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Abstract.: In this paper, we will introduce the (s, t)-Padovan quaternions
matrix sequence. Starting the studies based on the generalization of the
Padovan quaternion coefficients in relation to their recurrence, their matrix
sequence is then defined. Some mathematical theorems are discussed and
the Binet formula and the generating function of this matrix sequence are
studied.
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1. INTRODUCTION

Padovan sequence is a linear and recurring sequence of integers, defined by recurrence:

Pn = Pn−2 + Pn−3, n > 3.

With initial values equal toP0 = P1 = P2 = 1.
Being a third order sequence, it has its characteristic equation given byx3 − x− 1 = 0,

with three roots, one real and two complex. Its historical process can be found in some arti-
cles found in the literature, explaining the construction of this sequence and its relationship
exists with the plastic number [15] [10] [16].

In order to study the matrix form, the matrices studied in the works of Sokhuma [12] and
Seenukul [11] are taken into account. We also highlight that there are five more Padovan
matrices. Thus we have the matrix form of the Padovan sequence given by:
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ForQ =




0 1 1
1 0 0
0 1 0


 , we have:Qn =




Pn−2 Pn−1 Pn−3

Pn−3 Pn−2 Pn−4

Pn−4 Pn−3 Pn−5


 , for n > 5.

From the definition for Padovan’s positive numbers, it is possible to define a new formula
to obtain Padovan’s non-positive terms, withn ∈ N.

P−n = P−n+3 − P−n+1, n > 1.

In this way, it’s possible to study the matrix form for the numbers with non-positive
integer index, called%. That matrix form, is obtained by calculating the inverse matrix of
Q, for n ∈ N, resulting in:

For% =




0 1 0
0 0 1
1 0 −1


 , we have:%n =




P−n−2 P−n−1 P−n−3

P−n−3 P−n−2 P−n−4

P−n−4 P−n−3 P−n−5


 , for n > 0.

A quaternion is an extension of complex numbers, studied in Linear Algebra, devel-
oped in 1843 by William Rowan Hamilton (1805-1865), with two quaternionic structures,
a priori: quaternions inR, having real components, and the complex quaternions (biquater-
nions) inC, having complex variables. Quaternions are understood as formal sums of
scalars with usual vectors of three-dimensional space, with four dimensions [7] [9].

An important application of these numbers is in relation to the modeling of the sphere,
since this numerical set is capable of modeling the rotations of the circle. The application
of the sequence for real value cases refers to the study in economics, applied mathematics
and among other subjects. In relation to complex cases, there is an application in modern
physics. For the cases of quaternions, there is the study of modeling and other areas of
physics [5] [6] [13].

A quaternion is described by:

q = a + bi + cj + dk,

wherea, b, c are real numbers andi, j, k the orthogonal part at the baseR3.

Definition 1.1. The quaternion of Padovan is defined, withn > 0, n ∈ N, i2 = j2 = k2 =
−1, by the equation[14]:

QPn = Pn + iPn+1 + jPn+2 + kPn+3.

Definition 1.2. The recurrence formula for Padovan’s quaternion is defined as[14]:

QPn = QPn−2 + QPn−3.

The current study is kind of quaternion recurrence relation which is a quaternion differ-
ence equation in discrete setting [1]. With this, Padovan’s matrix sequence will be explored,
generalizing his terms of the recurrence relation, calling thems andt.
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2. THE (s, t)-PADOVAN QUATERNIONS MATRIX SEQUENCE

The (s, t)-Padovan matrix sequence were defined in [2]. The split (s, t)-Padovan quater-
nions were studied in [3] [4]. In this research, we will define and investigate the (s, t)-
Padovan quaternions matrix sequence, getting the Binet-like formulas and generating func-
tions.

Definition 2.1. The (s, t)-Padovan sequence, sayPn(s, t), with s > 0, t 6= 0 and27t2 −
4s3 6= 0, is defined by[2]:

Pn+3(s, t) = sPn+1(s, t) + tPn(s, t), n > 0,

whereP0(s, t) = 0, P1(s, t) = 1, P2(s, t) = 0.

Definition 2.2. The split (s, t)-Padovan quaternion, sayQPn(s, t), is defined by[3]:

QPn(s, t) = Pn(s, t)e0 + Pn+1(s, t)e1 + Pn+2(s, t)e2 + Pn+3(s, t)e3.

Definition 2.3. The (s, t)-Padovan quaternion, sayQPn(s, t), with s > 0, is defined by
[4]:

QPn+3(s, t) = sQPn+1(s, t) + tQPn(s, t).

Theorem 2.4. For n > 1 andn ∈ N, the matrix form of the Padovan quaternions is given
by [14]:




0 1 1
1 0 0
0 1 0




n 


QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2


 =




QPn+2 QPn+1 QPn

QPn+1 QPn QPn−1

QPn QPn−1 QPn−2


 .

Proof. Using the principle of finite induction, we have that:
Forn = 1:

Q1




QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2


 =




0 1 1
1 0 0
0 1 0







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=

[
QP1 + QP0 QP0 + QP−1 QP−1 + QP−2

QP2 QP1 QP0

QP1 QP0 QP−1

]

=




QP3 QP2 QP1

QP2 QP1 QP0

QP1 QP0 QP−1


 .
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Assuming it is valid for anyn = k, k ∈ N:

Qk




QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2


 =




0 1 1
1 0 0
0 1 0




k 


QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




Pk−2 Pk−1 Pk−3

Pk−3 Pk−2 Pk−4

Pk−4 Pk−3 Pk−5







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




QPk+2 QPk+1 QPk

QPk+1 QPk QPk−1

QPk QPk−1 QPk−2


 .

Verifying that it is valid forn = k + 1:

Qk+1




QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2


 =




0 1 1
1 0 0
0 1 0




k 


0 1 1
1 0 0
0 1 0







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




Pk−2 Pk−1 Pk−3

Pk−3 Pk−2 Pk−4

Pk−4 Pk−3 Pk−5


 .




0 1 1
1 0 0
0 1 0







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




Pk−1 Pk Pk−2

Pk−2 Pk−1 Pk−3

Pk−3 Pk−2 Pk−4







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




QPk+3 QPk+2 QPk+1

QPk+2 QPk+1 QPk

QPk+1 QPk QPk−1


 .

¤

Definition 2.5. For n > 0, the (s, t)-Padovan quaternions matrix sequence,ΘPn(s, t) To
simplify notation, we takeΘPn(s, t) = ΘPn, with s > 0, t 6= 0 and27t2 − 4s3 6= 0, is
defined by:

ΘPn+3(s, t) = sΘPn+1(s, t) + tΘPn(s, t), n > 0,

whereΘP0(s, t) =




1 0 0
0 1 0
0 0 1







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2


, ΘP1(s, t) =




0 s t
1 0 0
0 1 0







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




andΘP2(s, t) =




s t 0
0 s t
1 0 0







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2


.

Theorem 2.6. For n > 0, ΘPn(s, t) =




0 s t
1 0 0
0 1 0




n 


QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




Proof. Using the second principle of finite induction onn to prove this theorem.
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Forn = 0:

ΘP3(s, t) = sΘP1(s, t) + tΘP0(s, t)

= s







0 s t
1 0 0
0 1 0







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2





 + t







1 0 0
0 1 0
0 0 1







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2







=


s




0 s t
1 0 0
0 1 0


 + t




1 0 0
0 1 0
0 0 1










QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




t s2 st
s t 0
0 s t







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




o s t
1 0 0
0 1 0




3 


QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




Forn = k:

ΘPk+3(s, t) = sΘPk+1(s, t) + tΘPk(s, t)

= s







0 s t
1 0 0
0 1 0




k+1 


QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




 + t







0 s t
1 0 0
0 1 0




k 


QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2







=


s




Pk+2 sPk+1 + tPk tPk+1

Pk+1 sPk + tPk−1 tPk

Pk sPk−1 + tPk−2 tPk−1


 + t




Pk+1 Pk+2 tPk

Pk Pk+1 tPk−1

Pk−1 Pk tPk−2










QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




Pk+4(s, t) Pk+5(s, t) tPk+3(s, t)
Pk+3(s, t) Pk+4(s, t) tPk+2(s, t)
Pk+2(s, t) Pk+3(s, t) tPk+1(s, t)







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




0 s t
1 0 0
0 1 0




k 


QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2



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Forn = k + 1:

ΘPk+4(s, t) = sΘPk+2(s, t) + tΘPk+1(s, t)

= s







0 s t
1 0 0
0 1 0




k+2 


QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




 + t







0 s t
1 0 0
0 1 0




k+1 


QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2







=

(
s

[
sPk+1 + tPk sPk+2 + tPk+1 tPk+2

sPk + tPk−1 sPk+1 + tPk tPk+1

sPk−1 + tPk−2 stPk + tPk−1 tPk

]
+ t

[
Pk+2 sPk+1 + tPk tPk+1

Pk+1 sPk + tPk−1 tPk

Pk sPk−1 + tPk−2 tPk−1

])

.




QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




Pk+5(s, t) Pk+6(s, t) tPk+4(s, t)
Pk+4(s, t) Pk+5(s, t) tPk+3(s, t)
Pk+3(s, t) Pk+4(s, t) tPk+2(s, t)







QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




=




0 s t
1 0 0
0 1 0




k+1 


QP2 QP1 QP0

QP1 QP0 QP−1

QP0 QP−1 QP−2




¤

Definition 2.7. The characteristic equation for the (s, t)-Padovan quaternion matrix se-
quence is[2]:

x3 − sx− t = 0

Theorem 2.8. The Binet-like formulas for thenth (s, t)-Padovan, for27t2 − 4s3 6= 0 and
t 6= 0, is [2] [3] :

Pn(s, t) = aαn + bβn + cγn, n > 0,

whereα, β, γ are the roots of the characteristic equation, anda = (β−1)(γ−1)
(α−β)(α−γ) , b =

(α−1)(γ−1)
(β−α)(β−γ) andc = (α−1)(β−1)

(α−γ)(β−γ) .

Proof. The discriminant∆ = −t2

4 + s3

27 concerning the 3rd degree equation, determines
the how the roots of the equation will be. Where∆ 6= 0 all roots will be distinct, easily
coming to the conclusion that27t2 − 4s3 6= 0. Note also thatαβγ = t, this condition
implies that whent 6= 0.The coefficient values are obtained by solving the linear system
with three variables.

¤

Theorem 2.9. The Binet-like formulas for thenth (s, t)-Padovan quaternion matrix se-
quence is:

ΘPn(s, t) = aαn + bβn + cγn, n > 0
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whereα, β, γ 36/5000 are roots of the characteristic equation,a = ΘP2+ΘP1α+ΘP0βγ
(α−β)(α−γ) , b =

ΘP2+ΘP1β+ΘP0αγ
(β−α)(β−γ) andc = ΘP2+ΘP1γ+ΘP0αβ

(γ−α)(γ−β) .

Proof. From the definition ofnth (s, t)-Padovan quaternion matrix sequence and Binet
formula for thenth (s, t)-Padovan, we write:




a + b + c = ΘP0

aα + bβ + cγ = ΘP1

aα2 + bβ2 + cγ2 = ΘP2

Solving the system, we have:

a =
ΘP2 −ΘP1β −ΘP1γ + ΘP0βγ

α2 − αβ − αγ + βγ

=
ΘP2 −ΘP1β −ΘP1γ + ΘP0βγ

(α− β)(α− γ)

b =
ΘP2 −ΘP1α−ΘP1γ + ΘP0αγ

β2 − αβ − βγ + αγ

=
ΘP2 −ΘP1α−ΘP1γ + ΘP0αγ

(β − α)(β − γ)

c =
ΘP2 −ΘP1α−ΘP1β + ΘP0αβ

γ2 + αβ − αγ − βγ

=
ΘP2 −ΘP1α−ΘP1β + ΘP0αβ

(γ − α)(γ − β)

Using Girard Relationsαβγ = 1, we have:

a =
ΘP2 + ΘP1α + ΘP0βγ

(α− β)(α− γ)

b =
ΘP2 + ΘP1β + ΘP0αγ

(β − α)(β − γ)

c =
ΘP2 + ΘP1γ + ΘP0αβ

(γ − α)(γ − β)

¤

Theorem 2.10. The generating function for thenth (s, t)-Padovan quaternion matrix se-
quence is:

GΘP (x) =
ΘP0 + ΘP1x + (ΘP2 − sΘP0)x2

(1− sx2 − tx3)

Proof. Assume that the function:

GΘP (x) =
∞∑

n=0

ΘPnxn = ΘP0 + ΘP1x + ΘP2x
2 + . . . + ΘPnxn

be generating function of the (s, t)-Padovan quaternion matrix sequence. Multiply both
of side of the equality by the terms−sx2,−tx3 such as:



8 R. P. M. Vieira, F. R. V. Alves and P.M. M. C. Catarino

−sx2GΘP (x) = ΘPnxn = −sΘP0x
2 − sΘP1x

3 − sΘP2x
4 − . . .− sΘPnxn+2

−tx3GΘP (x) = ΘPnxn = −tΘP0x
3 − tΘP1x

4 − tΘP2x
5 − . . .− tΘPnxn+3

Then,we write(1− sx2 − tx3)GΘP (x):

(1− sx2 − tx3)GΘP (x) = ΘP0 + ΘP1x + ΘP2x
2 + . . . + ΘPnxn

− sΘP0x
2 − sΘP1x

3 − sΘP2x
4 − . . .− sΘPnxn+2

− tΘP0x
3 − tΘP1x

4 − tΘP2x
5 − . . .− tΘPnxn+3

= ΘP0 + ΘP1x + (ΘP2 − sΘP0)x2

GΘP (x) =
ΘP0 + ΘP1x + (ΘP2 − sΘP0)x2

(1− sx2 − tx3)
¤

3. CONCLUSION

In this work it was possible to study the (s, t)-Padovan quaternion matrix sequence,
identifying some mathematical theorems of this sequence. This sequence allows to gener-
alize the quaternions of the Padovan sequence, since the recurrence coefficients have been
generalized.

With this we can establish the process of generalizing the Padovan quaternions, contin-
uing the work of Cerda [2] and Diskaya and Menken [3]. For future work, it is investigated
the continuation of this process for the octonions [8] and the application in other areas of
these numbers.

The difficulty found in relation to the study of Padovan’s quaternions, was in relation to
the introduction to the process of complexification of this sequence, studying Padovan’s real
quaternions. With that, the imaginary units were inserted, remaining with the coefficients
of the definition of the quaternions in a real way.

For future work, it is suggested an application of this sequence in the study of modeling,
present in the area of modern physics. Performing its visualization, as well as its relation
to the generalization of that sequence [6]. In addition, the complexity of the generalization
of this sequence can be analyzed.
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Ciência e Tecnologia do Estado do Ceará (IFCE), 2018.
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