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Abstract.: Among the class of dispersive wave equations the BBM equa-
tion (Benjamin-Bona-Mahony) is a notable model for long surface gravity
waves inside shallow water with small amplitude propagating unidirec-
tionally and has been broadly utilized in research facility and in field in-
vestigation of water waves. One more specific subjective part of arrange-
ment for a number of wave equations demonstrated by investigations,
which connect along with their large-time behavior named as eventual
time periodicity uncovered across solutions to IBVPs (initial-boundary-
value-problems). In the present study eventual periodicity of solutions for
the linearized BBM equation (IBVP) on a half-line coupled with periodic
boundary condition will be explored numerically utilizing meshless tech-
nique dependent on RBFs.

AMS (MOS) Subject Classification Codes: 65D12; 65J08; 65L06; 65M20
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1. INTRODUCTION

Water wave propagation phenomena still attract the interest of researchers from many
areas and with various objective. As an example, the Benjamin-Bona-Mahony equation
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denoted by BBM (Benjamin T. B. Bona J. L. and Mahony J. J. (1972)), more familiar
like regularized long-wave equation (RLWE) as an illustrative representation of propaga-
tion on one directional space of long, low amplitude waves [4, 3]. Prior to 1966 Peregrine
introduced this equation in his analysis of bore propagation [30]. In [43] is given a gen-
eralized n-dimensional version. In physical applications the BBM equation is renowned,
is utilized in investigation of long-wavelength surface waves in liquid, harmonic-crystal
acoustic waves, compressible fluid waves with acoustic-gravity, and hydro-magnetic waves
cold plasma [22, 23]. In addition it is valid to the study of plasma rossby waves or drift
waves in moving fluids [24, 6]. This equation is substitution model to the KdV (Korteweg
and de Vries (1895)) equation [27, 13, 25] because of the supposition of large wave length
and small wave-amplitude [28, 44, 35, 20, 7, 2, 31]. One more specific qualitative aspects
revealed by solutions to (IBVPs) of some wave equations demonstrated through investi-
gations, related through their large-time action called as eventual time periodicity. This
attractive and desirable event is demonstrated by a flap-type wave maker installed at one
ending of a channel in research tests. As the wave generator oscillates regularly with the
periodT, it seem that wave amplitude turn out to be periodic after a certain amount of time
at each point down the channel [8, 9]. This important and interesting eventual periodic phe-
nomenon was previously discussed in different works, like generalized equations viz KdV,
BBM and also its dissipating equivalents, like Burger-type equations [10, 32, 41, 40, 42, 1].
In the present study we numerically investigate whether the corresponding solutionu of
the following model problem for linearized BBM equation along with specified initial and
boundary condition either on half line or on a finite interval is eventually periodic by using
meshless method based on RBFs. The boundary-value problem is found to be ill posed for
specific cases of robin boundary conditions.

{
vt − γvxxt + µvx = f(x, t), x ≥ 0 , t ∈ (0, T ]
v(x, 0) = v0(x), x ≥ 0, v(0, t) = g(t), t ≥ 0.

(1. 1)

Where the source termf and the boundary datag presumed to be periodic of periodT0 > 0.

Meshless methods are emerging and interesting numerical techniques which can solve
with no meshing or with a minimum of meshing those engineering and physical prob-
lems for which the commonly named mesh-based methods acting on computational nodes
applied commercially worldwide for instance finite differences, finite elements and fi-
nite volumes are not suited. Element-free galerkin (EFG) method, point interpolation
method (PIM), moving least squares (MLS) approximation, boundary element-free method
(BEFM) and reproducing kernel particle (RKP) method etc., are some meshless methods.
Among the family of meshless methods one of the most prominent meshless method which
appears to be really consistent and well ordered system while looking at the interpolation
of multidimensional scattered data is RBF method, which recently received considerable
and tremendous attention in scientific community due to high flexibility, efficiency and its
capacity to gain spectral accuracy to solve complex PDEs, fractional equations and integral
equations opposed to other advanced methods [5, 12, 15]. The multi-quadric is well known
to be one of the most used kernels in meshless schemes. Hardy had suggested multi-quadric
kernels [21] to solve collocation scheme for PDEs employing radial basis function.
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2. DESCRIPTION OFRBF PSEUDO-SPECTRAL METHOD

Fasshauer [14] connected the RBF collocation approach to the Pseudo-spectral (PS)
scheme which is called as RBF-PS scheme and implemented this scheme for the approxi-
mation of 2D Helmholtz and Laplace models also for the Allen-Cahn model together with
the piecewise boundary conditions [15]. The authors [17, 18, 26, 38, 39, 29] exploited,
utilized and applied this approach to analyze and solve different model PDEs. Here we
develop this approach for solution of (1. 1 ). Assumeψj , wherej varies from1 to N , is
a linearly independent arbitrary smooth function set that will be used as the basis for our
space investigation andΞ = {x1, x2, ..., xN} be a distinct points set inRs, s ≥ 1. The
approximated solution is given as

uh(x, t) =
N∑

j=1

λj(t)ψj(x), x ∈ Ξ, (2. 2)

whereh = hx,Ξ = supx∈Ξmin1≤j≤N‖x − xj‖2. Often used well-known radial basis
function (RBF) are listed in the following table.

RBF Name ψ(r), (r ≥ 0), r = ‖x− xj‖2
Radial function RBF-(LI) r

Gaussian function RBF-(GA) e−(εr)2

Laguerre-Gaussian (2− r2)e−r2

Monomial RBF-(MN) r2k−1

Gneiting (1− r)5+(1 + 5r − 27r2)
Wendland’s (1− εr)6+(35(εr)2 + 18εr + 3)

Inverse Quadratic function RBF-(IQ) 1
1+(εr)2

Where the constantε is famous as the shape parameter of the RBF which is used to
control the shape of functions and is found experimentally to any RBF. Now collocating
equation (2. 2 ) at the grid pointsxi, it appears that,

uh(xi, t) =
N∑

j=1

λj(t)ψ(xi, xj), 1 ≤ i ≤ N. (2. 3)

The above system in a matrix structure is indicated as

u = Bλ, (2. 4)

where the interpolation matrixB launches entries formψ(xi, xj), 1 ≤ i, j ≤ N , and the
appearance of expansion coefficients vector is stated asλ = [λ1, λ2, ..., λN ]T . Derivative
of u i.e,ux utilizing equation (2. 4 ) can be derived by differentiating the RBF function and
again valuating at each pointxi, 1 ≤ i ≤ N , we got in matrix-vector notation

ux = Bxλ, (2. 5)

where matrixBx entries are
d

dx
ψ(x, xj)x=xi , 1 ≤ i, j ≤ N . Solving equations (2. 4 )-

(2. 5 ) for the unknown values ofλ we obtain the differentiation matrix in the form below

ux = BxB−1u = Dxu. (2. 6)
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WhereDx = BxB−1 known as the differentiation matrix. Also it is worth noting that this
matrix relies on matrixB invertibility and notice that for distinct collocation points set the
matrixB is always invertible. We can write the same way

uxx = BxxB−1u = Dxxu, (2. 7)

whereDxx = BxxB−1 having entries of shapeBxx are
d2

dx2
ψ(x, xj)x=xi , 1 ≤ i, j ≤ N .

The higher-order differentiation matrices may be obtained in the same manner. The numer-
ical scheme corresponding to the equation (1. 1 ) with the above differentiation matrices is
designated as below

v′ − γDxxv′ + µDxv = f(x, t). (2. 8)

This equation can be drawn up as

(I− γDxx)v′ = f(x, t)− µDxv, (2. 9)

where matrixA = (I−γDxx) is time free. The pseudo-inverseA† of A can be computed,
thus we have

v′ = Dv, (2. 10)

whereD = A†(f(x, t)− µDx). Equation (2. 10 ) is in the form of

v
′
= F(v). (2. 11)

Now some solver’s ODE such as ode45, ode113, ode23 can be used to discretize this ODE
system in time.v0 is initial vector solution. Any successful ODE solver will pick a suitable
time phaseδt to resolve ODE system stiffness.

3. STABILITY ANALYSIS

Since our numerical plan RBF-PS technique converted time-dependent PDEs to an
ODEs framework in time. This sort of strategy is known as method of line (MOL) strategy
whereby the scheme of coupling ODEs can be solved employing the finite time difference
approach e.g, Runge-Kutta methods etc. The stability of line method can be calculated by
the famous thumb rule as shown in the work [37]. Line method should be reliable and sta-
ble when the spatial discretization operator eigenvalues, scaled and linearized by step size
δt, exist in a region of stability for the relevant time-discretization operator. The area of
stability is part of a multifaceted plane (complex plane) including of those eigenvalues for
which a bounded solution is built by the schemes. Equation’s (2. 11 ) stability relies on the
coefficient matrix’s eigenvalues [36]. Therefore, to demonstrate the stability of numerical
solution of (1. 1 ) it is necessary to demonstrate that the real term,Re(λi) of every eigen-
valueRe(λi) of the matrixF is non-positive i.e.,Re(λi) ≤ 0 for all i = 1, 2, ...n, for more
details, see [36]. After measuring the eigenvalues forD matrices scaled byδt, we analyzed
the stable eigenvalue spectrum for the linearized BBM model in Figure.2 and Figure.4.
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4. NUMERICAL RESULTS

4.1. Usage and application of the numerical scheme suggested.We seek the RBF-PS
numerical scheme first for linear and nonlinear BBM equation (Benjamin-Bona-Mahony)
with known exact solution [33, 19].





vt(x, t)− 2vxxt(x, t) + vx(x, t) = 0,
v(x, 0) = exp(−x), x ∈ [0, 1]

v(0, t) = exp(−t),
v(1, t) = exp(−1− t), ∀t ≥ 0,

v(x, t) = exp(−x− t), x ∈ [0, 1], t ≥ 0.

(4. 12)





vt(x, t)− vxxt(x, t) + vvx(x, t) = 0,
v(x, 0) = x, x ∈ [0, 1]

v(0, t) = 0, v(1, t) = 1
1+t , ∀t ≥ 0,

v(x, t) = x
1+t , x ∈ [0, 1], t ≥ 0.

(4. 13)

The accuracy, efficiency and the success of this scheme for problem (4. 12 ) and (4. 13 )
shall be tested in terms ofL∞ error norm given below and is presented in Table.1, Figure.1
and Table.2, Figure.3 respectively forδt = 0.0001 andN = 32, and also for higher values
of N .

L∞ = ‖uex − uap‖∞ = max|uex − uap|. (4. 14)

N L∞[34] L∞[RBF-PS]
8 5.7806E-03 8.2157E-04
16 5.4363E-03 8.2142E-04
32 3.4051E-03 8.0653E-04
64 1.8811E-03 7.5993E-04
128 9.8606E-03 3.7976E-04
256 5.0452E-04 3.6382E-04

TABLE 1. Comparison table for problem-(4. 12 ).

4.2. Linearized BBM equation eventual periodicity. Now we present the results of our
method investigating the eventual periodicity generated with periodic external forcing and
also with periodic forcing at the boundary of the BBM equation. We are testing underneath
scaled problem solution considered by Shen et al., in [32].
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FIGURE 1. Exact and approximate solution for problem-(4. 12 ).
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FIGURE 2. Scaled Eigenvalues and Stability region for problem-(4. 12 ).

N L∞[34] L∞[RBF-PS]
8 5.7451E-02 1.8980E-02
16 2.9979E-02 9.7860E-04
32 1.5306E-02 9.6062E-05
64 7.7325E-03 3.1285E-05
128 3.8862E-03 2.0602E-05
256 1.9481E-03 1.7595E-05

TABLE 2. Comparison table for problem-(4. 13 ).





vt + αvx + βvvx − δvxxt = h1(t), x ∈ [−1, 1], t ∈ [0, T ],
v(0, t) = 0,

v(1, t) = vx(1, t) = 0, t ∈ [0, T ],
v(x, 0) = v0(x), x ∈ [−1, 1],

(4. 15)
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FIGURE 3. Exact and approximate solution for problem-(4. 13 ).
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FIGURE 4. Scaled Eigenvalues and Stability region for problem-(4. 13 ).

and 



vt + αvx + βvvx − δvxxt = 0, x ∈ [−1, 1], t ∈ [0, T ],
v(0, t) = h2(t),

v(1, t) = vx(1, t) = 0, t ∈ [0, T ],
v(x, 0) = v0(x), x ∈ [−1, 1].

(4. 16)

Where parameters are theα, β, δ andh1(t) = h2(t) = sin(20πt) tanh(5t). For v0 ≡ 0,
equations (4. 15 )-(4. 16 ) are all valid and true approaches of equation (1. 1 ) accordingly.
Plotted here are the solutions having parametersα = 1.0, δ = 10−6 andβ = 0. The
amplitudesv(x, t) taken into six graphs from Figure.5 and Figure.6 on different points
x = −0.950670, −0.808460, −0.587280, −0.308720, 0.0 andx = 0.999650 in the given
domain, and0 < t < 1.8 is the time interval. The x and y-axis signify timet and amplitude
v in these graphs respectively. Last plot atx = 0.999650 indicates the amplitude remaining
zero in each problem. The intent of the last plot is to exhibit that at right boundary the
wave front has not arrived fort = 1.8 and so the amplitudes validity atx = −0.950670,
−0.808460,−0.587280,−0.308720 and0.0.
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FIGURE 5. Linearized BBM equation eventual periodicity correspond-
ing to (4. 15 ): at positions−0.950670 ,−0.808460 , −0.587280 ,
−0.308720 , 0 and0.999650 seen respectively through six graphs above.
Using parametersα = 1, δ = 10−6, β = 0, x ∈ [−1, 1], CMQ =
0.0208, N = 200, δt = 0.01, tmax = 1.8, h1(t) = sin(20πt) tanh(5t).

5. CONCLUSION

The RBF-PS method in the present research described in detail and implemented for
examine the eventual periodicity of IBVPs solutions like linear BBM (Benjamin-Bona-
Mahony) equation on a bounded domain. For time integration we combine our method
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FIGURE 6. Linearized BBM equation eventual periodicity correspond-
ing to (4. 16 ): at positions−0.950670 ,−0.808460 , −0.587280 ,
−0.308720 , 0 and0.999650 seen respectively through six graphs above.
Using parametersα = 1, δ = 10−6, β = 0, x ∈ [−1, 1], CMQ =
0.3000, N = 200, δt = 0.01, tmax = 1.8, h2(t) = sin(20πt) tanh(5t).

with RK4 scheme. Our approache is simpler to construct the numerical scheme for high
order nonlinear PDEs. Examples and results are exhibited to expose the efficiency, capacity
and the high order accuracy of our proposed methods than other existing methods.
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