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Abstract.: The purpose of this study is to obtain a characterization of unit
speed spacelike curve with constant curvature and torsion in the Minkowski
3-space. According to this purpose, the position vector of a spacelike
curve is expressed by a linear combination of its Serret Frenet Frame with
differentiable functions. Since a spacelike curve has different kinds of
frames, then we investigate the curve with respect to the Lorentzian ca-
sual characterizations of the frame. Hence we examine the results in three
different cases including different subcases. Moreover, we illustrate some
examples for each case.
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1. INTRODUCTION

The geometric structure of the curves can be discussed in two ways. One, which may
be named as classical differential geometry, started with the beginning of calculus. In the
most general sense, the classical differential geometry is the study of local properties of the
curve. By local properties, we mean those properties which depend only on the behavior
of the curve in a neighborhood of a point. The other aspect is called global differential
geometry. Here one studies the influence of the local properties on the behavior of the
entire curve. According to both aspects, we need use the curvature furdiuh torsion
functionr to describe the behavior of the curve. Physically, we can think of a space curve
as being obtained from a straight line by bending (curvature) and twisting (torsion) [7].
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There are many studies on the characterization of curves using the curvature and torsion
function in different spaces. In the studies of [9, 14], constant ratio curves in Euclidean
spaces and some of their characterizations are expressed. Furthermore, the definition of
constant ratio curve is given in the lower manifolds of Euclidean space in [2] and the
Riemannian surfaces are discussed in [3]. In addition, [4] studied the relationship between
rectifying curves and twisted curves in Euclidean space. As a continuation of this work,
some geometrical properties of rectifying curves are given [5]. In addition in study [1],
rectifying, normal and osculating curves were studied in three-dimensional compact Lie
groups.

Among the current studies, the most striking ones are the studies on the characterization
of twisted curves. If the curvature and torsion functions of the curege different from
zero, the curvex is called a twisted curve. In the study [15], it is stated that each twisted
curve can be given in the following form

a (s) = mo () T (s) +my () N (s) +ma (s) B (s)

wheremg, m1,ms : I — R are differentiable functions. Moreover, the characterizations

of W curves are investigated in [6]. The curvés called a W curve, if its curvature and tor-

sion functions are constant . The simplest examples of W curves are circles, hyperbolas as
planar W curves and helices as non-planar W curves. Spacelike W curves in the Minkowski
3-space are classified by Walrave in [17]. At the same time Walrave gave the relations be-
tween the curvature and torsion of the W curves in Minkowski space. Moreover, W curves
in the Minkowski 3-space are investigated in [10, 11, 13].

The main purpose of this study is to examine unit speed spacelike curve with constant
curvature and torsion in the Minkowski 3-space. For this purpose, the position vector of
a spacelike curve is expressed by a linear combination of its Serret Frenet Frame with
differentiable functions. Since a principal normal vector field of spacelike curve can be
spacelike, timelike or null, then we investigate the curve in three different cases. There
exist also some different subcases depending on the values of curvature and torsion of the
curve. Furthermore, we give some examples to explain the results for each case.

2. PRELIMINARIES
Minkowski 3-space is the Euclidean space provided with Lorentzian product
<7, ?>L = —U1V1 + UV2 + U3V3

wherew = (uy,us,u3), v = (v1,v2,v3) € R3. By definition, this product is not
positively defined. Instead, this product classifies the vectdEs ias follows:
)If (W, ), >0o0r(u =0)then® is called a spacelike vector
i) If (W, ), <0then4 is called a timelike vector
iii) If (W, w), =0andu # 0then is called a lightlike (or null) vector.
For eachu” € [E3, the norm ofu’ vector is defined

1] = \/I(, ).

If (¢, "), = 0thenw and @ vectors are said to be orthogonal. For eachv’ € E?,
we may write
(, ?}L = —uyvy + Ugvy + ugvg = ul v
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where
-1 0 0
I = 0 1 0
0 0 1
Leta : I — E$ be aregular curve. If the vectof (s) is a timelike vectols € I, thena is
called timelike curve. ltvis a timelike curve an<a' (s),a (s)> = —1, thena is called
L

unit speed timelike curve. If the vector (s) is a spacelike vectors € I, thena is called
spacelike curve. I& is a spacelike curve an<da' (s),a’ (s)> = 1, thena is called unit
speed spacelike curve. Timelike and spacelike curves have non-null Serret Frenet frames
[12].
At the same time we know th%to/ (s),a’ (s)>L =0 and<o/' (s),a” (s)>L
> 0Vs € I, thenais called null curve. Ity is a null curve ando”’ (s) ,a” (s)), = 1, then
«is called a null curve given by the pseudo arc length parametéb/l(s) o (s)>L >0
and(a” (s),a" (s)), = 0,Vs € I, thena is called pseudo-null curve. i is a pseudo-
null curve and<o/ (s),a (s)>L = 1, thena is called a pseudo-null curve given by pseudo
arc length parameter [12].

2.1. Serret Frenet frames of spacelike curves given by arclength parameteti.et « :
I — E3 be a unit speed spacelike curve. And

T (s)=a (s)

is the unit tangent vector ef. SinceT (s) is spacelike7” (s) can be spacelike or timelike.
For this reason we will discuss the spacelike curves in two caseg. () = o (s) is
spacelike, then we have

k() =T ()] = \/(0/' (s),a" (s)),
1)

K(s)’
B(s) =T (s) XN (s).

N (s)

Moreover torsion function of the curveis defined as

r(s) == (N'(s),B(s)) .

L

Theorem 2.2. The Frenet formulas for the unit speed spacelike curvel — E3 with
spacelike principal normal are as follows

T// (s) 0 k(s) 0O T (s)
N () | =] —k(s) 0 7(s) N (s)
B (s) 0 T(s) O B (s)

whereT, N, B are Frenet vector fields aef and V is spacelike.
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If 7/ (s) = o (s) is timelike, then we get

k(s) =T (s)] = \/f (@ (s), 0" (5))p,

N =
B(s) =T (s) XN (s),
T(s) = <N/ (s) ,B(s)>L.

Theorem 2.3. The Frenet formulas for the unit speed spacetikel — E3} with timelike
principal normal are as follows

Tl/ (s) 0 k(s) O T (s)
N () |=1k(s) 0 71(s) N (s)
B’ (s) 0 7(s) O B (s)

whereT,N, B are Frenet vector fields af [16, 17]

2.4. Serret Frenet frames of pseudo null curves given by pseudo arclength parameter.
Leta : I — E? be a pseudo-null curve given by pseudo arc length parameter. We know
that

T (s)=a (s)

is the tangent vector af andN (s) = o (s) is a null vector. The binormal vector field
is the unique null vector field orthogonal Tosuch that

(N (s),B(s)), =1

If «is straight line them: (s) = 0 and in other cases(s) = 1. Furthermore

7(s) = (N'(s),B(s)) .

L

Theorem 2.5. The Frenet formulas for pseudo-null curwve I — E3 given by pseudo arc
length parameter are as follows

T// (s) 0 Kk (s) 0 T (s)
N'(s) | = 0 7(s) O N (s)
B’ (s) —k(s) 0 —T(s) B (s)

whereT',N, B are Frenet vector fields af satisfying following relations:

(N (s),N(s)), = (B(s),B(s)), =0
(T'(s), N (s)), = (T (s),B(s)), =0,
(T'(s),T(s)), =(N(s),B(s)), =1

[15, 16]
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3. SPACELIKE W CURVE WITH SPACELIKE NORMAL VECTOR

In this section, we give characterization of spacelike W curve with spacelike normal
vector. Ify(s) is a spacelike W curve with spacelike normal vector. Then spacelike curve
~(s) is given by

7(8) =po(s)T (s) +p1(s) N (s) +p2(s) B(s) 1)

for some differentiable functiongy, p; andp, of s € I C R. Taking the derivative of
both sides of Equation 1 with respect to the arc length parameter and using Serret Frenet
formulas which are given by Theorem 1, we get

Po () = rp1 (s) +1
1(s) = —mp2(s) — kpo (5), 2
b (s) = —7p1 (s)

N3

with the use of the equality’(s) = T'(s).
We have the following three cases.
Case 3.1In this case, the condition of being — 2 > 0 will be examined.

Theorem 3.1. Lety : I C R — 3 be a twisted spacelike curve, then the position vector
~(s) is obtained with the following differentiable functions:

2
pO(S) = —TcCg + C2K Slnh(fs) + 1k Sinh(fs) + %S,

p1(8) = —cy fsinh(fs) + cof cosh(fs) + %,
p2(8) = ke + c17 cosh(fs) — carsinh(fs) — %s,

wherer? — k2 = f2 > 0 andc; are arbitrary constants fob < i < 2.

Proof. We may write the nonhomogeneous linear differential system of equations in 2, as
follows:

po (s) 0 w 0 po (s) 1
pi(s) | = - 0 -7 pi(s) [+ 0
4 (s) 0 -7 0 D2 (8) 0

The eigenvalues and eigenvectors of the matrix of nonhomogeneous linear system of the
above equation are found as follows:

—T —K

M=0=Vi=| 0 | =f=V=| -f|,
K T
—K

As=—f=Vs=| [

T
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We obtain the homogenous solution as follows:

X}L (S) = Cp 70 + dlefs |: :f + dgeifs }'
K T T
= ¢ 70 + dy(cosh(fs) 4 sinh(fs)) :f
K T
+ da(cosh(fs) — sinh(fs)) ;”

wherecy, d1, d2 are arbitrary constants. Rewriting the constants as follows

dy +dy = ¢y,

dl 7d2 = C3.

We obtain the homogenous solution as

-7 —rcosh(fs) —ksinh(fs)
Xn(s)=co| 0 | +ec1| —fsinh(fs) | +ca | —fcosh(fs)
K 7 cosh(fs) 7sinh(fs)

The fundamental matrix of the nonhomogeneous linear differential system of the equation
can be written as

—7 —kcosh(fs) —rsinh(fs)

w(s) = 0 —fsinh(fs) —fcosh(fs)
Kk Tcosh(fs) 7 sinh(fs)

With the use of the equalityX,, (s) = ¢ (s) u (s), we may find the vector values function
u (s) by following equation

Actually, solving the3 x 3 linear equation by Crammer’s method, we find the particular
solution of the Equation 1 as follows:

®
3
N

=

Xy(s) =

)
)

SKT

?
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SinceX,(s) = Xp(s) + X,(s), then we get the general solution of the system of linear
differential equation as follows

2

po(s) = —Tco + caksinh(fs) + ey sinh(fs) + %8,
pi1(s) = —ci1 fsinh(fs) + caf cosh(fs) + %7
pa(s) = ke + a7 cosh(fs) — corsinh(fs) — 'st

O

It is suggested to the readers to see [8] for details of the methods of solving first order
nonhomogeneous linear differential systems of equations.

Case 3.2In this case we take? — x? < 0, we obtain the following theorems in this
condition.

Theorem 3.2. Lety : I C R — E$ be a twisted spacelike curve, then the position vector
~(s) is obtained with the following differentiable functions:

2
po(s) = —coT — c1kcos (gs) + cak sin (gs) — %57
g
. K
p1(s) = c1gsin (gs) + cagcos (gs) — el

, KT
p2(8) = cok + ¢17 cos (gs) — caTsin (gs) + 7

S?
wherer? — k2 = —g2 < 0 and¢; are arbitrary constants fod < i < 2.

Proof. Similar to the proof of Theorem 4, we find the homogeneous solution of the nonho-
mogeneous linear differential system of equations in 2 as follows:

—T —kcos (gs) K sin (gs)
Xn(s)=co| 0 |+4c1| gsin(gs) | +eca| gcos(gs)
K T cos (gs) —7sin (gs)

Then, we obtain the fundamental matrix as

—7 —kcos(gs) ksin(gs)
p(s)=| 0 gsin(gs)  gcos(gs)
Kk Tcos(gs) —tsin(gs)

Finally, particular solution of the system 2 can be given by

T2

_9728

Xy(s) = -

ek

QNE‘ «
»
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Therefore, we obtain
2
po(s) = —coT — c1kcos (gs) + caksin (gs) — — s,
g

, K
p1(s) = c1gsin(gs) + cag cos (gs) — 9—2,

p2(s) = cok + c17 cos (gs) — caTsin (gs) + gs
g

Case 3.3In this case we take? — x? = 0, and we get the following subcases:
Case 3.3.1n this subcase, we will investigate condition of beig- .

Theorem 3.3. Lety : I C R — E$ be a twisted curve, then the position vectqs) is
obtained with the following differentiable functions:

2 2 2
po(s) = —co (252 — 1> + C1KS — 02%82 — %53 + s,

K 2
p1(s) = —coks + ¢1 — caks — 55
2 2

2 ks + 02(%82 +1)+ %33,

1
pa(s) = 500,‘@25

wherec; are arbitrary constants foé < ¢ < 2.

Proof. Substitutings = 7 into the Equation 2, we obtain the fundamental matrix as fol-
lows:

1-— %32n2 SK —%52/#
w(s) = —SK 1 —SK
%SQHQ —SK %SQKQ +1
and so we find the homogeneous solution of this differential equation as follows
1-— %,92/{2 SK 7552/12
Xn(s) = co —SK +a 1 + co —SK
15%K2 —5kK 15267 +1
Then, we find the particular solution of the differential equation as follows
—%253 + s
Xp(s) = —5s°

after the calculations, we obtained general solution of the differential equation by

2 2 2
K K K
po(s) = —co (52 — 1) + kS —ca—8% — —s3 + s,

2 2 6
K 2
p1(8) = —coks + ¢1 — coks — 55
1 2 2
pa(s) = 5(}0,‘4‘,282 — ks + 62(%82 +1)+ %33.
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Case 3.3.2In this subcase, we will investigate condition of being
K= —T.

Theorem 3.4. Lety : I € R — E$ be a twisted curve, then the position vectds) is
obtained with the following equality:

2 2 2
po(s) = —co (232 — 1> + c1kS + 02%32 — %33 + s,

K 2
p1(8) = —coks + ¢1 + coks — 55 ,

2 1 )
pa2(s) = —60%82 + c1ks + co (23252 + 1) _ %337

wherec; are arbitrary constants fof < i < 2.

Proof. Proof can be done similar to proof of the previous theorem by substitatiag-~
in the Equation 2. O

Consider the unit speed spacelike W cugvel — E$ with the parametrization

1 1 )
~(s) = (5 sinh s, 3 cosh s, gs)

We obtain the Frenet frame fields as follows:

1 1 5
T(s) = (5 cosh s, 3 sinh s, £)7

N(s) = (sinh s, cosh s, 0),
5 5 1
AB(S)::(}g:coshs,%giﬁnhs,g)
where the curvature and torsion of the curvare

| S

k(s) = % andr(s) = ,

respectively. Since? — k% = 1 > 0, then we get

po(s) = 257 pi(s) = %, pa(s) = —?s

with the use of Theorem 4 whetg = ¢; = ¢ = 0. It can be easily seen that
V() = po(s)T(s) + p1(s)N(s) + p2(s)B(s).

4. SPACELIKE W CURVE WITH TIMELIKE NORMAL VECTOR

In this section, we give characterization of spacelike W curve with timelike normal
vector. Ify(s) is a spacelike W curve with spacelike normal vector. Then spacelike curve
~(s) is given by

Y(8)=qo(s)T(s) +q1(s) N (s) + g2 (s) B(s) 3)
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for some differentiable functiong,, ¢; andg, of s € I C R. Taking the derivative of
both sides of Equation 1 with respect to the arc length parameter and using Serret Frenet
Formulas which are given by Theorem 2, we get

qp (s) = —kaqi (s) +1,

/

q1 (8) = —Kqo (s) — Tq2 (s), (4)

gh (s) = —7q1 (s).
Theorem 4.1. Lety : I C R — E$ be a twisted spacelike curve, then the position vector
~(s) is obtained with the following differentiable functions:

2

qo(s) = —coT + c1k cosh (ts) + carsinh (ts) + %S’

K
q1(s) = —cytsinh (¢s) — cat cosh (ts) + 2

g2(8) = Kkeg + ¢17 cosh (ts) + co7 sinh (ts) — %3,
wherer? + k2 = t2 > 0 andc; are arbitrary constants fob < i < 2.
Proof. We may write the nonhomogeneous linear differential system of equations in 4, as

qp (s) 0 -k 0 qo (s) 1
@) | = -« 0 -1 a(s) |+ 0
a5 (s) 0 -7 0 q2 (s) 0

With the use of eigenvalues and eigenvectors of the coefficient matrix of the above non-
homogeneous linear system of differential equations, we obtain the homogeneous solution
as

-7 K
Xn(s)=co| 0 | +dy(cosh(ts)+sinh(ts)) | —t
K T

K

+ dg (cosh (ts) —sinh (¢s)) | ¢

.

wherecy, diandds are arbitrary constants. Rewriting the constants as follows

di 4+ ds = ¢,
d1 — d2 = C3.
We obtain the homogenous solution as
-7 K cosh (ts) Kk sinh (ts)
Xn(s)=co| O | +ec1 | —tsinh(ts) | +co | —tcosh(ts)
K 7 cosh (ts) 7 sinh (¢s)

and the particular solution of the system 4 as
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Finally, we get
2

. T
qo(s) = —coT + c1k cosh (ts) + carsinh (ts) + =

S,

: K
q1(s) = —cytsinh (¢s) — cat cosh (ts) + 2
g2(s) = Kkeo + 17 cosh (ts) + coTsinh (ts) — %s.

Consider the unit speed spacelike W cuvel — E$ with the parametrization

~v(s) = (cosh s, — sinh s, — sinh s).

V3 V3

We obtain the Serret Frenet frame fields as follows:

1
T(s) = (sinhs, cosh s, — cosh s),

V3 V3
N(s) = (coshs, 7 sinh s, % sinh s),
B = 0,5z~

where the curvature and torsion of the cusvare
k(s) = landr(s) =0,
respectively. Since? + x2 = 1, then we get
q0(s) =0, q1(s) =1, g2(s) = 0
with the use of Theorem 8 whetg = ¢; = ¢o = 0. It is clear that
v(s) = qo(s)T(s) + q1(s)N(s) + g2(s) B(s).

5. PseubpoNuLL W CURVE

In this section, we give characterization of a pseudo null W ctyrvé — E? given by
pseudo arc length parameter. The position vector of spacelike ¢(syés given by

v (8) =mo (s)T (s) +ma (s) N (s) +mz (s) B(s) (®)

for some differentiable functionsy, m; andmsy of s € I C R. Let~ be not a straight

line. Then the curvature of should be equal t81”. Taking the derivative of both sides

of Equation 5 with respect to the pseudo arc length parameter and using the Serret-Frenet
formulas which is given in Theorem 3, we get

7' (s) = (mg (s) —ma (5)) T (s)
+ (my (s) +mo (s) + 7 (s) ma (s)) N (s)
+(mj (s) = 7(s)ma (s)) B (s).
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It is seen that the following relations are satisfied

mg (s) =1+ mx (s),
mj (s) = —mg (s) — Tmq (s), (6)
mé (s) = Tms (s).

Theorem 5.1. Leta : I € R — E3 be a pseudo null twisted curve given by pseudo arc
length parameter which is not a straight line.dliis a W curve with- # 0, then the position
vectora(s) is stated with the following differentiable functions:

mo (8) = —coT + c1(cosh(7s) + sinh(7s)) + 1,

€1 . . 1 1
co — E(cosh(Ts) + sin h(7s)) + ¢,y (cosh(rs) — sinh(7s)) — - + oy
ma (8) = c17(cosh(7s) + sinh (75)).

my (s)

wherec; are arbitrary constants foé < ¢ < 2.

Proof. Suppose thatv is a W pseudo null curve witlh # 0. This means that the coef-
ficients of differential equations given in Equation 6 are also constant. We may write the
Equations in 6 as follows:

mg (s) 0 0 1 mo (s) 1
mi(s) | =] -1 -7 0 my(s) |+ 1] 0
mh (s) 0 0 7 ma (s) 0

The eigenvalues and eigenvectors of the matrix of nonhomogeneous linear system of the
above equation are found as follows:

-7 1 0
M=0=Vi=| 1 | u=r=>V=|-% | =—T=V;=|1
0 T 0

The homogeneous solution of this differential equation is found as:

S : ;
Xh (3) = Cp 1 + dleTS _i + d2e—7's 1
L 0] T 0
S X

=co| 1 | +di(cosh(rs)+sinh(rs)) | —5-
e

0
+ da(cosh(7s) — sinh(7s)) | 1
0
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wherecy, dy, do are arbitrary constants. We obtain the homogenous solution as

-7 cosh(7s) + sinh(7s)
Xp(s)=co| 1 | +di | —5=(cosh(rs) + sinh(rs))
0 7(cosh(rs) 4 sinh(7s))
0
+ ¢o | cosh(rs) — sinh(7s)
0

The fundamental matrix of the nonhomogeneous linear differential system of the equation
can be written as

-7 cosh(7s) + sinh(7s) 0
w(s)= 1 —3t(cosh(rs) + sinh(rs)) cosh(rs) — sinh(rs)
0 7(cosh(7s) 4 sinh(7s)) 0

With the use of the equalityX,, (s) = ¢ (s) u (s), we may find the vector values function
u (s) by following equation

Actually, solving the3 x 3 linear equation by Crammer’s method, we find the particular
solution of the Equation 6 as follows:

dy(cosh(ts) + sinh(rs)) + 1
X, (5) = | —2(cosh(rs) +sinh(rs)) — L + L
do7(cosh(7s) + sinh(7s))
SinceX(s) = Xn(s) + X,(s) and by substituting; + d» = c;,then it is seen that

mo (8) = —coT + ¢1(cosh(7s) + sinh(7s)) + 1,

) 1 1
co — E( cosh (7s) +sin h(7s)) + ¢,( cosh (1s)—sinh (Ts))f;+7_—2,

—
®
N
I

ma (3) 17(cosh(7s) + sinh (7s)).
O
Theorem 5.2. Leta : I € R — E3$ be a pseudo null twisted curve given by pseudo arc

length parameter which is not a straight line.dfis a planar W curve , then the position
vectora(s) is stated with the following differentiable functions:

mo (s) = cos+c1 + s,

2 2
my (s) = —Coy s +eo — 5
ma (s) = co,

wherec; are arbitrary constants fof < i < 2.
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Proof. Suppose that is a planar W pseudo null curve. Thatris= 0. We may write the
equations in 6 as follows:

Then we can easily find

mo (s) =cos+c1+ s

(s) L st
myi(s) =—co— —c18s+c— —
1 0 2 1 2 2 )
ma (s) = co,
wherec; are arbitrary constants for< : < 2. ]

Consider the pseudo null W curve: I — E? with the parametrization

s2

a(s) = (5. 59).

We obtain the Serret Frenet frame fields as follows:

[V

T(s) = (s,s,1),
N(s)=(1,1,0),

§2 _ _ g2
Bls)= (Tt 15 9)

where the curvature and torsion of the curvare
k(s) = landr(s) =0,

respectively. Thus we have

mo (s) =s,mi(s) =——, ma(s) =0
with the use of Theorem 10 whetg = ¢; = ¢o = 0. Actually, it is seen that

a(s) = mo(s)T(s) + mi(s)N(s) + ma(s)B(s).

6. CONCLUSION

According to all findings of this paper, we can summarize the following results in the
table:
ihF4.1615in2.8115in0inFigure
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