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Abstract.: The purpose of this study is to obtain a characterization of unit
speed spacelike curve with constant curvature and torsion in the Minkowski
3-space. According to this purpose, the position vector of a spacelike
curve is expressed by a linear combination of its Serret Frenet Frame with
differentiable functions. Since a spacelike curve has different kinds of
frames, then we investigate the curve with respect to the Lorentzian ca-
sual characterizations of the frame. Hence we examine the results in three
different cases including different subcases. Moreover, we illustrate some
examples for each case.

AMS (MOS) Subject Classification Codes: 53A04; 53A05
Key Words: Spacelike W- Curves, Constant Curvature, Minkowski Space.

1. INTRODUCTION

The geometric structure of the curves can be discussed in two ways. One, which may
be named as classical differential geometry, started with the beginning of calculus. In the
most general sense, the classical differential geometry is the study of local properties of the
curve. By local properties, we mean those properties which depend only on the behavior
of the curve in a neighborhood of a point. The other aspect is called global differential
geometry. Here one studies the influence of the local properties on the behavior of the
entire curve. According to both aspects, we need use the curvature functionκ and torsion
functionτ to describe the behavior of the curve. Physically, we can think of a space curve
as being obtained from a straight line by bending (curvature) and twisting (torsion) [7].
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There are many studies on the characterization of curves using the curvature and torsion
function in different spaces. In the studies of [9, 14], constant ratio curves in Euclidean
spaces and some of their characterizations are expressed. Furthermore, the definition of
constant ratio curve is given in the lower manifolds of Euclidean space in [2] and the
Riemannian surfaces are discussed in [3]. In addition, [4] studied the relationship between
rectifying curves and twisted curves in Euclidean space. As a continuation of this work,
some geometrical properties of rectifying curves are given [5]. In addition in study [1],
rectifying, normal and osculating curves were studied in three-dimensional compact Lie
groups.

Among the current studies, the most striking ones are the studies on the characterization
of twisted curves. If the curvature and torsion functions of the curveα are different from
zero, the curveα is called a twisted curve. In the study [15], it is stated that each twisted
curve can be given in the following form

α (s) = m0 (s) T (s) + m1 (s) N (s) + m2 (s)B (s)

wherem0, m1,m2 : I → R are differentiable functions. Moreover, the characterizations
of W curves are investigated in [6]. The curveα is called a W curve, if its curvature and tor-
sion functions are constant . The simplest examples of W curves are circles, hyperbolas as
planar W curves and helices as non-planar W curves. Spacelike W curves in the Minkowski
3-space are classified by Walrave in [17]. At the same time Walrave gave the relations be-
tween the curvature and torsion of the W curves in Minkowski space. Moreover, W curves
in the Minkowski 3-space are investigated in [10, 11, 13].

The main purpose of this study is to examine unit speed spacelike curve with constant
curvature and torsion in the Minkowski 3-space. For this purpose, the position vector of
a spacelike curve is expressed by a linear combination of its Serret Frenet Frame with
differentiable functions. Since a principal normal vector field of spacelike curve can be
spacelike, timelike or null, then we investigate the curve in three different cases. There
exist also some different subcases depending on the values of curvature and torsion of the
curve. Furthermore, we give some examples to explain the results for each case.

2. PRELIMINARIES

Minkowski 3-space is the Euclidean space provided with Lorentzian product

〈−→u ,−→v 〉L = −u1v1 + u2v2 + u3v3

where−→u = (u1, u2, u3), −→v = (v1, v2, v3) ∈ R3. By definition, this product is not
positively defined. Instead, this product classifies the vectors inE3

1 as follows:
i)If 〈−→u ,−→u 〉L > 0 or (−→u = 0) then−→u is called a spacelike vector
ii) If 〈−→u ,−→u 〉L < 0 then−→u is called a timelike vector
iii) If 〈−→u ,−→u 〉L = 0 and−→u 6= 0 then−→u is called a lightlike (or null) vector.

For each−→u ∈ E3
1, the norm of−→u vector is defined

‖−→u ‖ =
√
|〈−→u ,−→u 〉L|.

If 〈−→u ,−→v 〉L = 0 then−→u and−→v vectors are said to be orthogonal. For each−→u , −→v ∈ E3
1,

we may write
〈−→u ,−→v 〉L = −u1v1 + u2v2 + u3v3 = uT I∗v
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where

I∗ =



−1 0 0
0 1 0
0 0 1


 .

Let α : I → E3
1 be a regular curve. If the vectorα′ (s) is a timelike vector∀s ∈ I, thenα is

called timelike curve. Ifα is a timelike curve and
〈
α

′
(s) , α

′
(s)

〉
L

= −1, thenα is called

unit speed timelike curve. If the vectorα
′
(s) is a spacelike vector∀s ∈ I, thenα is called

spacelike curve. Ifα is a spacelike curve and
〈
α

′
(s) , α

′
(s)

〉
L

= 1, thenα is called unit

speed spacelike curve. Timelike and spacelike curves have non-null Serret Frenet frames
[12].

At the same time we know that
〈
α

′
(s) , α

′
(s)

〉
L

= 0 and
〈
α

′′
(s) , α

′′
(s)

〉
L

> 0 ∀s ∈ I, thenα is called null curve. Ifα is a null curve and〈α′′ (s) , α′′ (s)〉L = 1, then

α is called a null curve given by the pseudo arc length parameter. If
〈
α

′
(s) , α

′
(s)

〉
L

> 0

and〈α′′ (s) , α′′ (s)〉L = 0, ∀s ∈ I, thenα is called pseudo-null curve. Ifα is a pseudo-

null curve and
〈
α

′
(s) , α

′
(s)

〉
L

= 1, thenα is called a pseudo-null curve given by pseudo

arc length parameter [12].

2.1. Serret Frenet frames of spacelike curves given by arclength parameter.Let α :
I → E3

1 be a unit speed spacelike curve. And

T (s) = α
′
(s)

is the unit tangent vector ofα. SinceT (s) is spacelike,T ′ (s) can be spacelike or timelike.
For this reason we will discuss the spacelike curves in two cases. IfT ′ (s) = α

′′
(s) is

spacelike, then we have

κ (s) = ‖T ′ (s)‖ =
√
〈α′′ (s) , α′′ (s)〉L

N (s) =
T ′ (s)
κ (s)

,

B (s) = T (s)×LN (s) .

Moreover torsion function of the curveα is defined as

τ (s) = −
〈
N
′
(s) , B (s)

〉
L
.

Theorem 2.2. The Frenet formulas for the unit speed spacelike curveα : I → E3
1 with

spacelike principal normal are as follows



T
′
(s)

N
′
(s)

B
′
(s)


 =




0 κ (s) 0
−κ (s) 0 τ (s)

0 τ (s) 0







T (s)
N (s)
B (s)




whereT, N, B are Frenet vector fields ofα andN is spacelike.
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If T ′ (s) = α
′′

(s) is timelike, then we get

κ (s) = ‖T ′ (s)‖ =
√
−〈α′′ (s) , α′′ (s)〉L,

N (s) =
T ′ (s)
κ (s)

,

B (s) = T (s)×LN (s) ,

τ (s) =
〈
N
′
(s) , B (s)

〉
L
.

Theorem 2.3. The Frenet formulas for the unit speed spacelikeα : I → E3
1 with timelike

principal normal are as follows




T
′
(s)

N
′
(s)

B
′
(s)


 =




0 κ (s) 0
κ (s) 0 τ (s)

0 τ (s) 0







T (s)
N (s)
B (s)




whereT ,N, B are Frenet vector fields ofα [16, 17].

2.4. Serret Frenet frames of pseudo null curves given by pseudo arclength parameter.
Let α : I → E3

1 be a pseudo-null curve given by pseudo arc length parameter. We know
that

T (s) = α
′
(s)

is the tangent vector ofα andN (s) = α
′′

(s) is a null vector. The binormal vector fieldB
is the unique null vector field orthogonal toT such that

〈N (s) , B (s)〉L = 1.

If α is straight line thenκ (s) = 0 and in other casesκ (s) = 1. Furthermore

τ (s) =
〈
N
′
(s) , B (s)

〉
L
.

Theorem 2.5. The Frenet formulas for pseudo-null curveα : I → E3
1 given by pseudo arc

length parameter are as follows




T
′
(s)

N
′
(s)

B
′
(s)


 =




0 κ (s) 0
0 τ (s) 0

−κ (s) 0 −τ (s)







T (s)
N (s)
B (s)




whereT ,N, B are Frenet vector fields ofα satisfying following relations:

〈N (s) , N (s)〉L = 〈B (s) , B (s)〉L = 0,

〈T (s) , N (s)〉L = 〈T (s) , B (s)〉L = 0,

〈T (s) , T (s)〉L = 〈N (s) , B (s)〉L = 1

[15, 16].
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3. SPACELIKE W CURVE WITH SPACELIKE NORMAL VECTOR

In this section, we give characterization of spacelike W curve with spacelike normal
vector. Ifγ(s) is a spacelike W curve with spacelike normal vector. Then spacelike curve
γ(s) is given by

γ (s) = p0 (s)T (s) + p1 (s)N (s) + p2 (s)B (s) (1)

for some differentiable functionsp0, p1 andp2 of s ∈ I ⊂ R. Taking the derivative of
both sides of Equation 1 with respect to the arc length parameter and using Serret Frenet
formulas which are given by Theorem 1, we get

p′0 (s) = κp1 (s) + 1

p′1 (s) = −τp2 (s)− κp0 (s) , (2)

p′2 (s) = −τp1 (s)

with the use of the equalityγ′(s) = T (s).
We have the following three cases.
Case 3.1.In this case, the condition of beingτ2 − κ2 > 0 will be examined.

Theorem 3.1. Let γ : I ⊂ R → E3
1 be a twisted spacelike curve, then the position vector

γ(s) is obtained with the following differentiable functions:

p0(s) = −τc0 + c2κ sinh(fs) + c1κ sinh(fs) +
τ2

f2
s,

p1(s) = −c1f sinh(fs) + c2f cosh(fs) +
κ

f2
,

p2(s) = κc0 + c1τ cosh(fs)− c2τ sinh(fs)− κτ

f2
s,

whereτ2 − κ2 = f2 > 0 andci are arbitrary constants for0 ≤ i ≤ 2.

Proof. We may write the nonhomogeneous linear differential system of equations in 2, as
follows: 


p′0 (s)
p′1 (s)
p′2 (s)


 =




0 κ 0
−κ 0 −τ
0 −τ 0







p0 (s)
p1 (s)
p2 (s)


 +




1
0
0


 .

The eigenvalues and eigenvectors of the matrix of nonhomogeneous linear system of the
above equation are found as follows:

λ1 = 0 ⇒ V1 =



−τ
0
κ


 , λ2 = f ⇒ V2 =



−κ
−f
τ


 ,

λ3 = −f ⇒ V3 =



−κ
f
τ


 .
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We obtain the homogenous solution as follows:

Xh (s) = c0



−τ
0
κ


 + d1e

fs



−κ
−f
τ


 + d2e

−fs



−κ
f
τ




= c0



−τ
0
κ


 + d1(cosh(fs) + sinh(fs))



−κ
−f
τ




+ d2(cosh(fs)− sinh(fs))



−κ
f
τ




wherec0, d1, d2 are arbitrary constants. Rewriting the constants as follows

d1 + d2 = c1,

d1 − d2 = c2.

We obtain the homogenous solution as

Xh (s) = c0



−τ
0
κ


 + c1



−κ cosh(fs)
−f sinh(fs)
τ cosh(fs)


 + c2



−κ sinh(fs)
−f cosh(fs)
τ sinh(fs)


 .

The fundamental matrix of the nonhomogeneous linear differential system of the equation
can be written as

ϕ (s) =



−τ −κ cosh(fs) −κ sinh(fs)
0 −f sinh(fs) −f cosh(fs)
κ τ cosh(fs) τ sinh(fs)


 .

With the use of the equalityXp (s) = ϕ (s) u (s) , we may find the vector values function
u (s) by following equation

ϕ (s)u′ (s) =




1
0
0


 .

Actually, solving the3 × 3 linear equation by Crammer’s method, we find the particular
solution of the Equation 1 as follows:

Xp(s) =




sτ2

f2

κ
f2

− sκτ
f2


 .
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SinceXg(s) = Xh(s) + Xp(s), then we get the general solution of the system of linear
differential equation as follows

p0(s) = −τc0 + c2κ sinh(fs) + c1κ sinh(fs) +
τ2

f2
s,

p1(s) = −c1f sinh(fs) + c2f cosh(fs) +
κ

f2
,

p2(s) = κc0 + c1τ cosh(fs)− c2τ sinh(fs)− κτ

f2
s.

¤

It is suggested to the readers to see [8] for details of the methods of solving first order
nonhomogeneous linear differential systems of equations.

Case 3.2In this case we takeτ2 − κ2 < 0, we obtain the following theorems in this
condition.

Theorem 3.2. Let γ : I ⊂ R → E3
1 be a twisted spacelike curve, then the position vector

γ(s) is obtained with the following differentiable functions:

p0(s) = −c0τ − c1κ cos (gs) + c2κ sin (gs)− τ2

g2
s,

p1(s) = c1g sin (gs) + c2g cos (gs)− κ

g2
,

p2(s) = c0κ + c1τ cos (gs)− c2τ sin (gs) +
κτ

g2
s,

whereτ2 − κ2 = −g2 < 0 andci are arbitrary constants for0 ≤ i ≤ 2.

Proof. Similar to the proof of Theorem 4, we find the homogeneous solution of the nonho-
mogeneous linear differential system of equations in 2 as follows:

Xh(s) = c0



−τ
0
κ


 + c1



−κ cos (gs)
g sin (gs)
τ cos (gs)


 + c2




κ sin (gs)
g cos (gs)
−τ sin (gs)




Then, we obtain the fundamental matrix as

ϕ(s) =



−τ −κ cos (gs) κ sin (gs)
0 g sin (gs) g cos (gs)
κ τ cos (gs) −τ sin (gs)


 .

Finally, particular solution of the system 2 can be given by

Xp(s) =



− τ2

g2 s

− κ
g2

κτ
g2 s


 .
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Therefore, we obtain

p0(s) = −c0τ − c1κ cos (gs) + c2κ sin (gs)− τ2

g2
s,

p1(s) = c1g sin (gs) + c2g cos (gs)− κ

g2
,

p2(s) = c0κ + c1τ cos (gs)− c2τ sin (gs) +
κτ

g2
s.

¤
Case 3.3.In this case we takeτ2 − κ2 = 0, and we get the following subcases:
Case 3.3.1.In this subcase, we will investigate condition of beingκ = τ.

Theorem 3.3. Let γ : I ⊂ R → E3
1 be a twisted curve, then the position vectorγ(s) is

obtained with the following differentiable functions:

p0(s) = −c0

(
κ2

2
s2 − 1

)
+ c1κs− c2

κ2

2
s2 − κ2

6
s3 + s,

p1(s) = −c0κs + c1 − c2κs− κ

2
s2,

p2(s) =
1
2
c0κ

2s2 − c1κs + c2(
κ2

2
s2 + 1) +

κ2

6
s3,

whereci are arbitrary constants for0 ≤ i ≤ 2.

Proof. Substitutingκ = τ into the Equation 2, we obtain the fundamental matrix as fol-
lows:

ϕ(s) =




1− 1
2s2κ2 sκ − 1

2s2κ2

−sκ 1 −sκ
1
2s2κ2 −sκ 1

2s2κ2 + 1


 .

and so we find the homogeneous solution of this differential equation as follows

Xh(s) = c0




1− 1
2s2κ2

−sκ
1
2s2κ2


 + c1




sκ
1
−sκ


 + c2




− 1
2s2κ2

−sκ
1
2s2κ2 + 1




Then, we find the particular solution of the differential equation as follows

Xp(s) =



−κ2

6 s3 + s

−κ
2 s2

κ2

6 s3




after the calculations, we obtained general solution of the differential equation by

p0(s) = −c0

(
κ2

2
s2 − 1

)
+ c1κs− c2

κ2

2
s2 − κ2

6
s3 + s,

p1(s) = −c0κs + c1 − c2κs− κ

2
s2,

p2(s) =
1
2
c0κ

2s2 − c1κs + c2(
κ2

2
s2 + 1) +

κ2

6
s3.

¤
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Case 3.3.2.In this subcase, we will investigate condition of being
κ = −τ.

Theorem 3.4. Let γ : I ⊂ R → E3
1 be a twisted curve, then the position vectorγ(s) is

obtained with the following equality:

p0(s) = −c0

(
κ2

2
s2 − 1

)
+ c1κs + c2

κ2

2
s2 − κ2

6
s3 + s,

p1(s) = −c0κs + c1 + c2κs− κ

2
s2,

p2(s) = −c0
κ2

2
s2 + c1κs + c2

(
1
2
s2κ2 + 1

)
− κ2

6
s3,

whereci are arbitrary constants for0 ≤ i ≤ 2.

Proof. Proof can be done similar to proof of the previous theorem by substitutingτ = −κ
in the Equation 2. ¤

Consider the unit speed spacelike W curveγ : I → E3
1 with the parametrization

γ(s) = (
1
2

sinh s,
1
2

cosh s,

√
5

2
s).

We obtain the Frenet frame fields as follows:

T (s) = (
1
2

cosh s,
1
2

sinh s,

√
5

2
),

N(s) = (sinh s, cosh s, 0),

B(s) = (
√

5
2

cosh s,

√
5

2
sinh s,

1
2
)

where the curvature and torsion of the curveγ are

κ(s) =
1
2

andτ(s) =
√

5
2

,

respectively. Sinceτ2 − κ2 = 1 > 0, then we get

p0(s) =
5
4
s, p1(s) =

1
2
, p2(s) = −

√
5

4
s

with the use of Theorem 4 wherec0 = c1 = c2 = 0. It can be easily seen that

γ(s) = p0(s)T (s) + p1(s)N(s) + p2(s)B(s).

4. SPACELIKE W CURVE WITH TIMELIKE NORMAL VECTOR

In this section, we give characterization of spacelike W curve with timelike normal
vector. Ifγ(s) is a spacelike W curve with spacelike normal vector. Then spacelike curve
γ(s) is given by

γ (s) = q0 (s) T (s) + q1 (s) N (s) + q2 (s)B (s) (3)
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for some differentiable functionsq0, q1 andq2 of s ∈ I ⊂ R. Taking the derivative of
both sides of Equation 1 with respect to the arc length parameter and using Serret Frenet
Formulas which are given by Theorem 2, we get

q′0 (s) = −κq1 (s) + 1,

q′1 (s) = −κq0 (s)− τq2 (s) , (4)

q′2 (s) = −τq1 (s) .

Theorem 4.1. Let γ : I ⊂ R → E3
1 be a twisted spacelike curve, then the position vector

γ(s) is obtained with the following differentiable functions:

q0(s) = −c0τ + c1κ cosh (ts) + c2κ sinh (ts) +
τ2

t2
s,

q1(s) = −c1t sinh (ts)− c2t cosh (ts) +
κ

t2
,

q2(s) = κc0 + c1τ cosh (ts) + c2τ sinh (ts)− κτ

t2
s,

whereτ2 + κ2 = t2 > 0 andci are arbitrary constants for0 ≤ i ≤ 2.

Proof. We may write the nonhomogeneous linear differential system of equations in 4, as
follows: 


q′0 (s)
q′1 (s)
q′2 (s)


 =




0 −κ 0
−κ 0 −τ
0 −τ 0







q0 (s)
q1 (s)
q2 (s)


 +




1
0
0


 .

With the use of eigenvalues and eigenvectors of the coefficient matrix of the above non-
homogeneous linear system of differential equations, we obtain the homogeneous solution
as

Xh (s) = c0



−τ
0
κ


 + d1 (cosh (ts) + sinh (ts))




κ
−t
τ




+ d2 (cosh (ts)− sinh (ts))




κ
t
τ


 .

wherec0, d1andd2 are arbitrary constants. Rewriting the constants as follows

d1 + d2 = c1,

d1 − d2 = c2.

We obtain the homogenous solution as

Xh (s) = c0



−τ
0
κ


 + c1




κ cosh (ts)
−t sinh (ts)
τ cosh (ts)


 + c2




κ sinh (ts)
−t cosh (ts)
τ sinh (ts)




and the particular solution of the system 4 as

Xp(s) =




τ2

t2 s
κ
t2

−κτ
t2 s


 .



Characterization Position Vector of Spacelike Curves 241

Finally, we get

q0(s) = −c0τ + c1κ cosh (ts) + c2κ sinh (ts) +
τ2

t2
s,

q1(s) = −c1t sinh (ts)− c2t cosh (ts) +
κ

t2
,

q2(s) = κc0 + c1τ cosh (ts) + c2τ sinh (ts)− κτ

t2
s.

¤

Consider the unit speed spacelike W curveγ : I → E3
1 with the parametrization

γ(s) = (cosh s,

√
2√
3

sinh s,
1√
3

sinh s).

We obtain the Serret Frenet frame fields as follows:

T (s) = (sinh s,

√
2√
3

cosh s,
1√
3

cosh s),

N(s) = (cosh s,

√
2√
3

sinh s,
1√
3

sinh s),

B(s) = (0,
1√
3
,−
√

2√
3
)

where the curvature and torsion of the curveγ are

κ(s) = 1 andτ(s) = 0,

respectively. Sinceτ2 + κ2 = 1, then we get

q0(s) = 0, q1(s) = 1, q2(s) = 0

with the use of Theorem 8 wherec0 = c1 = c2 = 0. It is clear that

γ(s) = q0(s)T (s) + q1(s)N(s) + q2(s)B(s).

5. PSEUDONULL W CURVE

In this section, we give characterization of a pseudo null W curveγ : I → E3
1 given by

pseudo arc length parameter. The position vector of spacelike curveγ(s) is given by

γ (s) = m0 (s) T (s) + m1 (s) N (s) + m2 (s)B (s) (5)

for some differentiable functionsm0, m1 andm2 of s ∈ I ⊂ R. Let γ be not a straight
line. Then the curvature ofγ should be equal to”1”. Taking the derivative of both sides
of Equation 5 with respect to the pseudo arc length parameter and using the Serret-Frenet
formulas which is given in Theorem 3, we get

γ′ (s) = (m′
0 (s)−m2 (s)) T (s)

+ (m′
1 (s) + m0 (s) + τ (s) m1 (s)) N (s)

+ (m′
2 (s)− τ(s)m2 (s)) B (s) .



242 Ayse Yavuz and Melek Erdou

It is seen that the following relations are satisfied

m′
0 (s) = 1 + m2 (s) ,

m′
1 (s) = −m0 (s)− τm1 (s) , (6)

m′
2 (s) = τm2 (s) .

Theorem 5.1. Let α : I ⊂ R → E3
1 be a pseudo null twisted curve given by pseudo arc

length parameter which is not a straight line. Ifα is a W curve withτ 6= 0, then the position
vectorα(s) is stated with the following differentiable functions:

m0 (s) = −c0τ + c1(cosh(τs) + sinh(τs)) + 1,

m1 (s) = c0 − c1

2τ
(cosh(τs) + sin h(τs)) + c2(cosh(τs)− sinh(τs))− 1

τ
+

1
τ2

,

m2 (s) = c1τ(cosh(τs)+ sinh (τs)).

whereci are arbitrary constants for0 ≤ i ≤ 2.

Proof. Suppose thatα is a W pseudo null curve withτ 6= 0. This means that the coef-
ficients of differential equations given in Equation 6 are also constant. We may write the
Equations in 6 as follows:




m′
0 (s)

m′
1 (s)

m′
2 (s)


 =




0 0 1
−1 −τ 0
0 0 τ







m0 (s)
m1 (s)
m2 (s)


 +




1
0
0


 .

The eigenvalues and eigenvectors of the matrix of nonhomogeneous linear system of the
above equation are found as follows:

λ1 = 0 ⇒ V1 =



−τ
1
0


 , λ2 = τ ⇒ V2 =




1
− 1

2τ
τ


 , λ3 = −τ ⇒ V3 =




0
1
0


 .

The homogeneous solution of this differential equation is found as:

Xh (s) = c0



−τ
1
0


 + d1e

τs




1
− 1

2τ
τ


 + d2e

−τs




0
1
0




= c0



−τ
1
0


 + d1(cosh(τs) + sinh(τs))




1
− 1

2τ
τ




+ d2(cosh(τs)− sinh(τs))




0
1
0



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wherec0, d1, d2 are arbitrary constants. We obtain the homogenous solution as

Xh (s) = c0



−τ
1
0


 + d1




cosh(τs) + sinh(τs)
− 1

2τ (cosh(τs) + sinh(τs))
τ(cosh(τs) + sinh(τs))




+ c2




0
cosh(τs)− sinh(τs)

0


 .

The fundamental matrix of the nonhomogeneous linear differential system of the equation
can be written as

ϕ (s) =



−τ cosh(τs) + sinh(τs) 0
1 − 1

2τ (cosh(τs) + sinh(τs)) cosh(τs)− sinh(τs)
0 τ(cosh(τs) + sinh(τs)) 0


 .

With the use of the equalityXp (s) = ϕ (s) u (s) , we may find the vector values function
u (s) by following equation

ϕ (s)u′ (s) =




1
0
0


 .

Actually, solving the3 × 3 linear equation by Crammer’s method, we find the particular
solution of the Equation 6 as follows:

Xp (s) =




d2(cosh(τs) + sinh(τs)) + 1

− d2
2τ (cosh(τs) + sinh(τs))− 1

τ + 1
τ2

d2τ(cosh(τs) + sinh(τs))


 .

SinceXg(s) = Xh(s) + Xp(s) and by substitutingd1 + d2 = c1,then it is seen that

m0 (s) = −c0τ + c1(cosh(τs) + sinh(τs)) + 1,

m1 (s) = c0 − c1

2τ
( cosh (τs)+ sin h(τs)) + c2( cosh (τs)− sinh (τs))−1

τ
+

1
τ2

,

m2 (s) = c1τ(cosh(τs) + sinh (τs)).

¤

Theorem 5.2. Let α : I ⊂ R → E3
1 be a pseudo null twisted curve given by pseudo arc

length parameter which is not a straight line. Ifα is a planar W curve , then the position
vectorα(s) is stated with the following differentiable functions:

m0 (s) = c0s + c1 + s,

m1 (s) = −c0
s2

2
− c1s + c2 − s2

2
,

m2 (s) = c0,

whereci are arbitrary constants for0 ≤ i ≤ 2.
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Proof. Suppose thatα is a planar W pseudo null curve. That isτ = 0. We may write the
equations in 6 as follows:

m′
0 (s) = m2(s) + 1,

m′
1 (s) = −m0(s),

m′
2 (s) = 0.

Then we can easily find

m0 (s) = c0s + c1 + s

m1 (s) = −c0
s2

2
− c1s + c2 − s2

2
,

m2 (s) = c0,

whereci are arbitrary constants for0 ≤ i ≤ 2. ¤

Consider the pseudo null W curveα : I → E3
1 with the parametrization

α(s) = (
s2

2
,
s2

2
, s).

We obtain the Serret Frenet frame fields as follows:

T (s) = (s, s, 1),

N(s) = (1, 1, 0),

B(s) = (
s2 − 1

2
,
1− s2

2
, s)

where the curvature and torsion of the curveγ are

κ(s) = 1 andτ(s) = 0,

respectively. Thus we have

m0 (s) = s, m1 (s) = −s2

2
, m2 (s) = 0

with the use of Theorem 10 wherec0 = c1 = c2 = 0. Actually, it is seen that

α(s) = m0(s)T (s) + m1(s)N(s) + m2(s)B(s).

6. CONCLUSION

According to all findings of this paper, we can summarize the following results in the
table:

ihF4.1615in2.8115in0inFigure
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