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Abstract. A magma that satisfies the left invertive law:ab · c = cb · a
is called an AG-groupoid. The concept of right (left) abelian distributive
groupoid (RAD resp. LAD) is extended to introduce some new subclasses
of an AG-groupoid as right (left) abelian distributive AG-groupoid. The
enumerations for these subclasses up to order 6 is provided using a mod-
ern computational techniques of GAP and various relations of these new
subclasses are investigated with some other existing subclasses of AG-
groupoids and other relevant algebraic structures. A manual procedure for
the verification of an arbitrary finite AG-groupoid for RAD AG-groupoid
is introduced. Various examples and counterexamples are produced with
Prover-9 and Mace-4 to strengthen the validity of the produced results.
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1. INTRODUCTION

An AG-groupoidQ is a generalization of a commutative semigroup, in which the left in-
vertive law (L.I.L) holds [1].

(ab)c = (cb)a. (1.1)
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A groupoid is called medial if it satisfies the medial law:

ab · cd = ac · bd. (1.2)

It is is easy to show that every AG-groupoid is medial. An AG-groupoid is called monoid if
it contains a unique left identity. It is easy to prove that very monoid satisfies the paramedial
law:

ab · cd = db · ca. (1.3)

It is also worthwhile to mention that ifQ possesses the right identity element then it be-
comes a semigroup. A groupoidQ is known as left (resp. right) abelian distributive [2],
if it satisfiesa · bc = ab · ca (resp.ab · c = ca · bc). The concepts of these groupoids
are extended here to left (resp. right) abelian distributive AG-groupoids. The existence
of these abelian distributive AG-groupoids are proved by computationally generated non-
associative examples of various finite orders. Further, we also establish their relations with
some of the existing subclasses [9,?, 14, 15, 22, 25] of AG-groupoids and that with some
more useful algebraic structures. AG-groupoids have been enumerated up to order6 [4] us-
ing GAP [3]. We also use the same techniques to enumerate our new subclasses of abelian
distributive AG-groupoids. We shall use juxtaposition and the notation “·” to avoid re-
peated use of parenthesis, e.g.,(ab · c)d shall denote the same as((a · b) · c) · d likewise
(ab)c andab · c will represent the same element. AG-groupoids have a variety of appli-
cations in flocks, geometry, and matrices [1, 7, 16]. Recently, a considerable research has
been done in this area and is being investigated as other well established areas of algebra
[6, 8, 10, 17, 18, 19, 20]. In the following we give some preliminary concepts and basic
definitions of AG-groupoids with their identities that shall be referred in the rest of this
article.

By simple application of medial law every AG-groupoidS that satisfies the paramedial
law (1.3) also satisfies the following law:

ab · cd = dc · ba. (1.4)

An AG-groupoidS is called —

(i) — right (resp. left) commutative AG-groupoid, ifa · bc = a · cb (resp.ab · c = ba · c)
holds inS.

(ii) — self-dual AG-groupoid, ifa · bc = c · ba holds.
(iii) — left/right distributive (LD) (resp. RD) AG-groupoid, ifa ·bc = ab ·ac (resp.ab ·c =

ac · bc) is satisfied [14].
(iv) — an AG∗∗-groupoid if it holds the identitya(bc) = b(ac).
(v) — flexible AG-groupoid if the lawa(ba) = (ab)a is satisfied [2].

(vi) — right/left Bol AG-groupoid; i.e.a(bc · b) = (ab · c)b/a(b · ac) = a(ba · c) [7] and
is called Bol AG-groupoid if it is left and right Bol.

(vii) — Moufang AG-groupoid i.e.,ab · ca = (a · bc)a [7].
(viii) — Jordan AG-groupoid. i.e.,ab · aa = a(b · aa) [7].
(ix) — cyclic associative (CA) i.e.,a(bc) = c(ab) [26].
(x) — left Cheban* (resp., right Cheban*) AG-groupoid i.e.,a(bc ·d) = ca · bd (resp.,(a ·

bc)d = ad · cb) holds [20].
(xi) — left Cheban (resp., right Cheban) AG-groupoid ifa(ab · c) = ba · ac, (resp.,

(a · bc)c = ac · cb) holds [2].
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(xii) — RP- (resp., LP) AG-groupoid ifa(bd · c) = d(ba · c) (resp.,(ab · d)c = (ac · d)b)
holds [14].

(xiii) — left transitive ifab · ac = bc holds [2, 7].
(xiv) — slim AG-groupoid ifa(bc) = ac holds [2, 28].
(xv) — anti-rectangular AG-groupoid if(ab)a = b holds [2, 24].
(xvi) — idempotent or 2-band (resp., 3-band) AG-groupoid ifa2 = a (resp.,a(aa) =

(aa)a = a).
(xvii) —T 1(resp.,T 2) AG-groupoid ifab = cd ⇒ ba = dc (resp.,ab = cd ⇒ ac = bd)

holds [7].

An AG-groupoidS is called left (resp., right/middle) nuclear square LNS (resp. R/MNS)
if a2 · bc = a2b · c (resp.,ab · c2 = a · bc2/a · b2c = ab2 · c) for all a, b, c in S and is
called nuclear square if it is left right and middle nuclear square. Before to put hands on
characterization of the RAD AG-groupoids we define and introduce left abelian distributive
and the distributive AG-groupoids.

2. ABELIAN DISTRIBUTIVE AG-GROUPOIDS

Definition 2.1. An AG-groupoidS is called left abelian distributive AG-groupoid, abbre-
viated as LAD if∀ a, b, c ∈ S,

a · bc = ab · ca. (2.5)

Example 2.2. Let Q = {1, 2, 3, 4} with the Caley’s table as given below. Then(Q, ∗) is
an LAD AG-groupoid.

* 1 2 3 4
1 1 1 1 1
2 1 1 1 1
3 1 1 1 2
4 1 1 1 3

Definition 2.3. [14] An AG-groupoidS is called right abelian distributive (or shortly RAD)
AG-groupoid if∀a, b, c ∈ S,

ab · c = ca · bc. (2.6)

Example 2.4. Let (Q, ∗) with the Calay’s table as under, thenQ is an RAD AG-groupoid.

* a b c
a a a a
b a a a
c a b a

An AG-groupoidQ is called abelian distributive AG-groupoid abbreviated as AD-AG-
groupoid if it is both RAD and LAD AG-groupoid.

Example 2.5. Let Q = {1, 2, 3}. Then(Q, ∗) is an associative AD AG-groupoid of order
3.
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* 1 2 3
1 1 1 1
2 1 1 1
3 1 1 2

It is evident from the enumeration of abelian distributive AG-groupoid in Section 5,
Table 1 that the number of such non associative AG-groupoids are zero up to order 6.
However, the following result not only validates the enumeration for the same subclass but
also provides a more authentic result regarding non-existence of the same subclass of any
order.

Theorem 2.6. Every AD-AG-groupoid is associative.

Proof. Easy. ¤

2.7. RAD-AG -Test. In this section, the idea of Protic et al. [12] is extended here, we
discuss a procedure for checking a finite arbitrary AG-groupoid(G, ·) to be an RAD-AG-
groupoid or not, to do this, for anya, b ∈ G and any fixed elementc of G, we define two
new binary operations as follows:

a⊗ b = ca · bc, (2.7)

a� b = ab · c. (2.8)

The lawab · c = ca · bc is satisfied if;

a⊗ b = a� b. (2.9)

To construct the extended table for the operation“⊗ ” of any fixedc ∈ G, we re-write the
c-row of the“ · ” table as an index row of the new extended table and multiply its entries
by the entries of thec-column of the“ · ” table to produce the rows of the“⊗ ” tables.

Similarly, the extended table for the operation“�” of a fixed elementc ∈ G is obtained
by multiplying the fixed elementc ∈ G by the entries of the“ · ” table from the left. The
process is repeated for eachc in G. If all the tables constructed for the operation“ ⊗ ”
and“ � ” coincide for each respectivec ∈ G, then evidently (2.6) satisfies, and the given
AG-groupoid is an RAD-AG-groupoid.

Example 2.8. Verify the following Calay’s table of an AG-groupoidG = {a, b, c} for
RAD-AG-groupoid.

· a b c
a a a a
b a a a
c b b b

The given table is extended in the way as described above for the purpose to verify it as
in the following:
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· a b c a a a a a a b b b
a a a a a a a a a a a a a
b a a a a a a a a a a a a
c b b b a a a a a a a a a

a a a a a a a a a
a a a a b a a a c a a a

a a a a a a a a a

It is evident from the constructed extended tables that the tables for the new operation
“� ” and the operation“⊗ ” coincide, thusG is an RAD-AG-groupoid.

2.9. Enumeration of AD-AG-groupoids. Enumeration and classification of various math-
ematical entries is a well worked area of research in finite and pure mathematics. In abstract
algebra the classification of algebraic structure is an important pre-requisite for their con-
struction. The classification of finite simple groups is considered as one of the major intel-
lectual achievement of twentieth century. Enumeration results can be obtained by a variety
of means like; combinatorial or algebraic consideration. Non-associative structures, qua-
sigroup and loops have been enumerated up to size11 using combinatorial consideration
and bespoke exhaustive generation software. FINDER (Finite domain enumeration) has
been used for enumeration of IP loops up to size13. Associative structures, semigroups
and monoids have been enumerated up to size9 and10 respectively by constraint satis-
faction techniques implemented in the Minion constraint solver with bespoke symmetry
breaking provided by the computer algebra system GAP [3]. Distler et al. [4] have enu-
merated AG-groupoids using the constraint solving techniques developed for semigroups
and monoids.

Further, they provided a simple enumeration of the structures by the constraint solver
and obtained a further division of the domain into a subclass of AG-groupoids using the
computer algebra system GAP and were able to enumerate all AG-groupoids up to iso-
morphism up to size6. They also presented enumeration for various other subclasses of
AG-groupoids. It is worth mentioning that most of the data presented in [4] has been veri-
fied by one of the reviewers of the said article with the help of Mace4 and Isofilter as has
been mentioned in the acknowledgment of the said article. All this validate the enumera-
tion and classification results for our LAD and RAD AG-groupoids, as the same technique
and relevant data of [4] with different codes has been used for the purpose. Further, all
the tables of size up to3 have been verified manually for our subclasses of AG-groupoids.
Table 1, contains the enumerations of these newly introduced subclasses.

3. CHARACTERIZATION OF RAD AG-GROUPOID

We begin our study to investigate the following:

Theorem 3.1. Each RAD-AG-groupoidQ is right distributive AG-groupoid.
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AG-groupoids\Order 3 4 5 6
Total 20 331 31913 40104513
Non-associative RAD AG-groupoids 6 175 21186 34539858
Non-associative LAD AG-groupoids 0 01 27 1106
Non-associative AD AG-groupoids 0 0 0 0
Associative RAD AG-groupoids 6 25 195 5353
Associative LAD AG-groupoids 6 25 195 5353
Associative AD AG-groupoids 6 25 195 5353

TABLE 1. Enumeration for RAD & LAD AG-groupoids

Proof. Let Q be an RAD-AG-groupoid, and leta, b, c ∈ Q. Then by the Identities (2.6)
and the medial law, we get

ab · c = ca · bc = (bc · c)(a · bc) by (2.6)

= (bc · a)(c · bc) = ac · bc by (1.2) and (2.6)

⇒ ab · c = ac · bc.
Equivalently,Q is a right distributive AG-groupoid. ¤

The following counterexample shows that the converse may not be true for the above
theorem, thus generally not every RD-AG-groupoid may be RAD-AG-groupoid.

Example 3.2. Let (Q, ∗) with the Calay’s table below be a groupoid, then it can easily be
verified thatQ is an RD-AG-groupoid, but is not an RAD-AG-groupoid.

* 1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

Theorem 3.3. LetQ be an RAD AG-groupoid. Then the following hold.

(i) Q is leftt commutative (LC) AG-groupoid,
(ii) Q is left permutable star (LP*) AG-groupoid; i.e.ab.c = ac.b,

(iii) Q is paramedial AG-groupoid.

Proof. Let Q be an RAD AG-groupoid anda, b, c ∈ Q. Then

(i) By (2.6) and medial law, we get

ab · c = ca · bc = cb · ac = ba · c.
ThusQ is an LC-AG-groupoid.

(ii) Let Q be an RAD AG-groupoid.Then by the medial and left invertive laws, Eq. (2.5),
(1.4) and Theorem (3.3 (i)), we get

ab · c = cb · a = ac · ba by (1.1) and (2.6)

= ab · ca = bc · a = ac · b by (1.2) and (1.1)

⇒ ab · c = ac · b.
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HenceQ is LP*.
(iii) The Identity (2.6) and Theorem 3.8 reveals that we have

ab · cd = (cd · a)(b · cd) = (cd · b)(a · cd)
= (bd · c)(a · cd) = (db · c)(a · cd) = ((a · cd)c)(db)
= (ac · cd)(db) = (db · cd)(ac) = (bc · d)(ac) = (d · bc)(ac)
= (ac · bc)d = (ab · c)d = (ba · c)d = dc · ba = db · ca

⇒ ab · cd = db · ca.

HenceQ is paramedial AG-groupoid. ¤
It is worth mentioning that the concepts of LD and LAD for AG-groupoids are different.

To this end we provide an example of LD-AG-groupoid that is not an LAD AG-groupoid.

Example 3.4. LetQ = {1, 2, 3, 4} with the Caley’s table given below. Then it can easily
be verified that(Q, ·) is an LD-AG-groupoid. However, since1 · (2 · 4) 6= (1 · 2) · (4 · 1)
thusS is not an LAD AG-groupoid.

· 1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

Theorem 3.5. LetQ be an RAD AG-groupoid. ThenQ is a semigroup if any of the follow-
ing hold.

(i) Q is left distributive,
(ii) Q is an AG* AG-groupoid,

(iii) Q is T 3
l -AG-groupoid

(iv) Q is T 1-AG-groupoid.

Proof. Let Q be an RAD AG-groupoid anda, b, c, d ∈ Q.

(i) Let Q be RAD AG-groupoid which is also left distributive. Then

a · bc = ab · ac = cb · aa Q is RD, and paramedial

= (aa · b)c = (ba · a)c by L.I.L

= (ca · ba), by L.I.L

= cb · a = ab · c by RD, L.I.L

(ii) Let Q be RAD AG-groupoid which is also an AG*. Then

a · bc = ba · c = cb · ac = ca · bc = ab · c.
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(iii) Let Q be an RAD AG-groupoid which is alsoT 3
l . Then

ab · c = ca · bc, Q is RAD

= cb · ac = bc · ac by medial law and LC

= ba · cc = ab · cc by medial law and LC

⇒ c · ab = cc · ab, Q is T 3
l

= ca · cb = bc · ac by medial law and bi-commutative

= ba · c = ab · c by RD and LC

= ac · b = ca · b by RP* and LC

⇒ bc · a = b · ca.

(iv) Let Q be an LAD AG-groupoid which is also aT 1. Then

ab · c = ba · c = ca · b = bc · ab = cb · ab

⇒ c · ab = ab · cb = ba · cb = ac · b = bc · a
⇒ a · bc = ab · c.

Hence the theorem is proved. ¤

Refer back to Example 2.4, in fact RAD AG-groupoid may not be commutative asa =
bc 6= cb = b. Now we give a counterexample to show that left transitive, anti-commutative
AG-groupoid and LA-monoid, left/right cancellaitve LA- semigroup, anti-rectangular and
idempotent AG-groupoids are not commutative. However, these becomes commutative
when combined with an RAD AG-groupoid as proved in the following result.

Example 3.6. LetQ = {1, 2, 3, 4} with the Caley’s tables (i) and (ii) given below. Then it
can easily be verified that(Q, ·) is slim but is not commutative since1 = 1 · 2 6= 2 · 1 = 3.
Similarly, (Q, ∗) is left transitive AG-groupoid but not commutative and(Q, ◦) is anti-
rectangular and idempotent but not commutative.

(i).

· 1 2 3 4
1 1 1 1 1
2 3 3 3 3
3 1 1 1 1
4 1 1 1 1

(ii).

∗ 1 2 3 4
1 1 2 3 1
2 3 1 2 3
3 2 3 1 2
4 1 2 3 1

(iii).

◦ 1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

Theorem 3.7. LetQ be an RAD AG-groupoid. ThenQ is a commutative semigroup if any
of the following hold.

(i) Q is left transitive,
(ii) Q is (left/right) cancellative AG-groupoid,

(iii) Q is cancellative AG-groupoid,
(iv) Q is anti-commutative AG-groupoid,
(v) Q is anti-rectangular,

(vi) Q is LA-monoid,
(vii) Q is idempotent AG-groupoid,

(viii) Q is 3- band AG-groupoid,
(ix) Q is T 2 AG-groupoid,
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(x) Q is Quasi-cancelllative AG-groupoid, satisfying the two equivalent conditions[29]
a2 = ab & b2 = ba ⇒ a = b anda2 = ba & b2 = ab ⇒ a = b.

Proof. Let Q be an RAD LA-semigroup anda, b, c be elements ofQ.

(i) Let Q be a left transitive AG-groupoid. We prove thatQ is commutative.

bc = ab · ac = ca · ba by definition of left transitivity and (1.4)

= ac · ba = ab · ca by LC and (1.4)

= ba · ca = ac · ab by LC and (1.4)

= cb.

(ii) Let Q be a right cancellative AG-groupoid. Thenab = cb ⇒ a = b. Now by the
paramedial law and the definition of RC we have,

ab · c = ca · bc = ac · bc by RAD, LC

= ab · cc = ba · cc by medial law and LC

= bc · ac = ba · c by medial law

⇒ ab · c = ba · c
⇒ ab = ba by right cancellativity

(iii) The result follows by [27, Theorem 1].
(iv) Let Q be an anti-commutative AG-groupoid. Then

ab · ba = ba · ba = bb · aa by LC and medial law

= ab · ab = ba · ab by paramedial law and LC

⇒ ab · ba = ba · ab

⇒ ab = ba by anti-commutativity

(v) Assume thatQ is anti-rectangular AG-groupoid, then

ba = (ab · a)a = aa · ba, by anti-rectangular and L.I.L

= (ba · a)a = (aa · b)a, by left invertive law

= ab · aa = ba · aa, by left invertive law and LC

= (aa · a)b = ab by left invertive law and anti-rectangular

(vi) Easy.
(vii) Easy.

(viii) Easy.
(ix) Let Q beT 2-AG-groupoid. Then

bc · a = ba · c = ab · c = ac · b by LP* and LC

⇒ bc · ac = ab by T 2

⇒ ab · c = ab by assumption of RAD (3.10)
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Now,

ca · b = cb · a = bc · a by LP* and LC

⇒ ca · bc = ba by assumption ofT 2

⇒ ab · c = ba by assumption of RAD (3.11)

Thus by (3.10) and (3.11),Q is commutative.
(x) Assume thatQ is quasi-canellative LA-semigrup. Then

ab · ab = aa · bb = ba · ba by medial and paramedial laws

= ab · ba by LC

⇒ (ab)2 = ab · ba. (3.12)

Similarly,

ba · ba = bb · aa = ab · ab by medial and paramedial laws

= ba · ab by LC

⇒ (ba)2 = ba · ab. (3.13)

Thus by (3.12) and (3.13)ab = ba.

Hence the theorem is proved. ¤

Theorem 3.8. LetQ be an RAD AG-groupoid. Then the following are true.

(i) Q is Moufang AG-groupoid i.e.,ab · ca = (a · bc)a,
(ii) Q is left nuclear square, ie.a2b · c = a2 · bc,

(iii) Q is right Cheban AG-groupoid i.e.,(a · bc)c = ac · cb,
(iv) Q is LP-AG-groupoid i.e.,(ab · d)c = (ac · d)b,
(v) Q is right Cheban* AG-groupoid i.e.,(a · bc)d = ad · cb,

(vi) Q is rectangular*,ab · cd = ad · cb.
Proof. Let Q be an RAD AG-groupoid anda, b, c, d ∈ Q. Then

(i) The Identities LC, LP*, and L.I.L imply that

ab · ca = ba · ca = (b · ca)a by LC, LP*

= (ca · b)a = (ac · b)a by LC

= (bc · a)a = (a · bc)a by L.I.L

⇒ ab · ca = (a · bc)a.

HenceQ is Moufang AG-groupoid.
(ii) Q is left nuclear square, ie.a2b · c = a2 · bc.

Using the identity of medial and pramedial and the L.I.L, we have

a2b · c = cb · a2 = cb · aa by L.I.L

= ca · ba = aa · bc = a2 · bc. by medail and paramedial laws

ThusQ is left nuclear square AG-groupoid.
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(iii) Q is right Cheban AG-groupoid i.e.,(a · bc)c = ac · cb,
(a · bc)c = (bc · a)c = (cb · a) c by LC

= (bc · a) c = (ca) (cb) by LC and LP*

= ac · cb by LC

(iv) We prove thatQ is LP AG-groupoid i.e.(ab · d)c = (ac · d)b.

(ab · d)c = (db · a)c = (da · b)c by L.I.L and LP*

= (da · c)b = (ca · d)b. by LP*, and L.I.L

= (ac · d)b by LC

(v) We show thatQ is right Cheban* AG-groupoid. i.e.(a · bc)d = ad · cb,
(a · bc)d = (bc · a)d = (cb · a) d by LC

= (a · cb) d = ad · cb by LC and LP*

(vi) Q is rectangular*,ab · cd = ad · cb,
ab · cd = ba · cd = da · cb by LC and parmedial law

= ad · cb by LC. ¤
The following relation among the the RAD and other similar classes is proved by Ahmad
et al. [25].

Theorem 3.9. Any two of the following properties imply the rest.

(1) Q is an LAD AG-groupoid,
(2) Q is an RAD-AG-groupoid,
(3) Q is an AD-AG-groupoid,
(4) Q is a semigroup.

It is evident from Example 2.2 that RAD AG-groupoid may not be a semigroup as
5(5 · 5) 6= (5 · 5)5. Now we provide a counterexample to show that right distributive,
T 3-AG-groupoid and AG** is not a semigroup. However, these becomes associative when
combined with an LAD AG-groupoid.

Example 3.10. LetQ = {1, 2, 3, 4} with the Caley’s tables (i) and (ii) given below. Then
it can easily be verified that(Q, ·) is right distributive and AG** but is not a semigroup
since1 · (1 · 1) 6= (1 · 1) · 1. Similarly,(Q, ∗) is T 3-AG-groupoid but not a semigroup as
1 = 1 · (1 · 1) 6= (1 · 1) · 1 = 3.

(i)

· 1 2 3 4
1 2 2 3 2
2 3 3 3 3
3 3 3 3 3
4 2 2 3 2

(ii)

∗ 1 2 3 4
1 2 1 4 3
2 3 4 1 2
3 4 3 2 1
4 1 2 3 4

Theorem 3.11. Let Q be an RAD AG-groupoid. Then it is right distributive if it is Stein,
i.e.,a · bc = bc · a.
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Proof. Let Q be an RAD AG-groupoid such thatQ also satisfies the property of Stein
a · bc = bc · a. Then

ab · ac = ba · ac = (b · ac)a by LC and LP*

= (a · ac)b = (ac · a)b by L.I.L and LC

= (ac · b)a = (ca · b)a by LP* and LC

= ab · ca = ba · ca by L.I.L and LC

= bc · a = a · bc by RD and Stein

⇒ ab · ac = a · bc.

HenceQ is left distributive. ¤

Theorem 3.12. LetQ be a slim AG-groupoid. Then it is an RAD.

Proof. Let Q be slim AG-groupoid. Then

ca · bc = (bc · a)c = (ac · b)c by LC and paramedial

= cb · ac = (ac · b)c by L.I.L and LC

= ab · c by slim property

⇒ ca · bc = ab · c.

HenceQ is right abelian distributive. ¤

Proposition 3.13. [26] Every CA AG-groupoid is left and right nuclear square and that
Bol* a(bc · d) = (ab · c)d.

Theorem 3.14. LetQ be a right distributive AG-groupoid. Then the following hold ifQ is
CA-LA semigroup.

(i) Q is left commutative (LC),
(ii) Q is right abelian distributive.

Proof. Let Q be a right distributive AG-groupoid that satisfies the CA property. Then

(i) Q is left commutative (LC):

ab · c = ac · bc = xy · z2 by RD and medial law

= a · bc2 = c2 · ab by right nuclear square and CA

= c2a · b = ba · c2 by left nuclear square and CA

= ba · cc = bc · ac = ba · c by medial law and RD

⇒ ab · c = ba · c.

HenceQ is left commutaitve.
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(ii) Q is right abelian distributive:

ab · ca = (ca · b)a = (ba · c)a by RD and L.I.L

= ac · ba = a(ac · b) by L.I.L and CA

= a(ab · cb) = a(ac · bb) by RD and medial law

= a(ac · b2) = a(a · cb2) by right nuclear square

= cb2 · a2 = (a2b2)c by CA and left inveritve law

= (ab · ab)c = (aa · b)c by medial law and RD

= cb · a2 = cb · aa = ca · ba by L.I.L, RD and medial law

= cb · a = bc · a by RD and LC part (i)

⇒ ab · ca = bc · a.

HenceQ is right abelian distributive. ¤

Example 3.15. Let Q = {1, 2, 3, 4} with the Caley’s tables (i) given below. Then it can
easily be checked that(Q, ·) is RD that is not right abelian distributive since2 = 0 · 1 =
(0 · 0)1 6= (1 · 0)(0 · 1) = 3 · 2 = 1.

· 0 1 2 3
0 0 2 3 1
1 3 1 0 2
2 1 3 2 0
3 2 0 1 3

Theorem 3.16. Let Q be an RAD AG-groupoid. ThenQ is middle nuclear square if it is
CA (hence right nuclear sqaure) and thus nuclear square.

Proof. Let Q be an RAD AG-groupoid. SinceQ is RAD so is left nuclear square by The-
orem 3.8. Further, assume thatQ is CA (right nuclear square). We show thatQ is middle
nuclear square. To this end we use thatQ is cyclic associative (CA), left commutative (LC),
paramedial, and thatc · ab2 = b(a · bc) holds inQ.

We first show thatc · ab2 = b(a · bc)∀a, b, c in Q.

c · ab2 = b2 · ca = bb · ca by CA

= bc · ba = b(a · bc) by medial law and CA (3.14)

⇒ c · ab2 = b(a · bc). (3.15)

Now we prove thatQ is middle nuclear square.

a · b2c = c · ab2 = b(a · bc) by CA and (3.14)

= bc · ba = b2 · ca by CA and medial law

= b2c · a = cb2 · a by LNS and LC

= ab2 · c by CA

The nuclear square property is followed by Proposition 3.13 and the fact that RAD is left
nuclear square. ¤

Theorem 3.17. LetQ be an CA-RAD AG-groupoid. Then the following are true.
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(i) Q is left Cheban i.e.a(ab · c) = ba · ac,
(ii) Q is left Chebanstar i.e.a(bc · d) = ca · bd,

(iii) Q is RP i.e.a(bd · c) = d(ba · c).
Proof. Let Q be an CA-RAD AG-groupoid. Then the following are true.

(i) Q is left Cheban i.e.a(ab · c) = ba · ac,

a(ab · c) = a(cb · a) = a(ab · c) by LIL

= c(a · ab) by CA

= ab · ca = ba · ca) by CA and LC

= ac · ab = ca · ab by bi-commutative LC

= ba · ac by bi-commutativity

⇒ a(ab · c) = ba · ac.

(ii) Q is left Chebanstar i.e.a(bc · d) = ca · bd,

a(bc · d) = a(dc · b) = b(a · dc) by L.I.L and CA

= dc · ba by CA

= ac · bd = ca · bd by paramedial law and LC

⇒ a(bc · d) = ca · bd.

(iii) Q is RP i.e.a(bd · c) = d(ba · c).
a(bd · c) = a(db · c) = a(cb · d) by LC and L.I.L

= d(a · cb) = d(b · ac) by CA

= d(c · ba) = ba · dc by CA

= cd · ab = dc · ab by bi-commutavity

= cd · ab = bd · ac by LC and paramedial law

= db · ac = ca · bd by LC and bi-commutavity

= d(ca · b) = d(ba · c) by CA and L.I.L

⇒ a(bd · c) = d(ba · c).
Hence the result follows. ¤

Right abelian distributive AG-groupoid has various properties with the right alternative.
The combination of these leads to a locally associative AG-groupoid that has associative
powers and shall be discussed in detail in the next section. Here we note that in this case
it becomes a nuclear square. From Theorem 3.8 it is evident that RAD is left nuclear
square but not the right or middle nuclear square as depicted in the following example
table (i). Similarly, it is evident that RA is also not nuclear square as depicted in table (ii).
The following properties of the combination of the two subclasses is quite interesting. It
shows that the square of elements commutes with other elements. Similarly the product of
elements ofQ×Q with the elements and their squares inQ for an RAD-RA-AG-groupoid.
Further, it has been investigated that for right alternative AG-groupoids the conditions of
right and middle nuclear square are equivalent [11].
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(i).

· 0 1 2 3
0 1 1 1 1
1 2 2 2 2
2 2 2 2 2
3 1 1 1 1

(ii).

· 0 1 2 3
0 2 2 3 3
1 3 1 3 3
2 3 3 3 3
3 3 3 3 3

Theorem 3.18. Let Q be a right alternative RAD AG-groupoid. Then for alla, b, c ∈ Q
the following are true.

(i) aa · b = b · aa,
(ii) ab · c2 = ab · c,

(iii) ab · ab = ba2,
(iv) ab · ac = c(ba2),
(v) Q is right nuclear square,
(vi) Q is middle nuclear square,

(vii) Q is nuclear square.

Proof. Let Q be a right alternative RAD AG-groupoid. Then for alla, b, c ∈ Q.

(i) LHS = a2b = aa · b = ba · a = b · aa = ba2 = RHS by L.I.L and RA
(ii) LHS = ab · cc = ac · bc = ab · c = RHS by medial law and RD

(iii) LHS = ab · ab = aa · b = a2b = ba2 = RHS by LD and part (1) above
(iv) LHS = ab · ac =

= ab · ac = a2 · bc = ab · c by medial law and LNS

= ba2 · c = (ab · ab)c by LC and part 3 above

= (ab)2c = c(ab)2 = c(ab · ab) = c · ba2 = RHS by part 1 and part 3

(v) Q is right nuclear square i.e.a · bc2 = ab · c2,

ab · c = ab · c2by part (ii) above

= c2b · a = c2 · ba by L.I.L and left nuclear square

= a · bc2by part (iv) asa2 · bc = c · ba2

(vi) Q is middle nuclear square i.e.ab2 · c = a · b2c,

ab2 · c = cb2 · a = b2c · a by L.I.L and left nuclear square

= ac · b2 = by L.I.L and right nuclear square

= a · cb2 = a · b2c by right nuclear square part (i) above.

(vii) Q is nuclear square. Follows by Theorem 3.8 and above.

Hence the theorem is proved. ¤

Conjecture 3.19. Every RAD-AG-groupoid is middle nuclear square if it is right nuclear
square AG-groupoid.

4. DECOMPOSITION OF L OCALLY ASSOCIATIVE RAD AG-GROUPOIDS

First we show by an example that locally associative RAD does not guarantee associa-
tive powers. The following table (i) is locally associative but is not power associative as
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aam+1 = am+1a not holds form = 2. For instancea(a(aa)) = (a(aa))a not holds for
a = 0.

(i)

· 0 1 2 3
0 1 2 1 1
1 2 2 2 2
2 2 2 2 2
3 1 1 2 2

(ii)

· 0 1 2 3
0 2 2 2 3
1 3 2 2 2
2 2 2 2 2
3 2 2 2 2

Alternatively, we discuss decomposition of right alternative that is locally associative
but not have associative powers. However with RAD it has associative powers as can be
seen in table (ii) above.

We recall by Theorem 3.3 and 3.8 that for anya, b, c, d in an RAD AG-groupoidQ, the
following are true.

ab · cd = db · ca. (4.16)

ab · c = ac · b. (4.17)

The identity for right alternative AG-groupoid is given as

ab · b = a · bb. (4.18)

An AG-groupoidQ is called a locally associative AG-groupoid if(aa)a = a(aa) for
all a in Q [5]. A locally associative AG-groupoidQ satisfying the identity (2.5) is called
a locally associative RAD AG-groupoid. It is clear from 4.18 that every right alternative
is locally associative. decomposition for various subclasses of AG-groupoids is considered
by different researchers [?, 21, 23]. We introduce a ”relationη in a right alternative/locally
associative RAD AG-groupoidQ as follows, for any integerm > 0, we say thataηb if
and only if abm = bm+1 andbam = am+1 for all a, b in Q. We first prove thatQ has
associative powers and then show that the relationη is congruence”. From now on by an
RAD AG-groupoid shall mean a riAGght alternative RAD AG-groupoid otherwise stated
else.

Lemma 4.1. Every RAD AG-groupoidQ has associative powers, i.e.,aan+1 = an+1a for
all a ∈ Q.

Proof. Let Q be an RAD AG-groupoid, then for anya ∈ Q, we havea1 = a andam+1 =
ama wherem > 0. Now, the identity

aam+1 = am+1a, (4.19)

is true form = 1 andm = 2. Further suppose that (4.19) holds form = k − 1, that is
aak = aka. Then by (1.1, 2.6) LC, right alternativity, RD, right nuclear square and the
supposition, we have

ak+1a = (aka)a = ak · aa = ak−1a · aa

= (aa · a)ak−1 = (a · aa)ak−1 = a(aa · ak−1)

= a(ak−1a · a) = a(aka) = aak+1.

Hence by induction it follows thataam+1 = am+1a. ¤
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Lemma 4.2. Let Q be an RAD AG-groupoid anda, b ∈ Q, then(ab)m = ambm for any
integerm ≥ 1 and(ab)m = ambm for m ≥ 2.

Proof. Obviously form = 1, the result is true as(ab)1 = a1b1 = ab. Assume it is true for
m = k, (ab)k = akbk. We show it is true form = k + 1, by identity (1.4), we have

(ab)k+1 = (ab)k(ab) = (akbk)(ab) = (aka)(bkb) = ak+1bk+1.

Hence it is true for eachm ≥ 1. If m ≥ 2, then using the identities (4.16, 1.4) and
Lemma 4.1, we get

(ab)m = ambm = (am−1a)(bm−1b) = (aam−1)(bbm−1) =
= (bm−1am−1)(ba) = (bm−1b)(am−1a) = bmam.

Hence the result follows. ¤
Lemma 4.3. In an RAD AG-groupoidQ, aras = ar+s ∀a ∈ Q and positive integersr, s.

Proof. By Lemma 4.1, we haveaas = as+1, then result holds forr = 1. Assume that the
result is true forr = t, that isatas = at+s. Then by the identities (1.1) and the Lemma
4.1, we have

at+1as = (ata)as = (asa)at = (aas)at

= (atas)a = at+sa = at+s+1

⇒ at+1as = at+s+1.

Hence by mathematical induction onr, the result follows. ¤
Proposition 4.4. In an RAD AG-groupoidQ, (ar)s = ars ∀a ∈ Q and some positive
integersr, s.

Proof. For r = 1, it is true because(a1)s = as. Assume it is true forr = t, (at)s = ats.
For r = t + 1. Then by Lemma 4.2 and 4.3, we have

(at+1)s = (ata)s = (at)sas = atsas = ats+s = a(t+1)s.

Hence the result is true for everyr ≥ 1. ¤
Lemma 4.5. LetQ be an RAD AG-groupoid. Thenasbr = bras ∀ a, b in Q, andr, s > 1.

Proof. By the Identities (1.4, 4.16) and Lemma 4.1, we have

asbr = (as−1a)(br−1b) = (as−1br−1)(ab)
= (bbr−1)(aas−1) = (br−1b)(as−1a) = bras.

Thus the result is proved. ¤
Theorem 4.6. If Q is RAD AG-groupoid, ifabr = br+1 andbas = as+1 for a, b ∈ Q, and
any positive integersr, s, thenaηb.

Proof. Without loss of generality assume thats > r. For r = 1, put bs−1b0 = bs−1. Then
by identity (4.16) and Lemmas 4.1, 4.3, we get

bs−rbr+1 = bs−r(abr) = (bsb−r)(abr) =
= (brb−r)(abs) = (br−r)(abs) = abs.

Thusabr = br+1, similarly bas = as+1and soaηb. ¤
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Next, we prove that the relationη is congruence onQ. A relation is called congruence
if it is reflexive, symmetric, transitive and compatible.

Theorem 4.7. The relation“η” is congruence on an RAD AG-groupoidQ.

Proof. Obviously,η is reflexive and symmetric. We now show thatη is transitive.

Let aηb andbηc. Then for anya, b, c ∈ Q there exist positive integerss, r such that
abs = bs+1, bas = as+1 andbcr = cr+1, cbr = br+1. Let k = (s + 1)(r + 1)− 1, that is
k = s(r + 1) + r, such thatr, s > 1. Then using proposition 4.4, Lemmas 4.3, 4.5 and
identities (1.1, 4.16), we get

ack = acs(r+1)+r = a(cs(r+1) · cr) = a(cr+1)scr) = a((bcr)scr) =
= a(bscrs · cr) = a(crcrs · bs) = (a · crcrs)(bsa) = (abs)(crcrs · a) =
= a(bs · crcrs) = a(cr · bscrs) = cr(a · bscrs) = cr(abs · crsa) =
= cr(acrs · bsa) = cr(a · crsbs) = cr(crs · abs) = cr(crsbs+1) =
= crcrs · bs+1cr = crbs+1 · crscr = cr(bs+1crs) = bs+1(crcrs) =

= bs+1cr(s+1) = (bcr)s+1 = (cr+1)s+1 = cs(r+1)+r+1 = ck+1.

Similarly, cak = ak+1. Thusη is an equivalence onQ.
Next, we show thatη is compatible. To this end we assume thataηb such that for some

positives,

abs = bs+1 and bas = as+1.

Let c ∈ Q. Then by the identity (1.4) and Lemmas 4.1 and 4.2 we get

(ac)(bc)s = (ac)(bscs) = (abs)(ccs) = (bs+1)(csc) = bs+1cs+1 = (bc)s+1,

and

(bc)(ac)s = (bc)(ascs) = (bas)(ccs) = (as+1)(csc) = as+1cs+1 = (ac)s+1.

So,acηbc, Similarly, caηcb. Henceη is a congruence onQ. ¤
In the next theorem we prove that the above relation is seperative onQ. A relation“η”

on an RAD AG-groupoidQ is separative ifabηa2 andabηb2 implies thataηb.

Theorem 4.8. The relation“η” on an RAD AG-groupoidQ is separative.

Proof. Let a, b ∈ Q, abηa2 andabηb2. Then by the definition ofη there exists positive
integersr ands such that

(ab)(a2)r = (a2)r+1 = a2r+2 , a2(ab)r = (ab)r+1

(ab)(b2)s = (b2)s+1 , b2(ab)s = (ab)s+1.

Now, by using the Proposition 4.4, Identities (1.1, 4.16) and Lemma 4.1, and
bi-commutativity, (4.17), nuclear square properties3.18 we get,

a2r+2 = (ab)(a2)r = (ab)(arar) = (arb · ara)
= (arar · ba) = ab · arar = ab · a2r = (a2r)ab

= a2ra · b = aa2r · b = ab · a2r

= ba · ar = ba2r+1.
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That is,baj = aj+1 wherej = 2r + 1.
Similarly, it can be shown thatabk = bk+1,wherek = 2m + 1. Thus, by Theorem 4.6,

aηb.
Similarly, it can be shown thatabk = bk+1,wherek = 2m + 1. Thus, by Theorem 4.6,

aηb. Hence the relationη is separative onQ. ¤

5. CONCLUSION

The concept of left (right) abelian distributive groupoid (LAD resp. RAD) is extended to
introduce the subclasses of an AG-groupoid as left (right) abelian distributive AG-groupoid.
These classes have been enumerated up to order 6 using the computational techniques of
GAP. A numerous relations of RAD AG-groupoids are investigated with other existing
subclasses of AG-groupoids and with some other related algebraic structures. A manual
procedure for the verification of an arbitrary finite AG-groupoid for RAD as subclass of
AG-groupoids is introduced. Furthermore, examples and counterexamples are produced
with Prover-9 and Mace-4 to strengthen the validity of the produced results. Moreover, a
right alternative RAD AG-groupoid is decomposed by some congruences and a separative
congruence is introduced.
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