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1. INTRODUCTION

he theory of bicomplex numbers is a matter of active research for quite a long time
since seminal work as carried in [12] and [1] in search of special algebra. The algebra
of bicomplex numbers are widely used in the literature as it becomes viable commutative
alternative{cf. [13]} to the non skew field of quaternions introduced by Hamilton{cf. [5]}
(both are four dimensional and generalization of complex numbers).

2. PRELIMINARIES

2.1. The Bicomplex Numbers{cf.[10]}. A bicomplex number is defined as

z = x1 + i1x2 + i2x3 + i1i2x4

= (x1 + i1x2) + i2 (x3 + i1x4)
= z1 + i2z2,

wherexi, i = 1, 2, 3, 4 are all real numbers withi21 = i22 = −1, i1i2 = i2i1, (i1i2)
2 = 1

andz1, z2 are complex numbers.
The set of all bicomplex numbers, complex numbers and real numbers are respectively

denoted byC2,C1 andC0.

2.2. Algebra of Bicomplex Numbers{cf.[10]}. Addition is the operation onC2 defined
by the function⊕ : C2 × C2 → C2,

(x1 + i1x2 + i2x3 + i1i2x4, y1 + i1y2 + i2y3 + i1i2y4)
= (x1 + y1) + i1 (x2 + y2) + i2 (x3 + y3) + i1i2 (x4 + y4) .

Scalar multiplication is the operation onC2 defined by the function̄ : C0 × C2 → C2,

(a, x1 + i1x2 + i2x3 + i1i2x4) = (ax1 + i1ax2 + i2ax3 + i1i2ax4) .

The system(C2,⊕,¯) is a linear space. Here the norm is defined as

|| || : C2 → R≥0,

‖x1 + i1x2 + i2x3 + i1i2x4‖ =
(
x2

1 + x2
2 + x2

3 + x2
4

) 1
2 .

So the system(C2,⊕,¯, || ||) is a normed linear space.
The spaceC4

0 with the Euclidean norm is known to be a complete space. AsC2 is
embedded inC4

0 so that x1 + i1x2 + i2x3 + i1i2x4 corresponds to(x1, x2, x3, x4) and
for this reason the norm onC2 is the same as the norm ofC4

0, then the normed linear space
(C2,⊕,¯, || ||) is a complete Space. Hence(C2,⊕,¯, || ||) is a Banach Space.

The product onC2 is defined as

⊗ : C2 × C2 → C2 by,

(x1 + i1x2 + i2x3 + i1i2x4, y1 + i1y2 + i2y3 + i1i2y4) =




x1y1 − x2y2 − x3y3 + x4y4

+i1 (x1y2 + x2y1 − x3y4 − x4y3)
+i2 (x1y3 − x2y4 + x3y1 − x4y2)

+i1i2 (x1y4 + x2y3 + x3y2 + x4y1)


 .
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As,

(i) ‖z (z1 + i2z2)‖ = |z| · ‖z1 + i2z2‖ and

(ii) ‖(z1 + i2z2) (w1 + i2w2)‖ ≤ 2
√

2 ‖z1 + i2z2‖ · ‖w1 + i2w2‖ ,

wherez ∈ C1, (z1 + i2z2) ∈ C2 and (w1 + i2w2) ∈ C2. So, (C2,⊕,¯, || ||,⊗) is a
Banach Algebra.

2.3. Idempotent Representation of Bicomplex Numbers{cf.[10]}. There are four idem-
potent elements inC2. They are

0, 1,
1 + i1i2

2
,
1− i1i2

2
.

We now denote two non trivial idempotent elements by

e1 =
1 + i1i2

2
and e2 =

1− i1i2
2

in C2.

where

e2
1 = e1, e

2
2 = e2, e1e2 = e2e1 = 0, e1 + e2 = 1.

So,e1 ande2 are alternatively called orthogonal idempotents.
Every elementξ : (z1 + i2z2) ∈ C2 has the following unique representation

ξ = (z1 − i1z2) e1 + (z1 + i1z2) e2

= ξ1e1 + ξ2e2, whereξ1, ξ2 are complex numbers.

This is known as idempotent representation of the elementξ : (z1 + i2z2) ∈ C2.An el-
ementξ : (z1 + i2z2) ∈ C2 is non-singular iff

∣∣z2
1 + z2

2

∣∣ 6= 0 and it is singular iff∣∣z2
1 + z2

2

∣∣ = 0. The set of all singular elements is denoted byθ2.

2.4. Topological Aspects of Bicomplex Space{cf.[11]}. The topological concepts em-
ployed for sets of bi complex numbers will be those of four dimensional euclidean and
space. For example a set of pointsS will be called open if for everyz0 in S. An open
connected set will be called a region. The set of all bicomplex numbers with this topology
will be called the bicomplex space. If T is a region, and if eachz on T is written in the
form z = z1e1 + z2e2,

(
wheree1 = 1

2 (1 + ij) , e2 = 1
2 (1− ij)

)
, then the setT1 of val-

ues ofz1 is a region in thez1−plane (in the topology of that plane) and the setT2 of values
of z2−plane. These regionT1 andT2 will be termed the component regions of T. If the
regionsT1 andT2 are given, the largest regionT whose component regions areT1 andT2

will be termed the product-region ofT1 andT2.
It should be observed that for convenience the regionsT1 andT2 have been chosen in the

complexz1− andz2−planes, which are not planes of the bicomplex spaces. If component-
regions in the space itself are desired, the componentsz1e1 and z2e2 of the numberz,
located in the first and second nil-planes, respectively, should be considered.
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2.5. The Discuss{cf.[10]}. Let a : (a1 + i1a2 + i2a3 + i1i2a4) be a fixed point inC2.
Setα = α1 + i1α2 andβ = β1 + i1β2. Thena = (a1 + i1a2 + i2a3 + i1i2a4) = α+ i2β.
Let r, r1, r2 denote the numbers inC0 such thatr > 0, r1 > 0 and r2 > 0. Also let
A1 = {z1 − i1z2 : z1, z2 in C1} , A2 = {z1 + i1z2 : z1, z2 in C1}. And w1 andw2

respectively denote the numbers inA1 andA2.We observe here thatw1 andw2 are in fact
complex numbers inC1. We should recall that the open ballB (a, r) and the closed ball
B (a, r) with centrea and radiusr are repectively defined as follows:

B (a, r) = {z1 + i2z2 in C2 : ‖(z1 + i2z2 − (α + i2β))‖ < r} and

B (a, r) = {z1 + i2z2 in C2 : ‖(z1 + i2z2 − (α + i2β))‖ ≤ r} .

Then the open and closed discuss with centre a and radiir1 , r2 respectively denoted by
D (a; r1, r2) and D (a; r1, r2) are defined as

D (a; r1, r2) =
{

z1 + i2z2 in C2 : z1 + i2z2 = w1e1 + w2e2,
|w1 − (α− i1β)| < r1, |w2 − (α− i1β)| < r2

}
and

D (a; r1, r2) =
{

z1 + i2z2 in C2 : z1 + i2z2 = w1e1 + w2e2,
|w1 − (α− i1β)| ≤ r1, |w2 − (α− i1β)| ≤ r2

}
.

2.6. Compact Set{cf.[3]}. A setK ⊂ C2 is compact if for a collectionζ of open sets in
C2 with the propertyK ⊂ ∪{G : G ∈ ζ }, there is a finite number of setsG1, G2, ...., Gn

in ζ such thatK ⊂ G1 ∪G2 ∪ .... ∪Gn.

2.7. Uniformly Convergence inC2{cf.[3]}. A sequence{fn} of bicomplex holomorphic
functions defined on domainS ⊆ C2 is said to be converge uniformly on a compact subset
of S to a bicomplex functionf if for any compact subsetK of S and forε > 0, there is a
positive integern0 such that

‖fn (n)− f (w)‖ < ε

for all n ≥ n0 andw ∈ K. By the notationfn → f, we consider that{fn} converges tof
in C2.

2.8. Bicomplex Holomorphic Function{cf.[10]}. We start with a bicomplex valued func-
tion

f : Ω ⊂ C2 → C2.

The derivative off at a pointω0 ∈ Ω is defined by

f ′(ω) = lim
h→0

f(ω0 + h)− f(ω0)
h

provided the limit exists and the domain is so chosen that

h = h0 + i1h1 + i2h2 + i1i2h3

is invertible. It is easy to prove thath is not invertible only forh0 = −h3, h1 = h2 or
h0 = h3, h1 = −h2.i.e.h /∈ θ2.

If the bicomplex derivative off exists at each point of its domain then in similar to
complex function,f will be a bicomplex holomorphic function inΩ. Indeed iff can be
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expressed as

f(ω) = g1(z1, z2) + i2g2(z1, z2)
ω = z1 + i2z2 ∈ Ω

thenf will be holomorphic if and only ifg1, g2 are both complex holomorphic inz1, z2

and
∂g1

∂z1
=

∂g2

∂z2
,
∂g1

∂z2
= −∂g2

∂z1
.

Moreover,

f ′(ω) =
∂g1

∂z2
+ i2

∂g2

∂z1
.

Alternatively, Letf (z) be a bicomplex valued function of the bicomplex variablez =
x + jy, defined in a regionT . Let z0 be a point inT . Thenf(z) will be termed analytic
at z0 if and only if there exists a bicomplex numberf ′ (z0) such that for anyε > 0 there
exists aδε > 0 such that ∥∥∥∥

f(z)− f (z0)
z − z0

− f ′ (z0)
∥∥∥∥ < ε

whenever‖z − z0‖ < δε and|z − z0| 6= 0.
A functionf (z) will be termed analytic in aregionT if it is analytic at each point ofT.

2.9. Bicomplex Entire Function{cf.[10]}. A function f is said to be a bicomplex entire
function if f is analytic in the whole bicomplex planeC2.

2.10. Decomposition Theorem of Ringleb{cf.[11]}. Let f (z) be analytic in a region T,
and letT1 andT2 be the component regions of T, in thez1− andz2−planes, respectively.
Then there exists a unique pair of complex-valued analytic functions,g (z1) andh (z2) ,
defined inT1 andT2, respectively, such that

f (z) = g (z1) e1 + h (z2) e2

for all z in T . Conversely, ifg (z1) is any complex-valued analytic function in a region
T1 andh (z2) is any complex-valued analytic function in a regionT2, then the bicomplex
valued functionf(z) defined by the formula is an analytic function of the bicomplex
variablez in the product-regionT of T1 andT2.

2.11. Zero and Pole of a Bicomplex Function{cf.[11]}. By Decomposition Theorem of
Ringleb, iff (z) is analytic in a neighbourhood of the origin thenf (z) will said to have a
zero of order at leastn, wheren is a positive integer, at the origin if and only if bothg (z1)
has a zero of order at leastn atz1 = 0 andh (z2) has a zero of order at leastn atz2 = 0.

By Decomposition Theorem of Ringleb, iff (z) is analytic in a deleted neighbourhood
of z = z0 = z0

1e1 + z0
2e2.Thenf (z) will be said to have a pole of order at mostn, where

n is a non negative integer, in the nil plane with respect toz0 if both g (z1) has a pole of
order at mostn atz1 = z0

1andh (z2) has a zero of order at leastn atz2 = z0
2 . If bothg (z1)

andh (z2) have a pole of ordern at these points,f (z) will be said to have a pole of order
n.

Example Let f(z) = z−1
z .Thenz = 1is the zero off in C2 and on the other hand,

z = 0 is the pole of order 1 off in C2.
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2.12. Convex Function{cf.[2]}. Let us now recall the definition of convex function.
A function f(x) of real variablex is said to be convex downwards or simple convex

if the curvey = f(x) betweenx1 andx2 always lies below the chord joining the points
(x1, y1) , (x2, y2) wherey1 = f (x1) andy2 = f (x2) .

The equation of the chord is

y − y1 =
y2 − y1

x2 − x1
(x− x1)

i.e., y =
x− x1

x2 − x1
y2 +

(
1 +

x− x1

x2 − x1

)
y1

i.e., y =
(

x− x1

x2 − x1

)
y2 +

(
x2 − x

x2 − x1

)
y1.

Thereforey = f (x) is convex iff analytically the following condition is satisfiedi.e.,

y <

(
x− x1

x2 − x1

)
y2 +

(
x2 − x

x2 − x1

)
y1

i.e., f (x) <

(
x− x1

x2 − x1

)
f (x2) +

(
x2 − x

x2 − x1

)
f (x1) .

2.13. Univalent Function or Simple Function {cf.[11]}. A bicomplex valued function
f is univalent (i.e. simple) in a regionD if it is regular, one valued and does not take any
value more than once inD i.e. f(z1) 6= f(z2) wheneverz1 6= z2, z1, z2 ∈ D.

In this paper our prime concern is to derive the bicomplex analog of some well known re-
sults, especially Hadamard’s three circles theorem with its convex form, Jenson’s Inequal-
ity on univalent (i.e. simple) functions inC1. We do not explain the standard definitions
and notatios of the theories of bicomplex valued entire functions as those are available in
{cf.[10], [2], [7] and [8]}.

3. LEMMAS

In this section we present some relevant lemmas which will be needed in the sequel.

Lemma 3.1. [2] Limit of a uniformly convergent sequence of univalent function inC1 is
either simple or constant.

Lemma 3.2. [14][11] Letf be analytic in the deleted neighbourhood ofα and has a pole of
orderm > 1 atα iff f can be expressed in the formf (z) = ψ(z)

(z−α)m is some neighbourhood
of α whereψ is analytic atz = α andψ (α) 6= 0,whereα is zero off.

Proof. Let α = α1e1 + α2e2 be a pole off of orderm and letf (z) = f1 (z1) e1 +
f2 (z2) e2 [Ringleb Decomposition].

Then from the definition of pole we can say thaα1 and α2 is a pole of orderm for
f1 (z1) and f2 (z2) respectively, whereα1, α2, f1 (z1) , f2 (z2) ∈ C1.

Then in some neighbourhood ofαi, fi (αi) for i = 1, 2 has Laurent seies expansion
{cf.[3]},

f1 (z1) =
∞∑

n=0

a
′
n (z1 − α1)

n +
m∑

j=1

b
′
j (z1 − α1)

−j
, whereb

′
m 6= 0,
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and

f2 (z2) =
∞∑

n=0

a
′′
n (z2 − α2)

n +
m∑

j=1

b
′′
j (z2 − α2)

−j
, whereb

′′
m 6= 0.

Therefore by Ringleb decomposition off in C2 it follows that,

f (z) =





∞∑
n=0

a
′
n (z1 − α1)

n +
m∑

j=1

b
′
j (z1 − α1)

−j



 e1+





∞∑
n=0

a
′′
n (z2 − α2)

n +
m∑

j=1

b
′′
j (z2 − α2)

−j



 e2.

=
∞∑

n=0

(
a
′
ne1 + a

′′
ne2

)
[(z1e1 + z2e2)− (α1e1 + α2e2)]

n

+
∞∑

n=0

(
b
′
je1 + b

′′
j e2

)
[(z1e1 + z2e2)− (α1e1 + α2e2)]

−j

Sinceb
′
n 6= 0, b

′′
n 6= 0 we havebm 6= 0 and also in view ofan = a

′
ne1 + a

′′
ne2, bj =

b
′
je1 + b

′′
j e2 we may write that,

f (z) =
∞∑

n=0

an (z − α)n +
m∑

j=1

bj (z − α)−j

= φ (z) +
m∑

j=1

bj (z − α)−j

=
(z − α)m

φ (z) + bm +
m−1∑
j=1

bj (z − α)m−j

(z − α)m

=
ψ (z)

(z − α)m ,

whereψ (z) = (z − α)m
φ (z) + bm +

m−1∑
j=1

bj (z − α)m−j
. Clearly ψ (z) is bicomplex

valued analytic atz = α andψ (α) = bm 6= 0.

Next let us suppose that in some neighbourhood ofz = α, f (z) = ψ(z)
(z−α)m whereψ is

analytic atz = α andψ (α) 6= 0.

Now, we expandψ in Taylor’s series aroundα in order to getψ (z) =
∞∑

n=0
an (z − α)nwhere

a0 6= 0 becomesψ (α) 6= 0{cf.[10]}. Hence,

f (z) =

∞∑
n=0

an (z − α)n

(z − α)m

=
a0

(z − α)m +
a1

(z − α)m−1 + ....... +
am−1

(z − α)
+

∞∑
n=m

an (z − α)n−m
,
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which is the bicomplex analog of Laurent Series expanssion off aroundα. Since in the
principal part of the above series the coefficient of(z − α)−m is non vanishing, it therefore
follows thatα is a pole off of orderm > 1.Thus the theorem is established. ¤

Lemma 3.3. [14][11]The pointα is a zero of orderm(> 1) of a bicomplex valued analytic
functionf iff f can be expressed in the formf (z) = (z − α)m

φ (z) , whereφ is analytic
at α andφ (α) 6= 0 and the representation is valid in some neighbourhood ofα, whereα
is zero off.

Lemma 3.4. The pointα is a pole of orderm(> 1) of a bicomplex valued functionf iff it
is a zero of orderm of 1

f .

Proof. Sincef has a pole of orderm at z = α. By Lemma3.2 we may write, in some
neighbourhood ofz = α, f (z) = φ (z) (z − α)−mwhereφ is analytic atz = α and
φ (α) 6= 0. Therefore

1
f (z)

= (z − α)m
ψ (z)

whereψ (z) = 1
φ(z) is analytic atα andψ (α) = 1

φ(α) 6= 0. So,α is a zero of 1
f(z) of order

m.
Conversely let,z = α be a zero of orderm of 1

f . Then we can write 1
f(z) =

(z − α)m
g (z) in some neighbourhood ofα where g is analytic atα andg (α) 6= 0.

So,

f (z) =
1

(z − α)m
g (z)

=
h (z)

(z − α)m

whereh (z) = 1
g(z) is analytic atz = α andh (α) = 1

g(α) 6= 0. Henceh is a pole of order
m > 1. ¤

4. THEOREMS

In this section we present the main results of our paper.
Theorem 4.1 is the bicomplex analig of Hadamard’s Three Circle Theorem.

Theorem 4.1. Letf (z) be bicomplex valued analytic inr1 ≤ ‖z‖ ≤ r3 and letr1 < r2 <
r3. If Mi be the maximum value of‖f (z)‖ on the circles‖z‖ = ri for i = 1, 2, 3, then

M
log
�

r2
r3

�

2 ≤ M
log
�

r3
r2

�

1 ·M log
�

r2
r1

�

3 .

Proof. Let us consider the functionz−kf (z) wherek is a constant to be detemined. Since

max
‖z‖=ri

‖f (z)‖ = Mi, i = 1, 2, 3,

The maximum value of
∥∥z−kf (z)

∥∥ on‖z‖ = r1 and‖z‖ = r3 are given byM1
rk
1

and M3
rk
3

respectively.
Let k be determined by the condition that

M1

rk
1

=
M3

rk
3

(4. 1)
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andλ by the condition

rλ
1 · r1−λ

3 = r2 (4. 2)

Taking logarithm on both sides of ( 4. 2 ) we get that,

λ log r1 + (1− λ) log r3 = log r2

i.e., log r3 − log r2 = λ (log r3 − log r1)

i.e., λ =
log

(
r3
r2

)

log
(

r3
r1

) (4. 3)

So,

1− λ = 1− log r3 − log r2

log r3 − log r1
=

log r2 − log r1

log r3 − log r1
. (4. 4)

Now any quantitya can be written as

a = aλ · a1−λ.

Therefore from ( 4. 2 ) we have,

a =
M1

rk
1

=
M3

rk
3

=
Mλ

1

rkλ
1

· M1−λ
3

r
k(1−λ)
3

.

It follows that
M1

rk
1

=
M3

rk
3

=
Mλ

1 ·M1−λ
3

rk
2

.

From above we observe that the maximum of
∥∥z−kf (z)

∥∥ on circles‖z‖ = r1 and‖z‖ =

r3 are respectivelyM1
rk
1

and M3
rk
3

and these are equal, each being equal toMλ
1 ·M1−λ

3
rk
2

.

Now let us consider the maximum of
∥∥z−kf (z)

∥∥ on circles‖z‖ = r2 and we get that

M2

rk
2

≤ Mλ
1 ·M1−λ

3

rk
2

i.e., M2 ≤ Mλ
1 ·M1−λ

3

Putting the value ofλ and1− λ from ( 4. 3 ) and ( 4. 4 ) in the above we obtain that

M2 ≤ M
log(r3/r2)/ log(r3/r1)
1 ·M log(r2/r1)/ log(r3/r1)

3

Raising both sides to the powerlog (r3/r1) it follows that

M
log
�

r2
r3

�

2 ≤ M
log
�

r3
r2

�

1 ·M log
�

r2
r1

�

3 .

This completes the proof of the theorem. ¤

Remark 4.2. Hadamard’s Three Circle Theorem inC2 may be expressed by saying that
M (r) is a convex function oflog r as we see in the following theorem.
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Theorem 4.3. If f (z) is a bicomplex valued analytic in the closed ringr1 ≤ ‖z‖ ≤ r3,
and if M (ri) denotes the maximum value of‖f (z)‖ on the circles‖z‖ = ri with
r1 ≤ r2 ≤ r3then

log M (r2) ≤ log r3 − log r2

log r3 − log r1
log M (r1) +

log r2 − log r1

log r3 − log r1
log M (r3) (4. 5)

Proof. In view of Theorem 4.1 we have,

{M (r2)}log
�

r2
r3

�
≤ {M (r1)}log

�
r3
r2

�
· {M (r3)}log

�
r2
r1

�
. (4. 6)

Therefore we obtain ( 4. 5 ) . ¤

Remark 4.4. The sign of equality holds whenf (z) is of the formazn, wherea is a constant
in C2 as we see below.

Consideringf (z) = azn wherea, z ∈ C2.ThenM (ri) = max{‖f (z)‖ : ‖z‖ =
ri for i = 1, 2, 3} = ||a||rn

i on the circles‖z‖ = ri for i = 1, 2, 3. Now

log M (r2) = log ||a||+ n log r2

and
log r3 − log r2

log r3 − log r1
log M (r1) +

log r2 − log r1

log r3 − log r1
log M (r3)

=
log r3 − log r2

log r3 − log r1
(log ||a||+ n log r1 ) +

log r2 − log r1

log r3 − log r1
(log ||a||+ n log r3 )

= log ||a||+ n log r2 .

The equality in Theorem 3.6 holds forazn.

Theorem 4.5. Letf (z) be a bicomplex valued entire function which does not vanish at the
origin. Also letr1, r2, r3, ....., rn be the moduli of zerosz1, z2, z3, ....., zn of f (z) arranged
as a non decreasing sequence, multiple zero being repeated. Then

Rn ‖f (0)‖ ≤ M (R) · r1 · r2 · r3 · · · · · rn whenrn < R < rn+1.

Proof. Let us consider the function

F (z) = f (z)
n∏

m=1

(
R2 − z · zm

)

R (z − zm)
, (4. 7)

wherezm is i2 conjugate ofzm{cf.[10]}
Sincef (z) is entire inC2, it follows thatF (z) is also entire inC2.
Now, by idempotent decompositions of bothf, F we can write ( 4. 7 ) as

F1

(
z
′)

e1+F2

(
z
′′)

e2 =
(
f1

(
z
′)

e1 + f2

(
z
′′)

e2

) n∏
m=1

{
R2 −

(
z
′
e1 + z

′′
e2

)(
z′e1 + z′′e2

)}

R {(z′e1 + z′′e2)− (z′me1 + z′′me2)} ,

(4. 8)
wherez = z

′
e1 + z

′′
e2 andz

′
, z
′′
are all inC1.

Also, if

z = z1 + i2z2 = (z1 − i1z2) e1 + (z1 + i1z2) e2 = z
′
e1 + z

′′
e2
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then,

z = z1 − i2z2 = (z1 − i1z2)e1 + (z1 + i1z2)e2 = z′e1 + z′′e2.

Now from ( 4. 8 ) we can write that,

F1

(
z
′)

= f1

(
z
′) n∏

m=1

(
R2 − z

′ · z′m
)

R (z′ − z′m)
(4. 9)

and

F2

(
z
′)

= f2

(
z
′′) n∏

m=1

(
R2 − z

′′ · z′′m
)

R (z′′ − z′′m)
. (4. 10)

Now as

R2
1

(
z
′ − a

′)(
z′ − a′

)
= R2

1

(
z
′ · z′ −

(
a
′ · z′ + a′ · z′

)
+ a

′ · a′
)

,

and on the circle
∣∣∣z′

∣∣∣ = R1 , z
′ · z′ =

∣∣∣z′
∣∣∣
2

= R2
1 therefore it follows that

R1

(
z
′ − a

′)
R1

(
z′ − a′

)

= R2
1

[
R2

1 −
(
a′z′ + a′z

′)
+ a

′
a′

]

=
(
R2

1 − a′z
′)(

R2
1 − az′

)

=
(
R2

1 − a′z
′) (

R2
1 − a′z′

)

i.e.,
∣∣∣R1

(
z
′ − a

′)∣∣∣
2

=
∣∣∣R2

1 − a′z
′
∣∣∣
2

i.e.,

∣∣∣∣∣
R2

1 − a′z
′

R1 (z′ − a′)

∣∣∣∣∣ = 1. (4. 11)

Replacinga
′

by z
′
m to( 4. 11 ) we have

∣∣∣∣∣
R2

1 − z′mz
′

R1 (z′ − z′m)

∣∣∣∣∣ = 1 on
∣∣∣z′

∣∣∣ = R1. (4. 12)

Similarly we can write that
∣∣∣∣∣

R2
2 − z′′mz

′′

R2 (z′′ − z′′m)

∣∣∣∣∣ = 1 on
∣∣∣z′′

∣∣∣ = R2. (4. 13)

By ( 4. 12 and ( 4. 9 ) we obtain that
∣∣∣F1

(
z
′)∣∣∣ =

∣∣∣f1

(
z
′)∣∣∣ on

∣∣∣z′
∣∣∣ = R1. (4. 14)

Similarly by ( 4. 13 ) and in view of ( 4. 10 ) ,
∣∣∣F2

(
z
′′)∣∣∣ =

∣∣∣f2

(
z
′′)∣∣∣ on

∣∣∣z′′
∣∣∣ = R2. (4. 15)
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ConsideringR =
√

R2
1+R2

2
2 ,combining ( 4. 14 ) and ( 4. 15 ) it follows that‖F (z)‖ =

‖f (z)‖ on‖z‖ = R. So by the maximum modulus principle inC2{cf.[6]},
‖F (z)‖ ≤ max

‖z‖=R
‖F (z)‖ = max

‖z‖=R
‖f (z)‖ .

ChoosingM (R) to be the maximum modulus of‖f (z)‖ on‖z‖ = R, we get that

‖f (z)‖ ≤ M (R) .

Puttingz = 0in ( 4. 7 ) we obtain that∥∥∥∥∥f (0)
n∏

m=1

R2

R (0− zm)

∥∥∥∥∥ = ‖F (0)‖ ≤ M (R)

i.e., ‖f (0)‖ ·
n∏

m=1

R

‖zm‖ ≤ M (R)

i.e., ‖f (0)‖ · R ·R ·R · · · ·R (n factors)
‖z1‖ · ‖z2‖ · · · · ‖zn‖ ≤ M (R)

i.e.,
Rn ‖f (0)‖

r1 · r2 · r3 · · · · · rn
≤ M (R)

i.e., Rn ‖f (0)‖ ≤ M (R) · r1 · r2 · r3 · · · · · rn.

Thus the theorem is established. ¤

Remark 4.6. Theorem 4.3 is analogous to Jenson’s Inequality inC1{cf.[2]}.
The next two theorems show some light on the bicomplex analog of result connected

with univalent functions.

Theorem 4.7. Let {fn} be a sequence inC2.Also letfn = f
′
ne1 + f

′′
n e2,where

{
f
′
n

}

and
{

f
′′
n

}
are sequence inC1. Then{fn} is a uniformly convergent sequence of univa-

lent functions inC2 iff
{

f
′
n

}
and

{
f
′′
n

}
are uniformly convergent sequences of univalent

functions inC1.

Proof. Let {fn} be uniformly convergent sequence of univalent functions inC2. So{fn}
is a uniformly convergent sequence of analytic functions andfn = f

′
ne1 + f

′′
n e2 , where{

f
′
n

}
and

{
f
′′
n

}
are uniformly convergent sequences of analytic functions{cf. [3]}.

Now, as{fn} is a sequence of univalent functions, we have,z 6= w implies thatfn (z) 6=
fn (w) wherez, w ∈ C2.

Let z = z1e1 + z2e2, w = w1e1 + w2e2 wherez1, z2, w1, w2 ∈ C1. Since,z 6= w, we
get

z1e1 + z2e2 6= w1e1 + w2e2

i.e.z1 6= w1 and z2 6= w2. (4. 16)

Hence, fn (z) 6= fn (w)

i.e., f
′
n (z1) e1 + f

′′
n (z2) e2 6= f

′
n (w1) e1 + f

′′
n (w2) e2.
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i.e., f
′
n (z1) 6= f

′
n (w1) and f

′′
n (z2) 6= f

′′
n (w2) . (4. 17)

Hence combining ( 4. 16 ) and ( 4. 17 ) we can write thatz1 6= w1 ⇒ f
′
n (z1) 6= f

′
n (w1)

andz2 6= w2 ⇒ f
′′
n (z2) 6= f

′′
n (w2) . So,

{
f
′
n

}
and

{
f
′′
n

}
are both uniformly convergent

sequences of univalent functions inC1.

Conversely let,
{

f
′
n

}
and

{
f
′′
n

}
be both uniformly convergent sequence of univalent

functions inC1. Therefore,
{

f
′
n

}
and

{
f
′′
n

}
are uniformly convergent sequences of an-

alytic function. Since,fn = f
′
ne1 + f

′′
n e2the sequence{fn} is uniformly convergent

sequence of analytic functions{cf. [3]}. Now let z 6= w, i.e., z1 6= w1 and z2 6= w2.

Since
{

f
′
n

}
and

{
f
′′
n

}
are univalent functions. So asz1 6= w1 andz2 6= w2 we have

respectively thatf
′
n (z1) 6= f

′
n (w1) andf

′′
n (z2) 6= f

′′
n (w2) .

Hence it follows that

f
′
n (z1) e1 + f

′′
n (z2) e2 6= f

′
n (w1) e1 + f

′′
n (w2) e2

i.e., fn (z) 6= fn (w) .

Thus{fn} is a uniformly convergent sequence of univalent functions inC2 . ¤

Theorem 4.8. Limit of a uniformly convergent sequence of univalent functions inC2 is
either simple or constant.

Proof. Let {fn} be uniformly convergent sequence of univalent functions inC2.

Then,fn = f
′
ne1 + f

′′
n e2, where

{
f
′
n

}
and

{
f
′′
n

}
are sequences inC1. (4. 18)

So, in view of Theorem 3.8 we can say that
{

f
′
n

}
and

{
f
′′
n

}
are uniformly convergent

sequences of univalent functions inC1.Thus by Lemma 2.1 the respective limits of a uni-
formly convergent sequence of univalent functions inC1 is either simple or constant. So,

limits of
{

f
′
n

}
and

{
f
′′
n

}
are either simple or constant.

Hence from ( 4. 18 ), the limit of{fn} in C2 is either simple or constant. ¤

5. FUTURE PROSPECT

HIn the line of the works as carried out in the paper one may think of the formation
of Hadamard’s three circles theorem with its convex form, Jenson’s Inequality and the
notion of univalency(i.e., simplicity) of functions with the help of the idempotents0, 1,
1+i1i2

2 , 1−i1i2
2 , 1+i1i3

2 , 1−i1i3
2 , 1+i2i3

2 , 1−i2i3
2 ,...., 1+in−1in

2 and 1−in−1in

2 in Cn and these
derivations may be posed as open problems for the future workers in this area.
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[9] M.E.Lunna-Elizarras, C.O. Ṕerez-Ragaldo and M.Shapiro,On the Laurent series for bicomplex holomorphic
functions,Complex Variables and Elliptic Equations,62,No.9 (2017) 1-22.

[10] G.B. Price,An introduction to multicomplex spaces and functions,Marcel Dekker Inc. New York, 1991.
[11] James.D.Riley,Contribution to the theory of functions of bicomplex variable,Tohoku Math. J.2, (1953)

132-165.
[12] C. Segre,Le rappresentazioni reali delle forme complesse a gli enti iperalgebrici,Math. Ann.40 (1892)

413-467.
[13] N. Spampinato,Sulla rappresentazioni delle funzioni di variabili bicomplessa total mente derivabili,Ann.

Mat. Pura. Appl.14,No.4 (1936) 305-325.
[14] D.Rochon,A bicomplex Reimann zeta function,Tokyo. J. Math.27,No. 2 ( 2004) 357-369.


