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Abstract.: Syntactic models for generating the approximating polygon
patterns of space-filling curves such as the well-known Peano and Hilbert
curves have been studied in the recent past. Here we consider the polygon
patterns of another space-filling curve, namely, Sierpiński square snowflake
curve. For generating array representations of these patterns, we introduce
a variant of a fairly recent and novel computing model, known as P system
in the membrane computing field. We then develop a finite set of join-
ing rules which on application, join the primitive patterns in the arrays,
thereby yielding the polygon patterns of the Sierpiński square snowflake
curve.
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1. INTRODUCTION

Space-filling curves [13] have always fascinated researchers with their remarkable prop-
erty of being continuous and at the same time passing through every point of a unit square
in the two-dimensional plane. Space-filling curves also have applications in scientific com-
puting [2]. Peano [11] introduced a space-filling curve in 1890, subsequently called Peano’s
curve. Hilbert in 1891 constructed another space-filling curve, now referred to as Hilbert’s
curve [7] and also provided a geometrical generating procedure. Sierpiński [14] in 1912,
introduced a space-filling curve and showed that it is the limit of a sequence of polygons.
This curve is called in [17] as Sierpiński square snowflake curve. The first two of the
polygonal patterns in the sequence of patterns defining this curve is shown in Fig. 1.

In the fast growing field of membrane computing [9, 10], the new model of computing,
generally called P system (with P standing for Gh. Păun who is the creator of this sys-
tem) has served as a very suitable platform for handling problems in diverse directions of
study and application. The fundamental model of a cell-like P system [8] rewriting struc-
tured strings has a hierarchical arrangement of membranes, one within another. A single
membrane called skin membrane contains all other membranes. The regions defined by the
membranes can have objects which are structured strings of symbols and evolution rules.
The working of such a P system involves rewriting the strings, if any, in all the membrane
regions of the P system by applying the evolution rules to the structured string objects in the
regions in a manner which involves nondeterminism and maximal parallelism and which
allows the objects to evolve. The evolved objects, in the subsequent step, can remain in
the same membrane or can be sent to an immediate neighbour region which is determined
by a feature called target specification. A computation comes to a halt when no further
evolution of objects in all the membranes can take place. Such a computation results in the
set of strings generated.

Among the various areas where P systems have played a great role, generation of two-
dimensional pictures and patterns [6] based on P systems, called array P systems, has been
of great interest [16]. The problem of generating the approximating polygons of the space-
filling curves of Peano and Hilbert based on array grammars has been considered in [15].
There has also been an intensive research in the problem of this kind with constructions
of P systems for generating patterns of many space-filling curves [3, 4, 5]. Here we deal
with the problem of generating the set of polygonal patterns of Sierpiński square snowflake
curve and construct a cell-like P system generating arrays which describe these patterns.
The P system itself has only two membranes and the evolution rules in the membranes of
the P system are the context-free rules rewriting in parallel the array-objects in the mem-
brane regions of the P system, which are arrays encoding the patterns. When the symbols
in the generated arrays of the constructed P system are suitably joined by using a finite
number of instructions, the polygonal patterns of the Sierpiński square snowflake curve are
obtained. A first draft version of this work was presented in the conference on Mathemati-
cal Computer Engineering, held in India in 2018 [1].

2. PRELIMINARIES

For concepts related to words and arrays, we refer to [6, 12] and for P systems, to [8, 16].
We state here certain basic concepts that are used in subsequent sections.
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An alphabetΓ is a finite set of symbols. A word or a string over an alphabetΓ is a finite
sequence of symbols, taken fromΓ. For example,Γ = {0, 1} is an alphabet and01011 is
a word overΓ. The set of all words, which containsλ, the empty word with no symbols, is
denoted byΓ∗. A word can be considered as a1× n array of symbols and an extension of
the notion of a word to two dimensions is the concept of a rectangularm× n, (m,n ≥ 1),
array of symbols from an alphabet with the symbols placed inm rows andn columns. For
example, ifΓ = {x, b} is an alphabet, then

x x x x x
b b x b b
b b x b b

is an3×5 array which can be interpreted as the letterT in a digitized form over the symbol
x treatingb as standing for a blank or empty symbol. The set of all arrays, which contains
λ, the empty array with no symbols, is denoted byΓ∗∗ andΓ++ = Γ∗∗ − {λ}.

The computing model of a P system has different variants. Here we recall one of the
basic forms [8] of a string language generating P system of the rewriting variety. Such a P
systemΠ = (V, Σ, µ, A1, · · · , Am, P1, · · · , Pm, i0) whereV is an alphabet consisting of
nonterminals and terminals andΣ ⊂ V is the set of terminals;µ is a membrane structure
which hasm membranes with each having a distinct label; The objects in the membranes
or regions ofΠ are words overV ; EachAi, 1 ≤ i ≤ m, is a set of initial words in region
i; Pi, 1 ≤ i ≤ m, is a set of context-free rules which are of the formX → α where
X ∈ V − Σ is a nonterminal andα ∈ V ∗ is a string of nonterminals and terminals. Each
rule has a targettar attached wheretar ∈ {here, out, in} with the interpretation thathere
indicates that the evolved word remains in the same region,out indicates that the evolved
word goes out as a whole, to the immediate outer region (except when the word is in the
outermost skin membrane in which case it is lost) andin indicates the evolved word enters
again as a whole, the immediate inner region;i0 is the label of the output region.

In a computation inΠ, starting from the words initially present in the regions, words
evolve by rewriting using context-free rules. Words, if any, in all the regions evolve by
application of a rule at the same time, if there is any rule in the region applicable to the
word. But the rewriting is done in a sequential manner at the level of a region which means
that only one rule is applied to a word in a region. A computation halts and is successful if
no applicable rule is available in the regions. The words collected in the output region at the
end of successful computations constitute the language which is generated by the system
Π. Note that in this variant of P system of the string variety, the output region is one of the
regions that constitute the membrane structure and hence there is no role for string objects,
if any, in the environment which is the region outside the outermost skin membrane. Note
also that in a P system, by definition the objects (here the strings of symbols), if any, in
each region can evolve if there are rules applicable to the objects in the region and hence
there is no need for specifying an input region. Also note that an object might get stuck
in a region due to the absence of any rule which would allow it to enter an inner or outer
region, irrespective of the computation is successful or not. But this does not cause any
difficulty as the words in the output region, if any, over terminal symbols are only collected
in defining the language generated when the computation halts and is successful.
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FIGURE 1. First and Second polygons of Sierpiński curve

An illustration is now given by constructing a P system of the above type with two
membranes, one inside another and generating the language
{xnyn | n ≥ 1} over the alphabet{x, y}. Consider the P system

Π1 = ({X,Y, x, y}, {x, y}, [1[2 ]2]1, {XY }, ∅, P1, P2, 2)

whereP1 = {X → xX(in)}, P2 = {Y → yY (out), X → x(here), Y → y(here)}.
A computation can start with region 1 as only this region has an initial wordXY. Ap-

plyig the ruleX → xX(in) in region 1, the wordxXY is generated, which goes to mem-
brane 2 as the associated target isin. In region 2, if the ruleY → yY with target “out” is
applied, the string generated isxXyY which goes back to membrane 1. The procedure can
be repeated. An appropriate sequence of application of the rules to halt the computation is
to apply in region 2, the rulesX → x andY → y (one of these followed by the other) and
words of the formxnyn are generated with the computation halting as no other rule could
be applied. Note that if , after applying the ruleX → x in region 2, the ruleY → y(out)
is applied then the word generated is sent to region 1 where it gets stuck and hence cannot
contribute any word to the language generated.

3. POLYGON PATTERNS OFSIERPIŃSKI’ S SNOWFLAKE CURVE

We now consider Sierpiński’s original construction of a space filling curve [14, 13]
which is considered as a mapping from a closed unit interval onto a square. As there is an-
other form [13] of Sierpínski space-filling curve which fills an isosceles triangle, following
[17], we refer to this original space-filling curve as Sierpiński square snowflake curve or
in short, Sierpínski curve. For mathematical details relating to this curve, we refer to [13,
Page 50].

The first two elements of the sequence of the polygon patterns that approximate the
Sierpínski curve are shown in Fig. 1 with the polygons passing through neighbouring
subtriangles of the square.
Motivated by the method in [15] for generating the sequences of the polygon patterns of

the space-filling curves of Peano and Hilbert, we propose a method of generation of the
sequence of polygon patterns, which is infinite, corresponding to the the Sierpiński curve.
The difference in the methods is that array grammars are used in [15] for the generation
of the polygons while we make use of a P system model. Note that in the array grammar
model in [15], an array grammar, called CF Parantheses Kolam array grammar, is given for
patterns of Peano curve and this grammar uses two kinds of rules with the first kind involv-
ing CF type rules with intermediate symbols (which act as terminal symbols in this step)
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FIGURE 2. (i) Primitivesa, b, c, d, p, q of polygons (shown on the top)
(ii) Primitives joined according to certain joining rules (shown in the
bottom)

followed by suitable array languages corresponding to the intermediate symbols, which are
replaced by arrays of these languages. Hence the working of the array grammar, although
correct, is more cumbersome compared to the working of the P system model, proposed
here for patterns of Sierpiński curve. Besides this advantage, the versatile nature of the P
system model is also brought out, as the P system model has been used in different kinds
of applications [10]. First we informally describe the proposed method which involves the
following steps:
(i) Identify a finite set of primitive patterns in the polygon patterns and encode the polygon
patterns by arrays with the symbols of the arrays representing the primitive patterns ;
(ii) Construct joining rules which when applied allow to join the primitives corresponding
to the symbols in the arrays resulting in the polygonal patterns of the Sierpiński curve ;
(iii) Construct a P system of the type mentioned in Section 2 but with the objects in the
membrane regions of the P system as arrays rectangular in shape and evolution rules as
context-free type array rewriting rules with rewriting done in parallel in the sense of re-
placing at the same time with arrays of the same size each of the symbols in an array in the
regions of the P system.

Encoding by arrays the Polygons of Sierpínski Curve

a b
c d

a b a b
c p q d
a q p b
c d c d

FIGURE 3. Arrays encoding the polygon patterns in Fig. 1

We illustrate the encoding by considering the two polygonal patterns of Sierpiński curve
shown in Fig. 1. The arrays encoding these two polygonal patterns are given in Fig. 3.
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Joining Rules

We now construct a finite setJ of joining rules that allow the primitives corresponding
to the symbols in the arrays in Fig. 3 to be joined appropriately resulting in the polygon
patterns in Fig. 1.

The setJ consists of the following rules:

1 : (a, t) →h (b, s), 2 : (a, t) →h (q, s3), 3 : (b, t) →v (d, s), 4 : (b, t) →v (p, s2),

5 : (c, t) →v (a, s), 6 : (c, t) →v (p, s1), 7 : (d, t) →h (c, s), 8 : (d, t) →h (q, s4),

9 : (p, t1) →h (c, s), 10 : (p, t1) →h (q, s4), 11 : (p, t2) →h (b, s),

12 : (p, t2) →h (q, s3), 13 : (q, t3) →v (p, s1), 14 : (q, t3) →v (a, s),

15 : (q, t4) →v (p, s2), 16 : (q, t4) →v (d, s)
The interpretation of a rule inJ is that an end labelled byt or ti, 1 ≤ i ≤ 4 in the primitive
on the left of the rule is joined by a horizontal or vertical edge (depending onh or v present
in the rule) to the end labelled bys or si, 1 ≤ i ≤ 4 in the primitive on the right of the
rule, with the primitives being adjacent to each other in an array. For example, the rule
(a, t) →h (b, s) means that the end labelledt in the primitivea is joined by a horizontal
edge to the end labelleds in the primitiveb. Likewise the rule(q, t4) →v (p, s2) means
that the end labelledt4 in the primitiveq is joined by a vertical edge to the end labelled
s2 in the primitivep. The symbolss, si, 1 ≤ i ≤ 4 andt, ti, 1 ≤ i ≤ 4 are indicative of
how to join the primitives and are not retained in the generated polygon. For example, the
effects of the two rules(a, t) →h (b, s) and(q, t4) →v (p, s2) are shown in Fig. 2.

4. A P SYSTEM FOR POLYGON PATTERNS OFSIERPIŃSKI CURVE

We now construct a P systemΠ with two membranes one within another, array objects
and parallel rewriting in order to generate the sequence of polygon patterns of Sierpiński
curve.

Let Π = (V, Σ, µ,A1, A2, P1, P2, 2) whereV − Σ = {A,B, C,D, P, Q} is a set of
nonterminals,Σ = {a, b, c, d, p, q} is a set of terminals which represent the primitives
shown in Fig. 2 ,µ = [1 [2 ]2 ]1 is the membrane structure with the membrane labelled 2
inside the membrane labelled 1. The arrays that are axioms in membranes labelled 1 and 2

are respectively given by the elements ofA1 andA2 whereA1 = { A B
C D

} andA2 = ∅.
The membrane with label 2 is the output membrane. The rules of the membranes labelled
1 and 2 are given by the elements ofP1 andP2. The setP1 contains the context-free rules
r1, r2, r3, r4, r5, r6 all having targethere and the rulesr7, r8, r9, r10, r11, r12 all having
targetin. The rules are as follows:

r1 : A → A B
C P

, r2 : B → A B
Q D

, r3 : C → A Q
C D

,

r4 : D → P B
C D

, r5 : P → P B
C P

, r6 : Q → A Q
Q D

,
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r7 : A → a, r8 : B → b, r9 : C → c,

r10 : D → d, r11 : P → p, r12 : Q → q.

The setP2 is empty. Note that the rewriting is done in a region by applying the rules with
the same target in the region in parallel to an array in the region to which the rules are
applicable. Note also that a set of applicable rules replace each of the symbols in an array
α by an arrayβ of the same sizei.e. having the same number of rows and the same number
of columns. Also, rules in a region with the same target indication are applied at a time.
A computation inΠ takes place as follows: Since only the region 1 has an axiom array
A B
C D

, application of the rulesr7 to r12 all having the same targetin yields the array

a b
c d

which is sent to the output region 2 due to target indicationin. Note that this array

is the encoding of the first polygon (Fig. 1 (on the left)) in the patterns of Sierpiński curve.
If in region 1, the rulesr1 to r6 with target indicationhereare applied to the axiom array

A B
C D

, the resulting array

A B A B
C P Q D
A Q P B
C D C D

which remains in the same region due to

target indicationhere. If now the rulesr7 to r12 all having the same targetin are applied,

then this yields the array

a b a b
c p q d
a q p b
c d c d

which is sent to the output region 2 due to target

indication in. Note that this array is the encoding of the second polygon (Fig. 1 (on the
right)) in the patterns of Sierpiński curve. The process can repeat. The arrays collected in
the region 2 are the encodings of the polygon patterns of Sierpiński curve.

Note that the polygon patterns are obtained by applying the joining rules mentioned
earlier to the symbols in the arrays generated by the P systemΠ with the symbols standing
for the primitives of the polygon patterns of Sierpiński curve.

5. CONCLUSION

We have considered here approximating polygon patterns of Sierpiński curve in the
two-dimensional (2D) plane. In [2] extension of Sierpiński curve from the 2D to the three
dimensional (3D) case is considered. It will be of interest to examine the possibility of
costructing P systems for generation of the corresponding 3D approximating patterns of
the Sierpínski curve.
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14. W. Sierpínski, Sur une nouvelle courbe continnue qui remplit toute une aire plane, Bull. Acad. Sci. de (Sci.
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