition of definition @6 also holds irker (R?).
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HenceKer (R2), is an ideal ofZ.

Theorem 4.7.1f (Z, ,0), is a PU-Algebra then for alteZ the Fix(R?2), is a subalgebra
and ideal ofZ.

Proof. Leta,b e Fix(R?) thenR?(a) = a, andR?(b) = b. From proposition( P;), R>
is an endomorphism therefore for amyb ¢ Z, we haveR? (a xb) = R2(a) * R2(b) = axb,
soa * b e Fix(R2). HenceFix(R?), is a subalgebra.

Next we prove the second part of the theorem.

R2(0) = (0*x)*x=x+x=0,s50 0eFix(R2).

So first condition of the definitiod.6 holds in Fix(R2).

Now consider ifa, a * be Fix(R?2), then we haveR? (a) = a andR2(a % b) = a * b,

From proposition( P;), R? is an endomorphism therefore for we haké(a) * R (b) =
ax b, soa * R2(b) = a * b. From propositior( P;3), we haveR?(b) = b = b e Fix(R?).
Thus second condition of the definiti@rb holds in Fix(R2). HenceFix(R2), is an ideal
of Z.
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