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Abstract.: In this paper, we explore for the bicomplex version of the well

known Hadamard’s three circles theorem in complex analysis and also de-
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1. INTRODUCTION

he theory of bicomplex numbers is a matter of active research for quite a long time
since seminal work as carried in [12] and [1] in search of special algebra. The algebra
of bicomplex numbers are widely used in the literature as it becomes viable commutative
alternative{cf. [13]} to the non skew field of quaternions introduced by Hamiltoh [5]}
(both are four dimensional and generalization of complex numbers).

2. PRELIMINARIES

2.1. The Bicomplex Numbergcf.[10]}. A bicomplex number is defined as

z = T+ 11To + 023 + i1l2%y
= (z1+0122) + iz (23 + i124)
= 21 +i229,
wherez;,i = 1,2,3,4 are all real numbers Wit = i2 = —1,iiy = isiy, (i1iz)” = 1

andz, z, are complex numbers.
The set of all bicomplex numbers, complex numbers and real numbers are respectively
denoted byC,, C; andC,.

2.2. Algebra of Bicomplex Numbers{cf.[10]}. Addition is the operation oft, defined
by the function® : C, x Cy — Cs,
(w1 +i129 + o3 + i1i2T4, Y1 +i1Y2 + i2y3 + i1i2ya)

= (@1 +y1) + i1 (22 + y2) + iz (x5 + y3) +ird2 (w4 + ya) -

Scalar multiplication is the operation @} defined by the function® : Cy x Cy — Cs,
(a,x1 + G129 + G223 + i1924) = (ax1 + t1022 + i2ax3 + i1i2a24) .
The system{Cs, ®, ®) is alinear space. Here the norm is defined as
1l Ca— Ry,
oy + inws + igws + iviswa|| = (0F +ad+ a3 +a3)?

So the systeniCo, @, ®, || ||) is a normed linear space.

The spaceC? with the Euclidean norm is known to be a complete space.CAss
embedded ifC§ so thatz; + ixa + isxs + i1igzs  cOrresponds tz:, xq, z3, r4) and
for this reason the norm dfl, is the same as the norm&f}, then the normed linear space
(Cq,®,®,]] ||) is a complete Space. Hen@g,, @, ®, || ||) is a Banach Space.

The product orC, is defined as

®:C2XC2HC2bya

T1Y1 — T2Y2 — T3Y3 + TalY4
i1 (21Y2 + T2y1 — T3y — T4Y3)
+ig (T1Y3 — Toya + T3Y1 — Tay2)

+ivia (T1ya + x2y3 + T3y2 + Tay1)

(1 +i122 +d2x3 + i102%4, Y1 + 1Yo + l2ys + i102ys) =
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As,

(0) |z (21 +i2z2)|| = |z] - [|z1 + i222]| and

(id) (21 + d222) (w1 + d2wa)|| < V2|21 + 22| - |Jwi + dows]

wherez ¢ Cq, (Zl +i222) € Cy and (w1 +i2U)2) € C,. So, (Cg,@,@, || H,@) is a
Banach Algebra.

2.3. I[dempotent Representation of Bicomplex Numbergcf.[10]}. There are four idem-
potent elements if,. They are

144192 1 —1dq19
2 2

0,1,

We now denote two non trivial idempotent elements by

1 — 1919

. 1+ 1109

el and ey = in Cs.

where
2 _ 2 _ _ -0 -1
e] =e1,e5 =eg,e1eg =ege; =U,e1 +ex = 1.

So,e; ande; are alternatively called orthogonal idempotents.
Every element : (z; + izz3) € Cy has the following unique representation

§ = (z1—nizm)er+ (21 +i12) eo
= &e1 + &eq, Wheregy, & are complex numbers.

This is known as idempotent representation of the elemen{z; + iz22) € Cy.An el-
ement : (21 +iz22) € Cy is non-singular iff|27 + 22| # 0 and it is singular iff
|22 + 23| = 0. The set of all singular elements is denotectpy

2.4. Topological Aspects of Bicomplex Spadef.[11]}. The topological concepts em-
ployed for sets of bi complex numbers will be those of four dimensional euclidean and
space. For example a set of poirttswill be called open if for every, in S. An open
connected set will be called a region. The set of all bicomplex numbers with this topology
will be called the bicomplex space. If T is a region, and if eaaim 7" is written in the

form z = zie; + 20€2, (Whereey = 3 (1+1j), es = 3 (1 —ij)) , then the sef; of val-

ues ofz; is a region in the:; —plane (in the topology of that plane) and the Egbf values

of zo—plane. These regiof; and7: will be termed the component regions of T. If the
regionsT; andTs, are given, the largest regidhwhose component regions dfg and7;

will be termed the product-region @f andT5.

It should be observed that for convenience the regigrend7; have been chosen in the
complexz; — andz;—planes, which are not planes of the bicomplex spaces. If component-
regions in the space itself are desired, the compongnts and z;¢; of the numberz,
located in the first and second nil-planes, respectively, should be considered.
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2.5. The Discusgcf.[10]}. Leta : (a1 + i1a2 + i2a3 + i1i2a4) be a fixed point inCs.
Seta = ay +i1a9 and,@ = ,61 +i1,62. Thena = (a1 + 2109 + i2a3 + i1i2a4) = a+i2ﬁ.
Let r,r1, o denote the numbers i@y such that- > 0, 1 > 0and r, > 0. Also let
A = {2’1 — 1129 : 21,29 in (Cl} , Ay = {Zl + 4129 21,22 in (Cl} And w1 andw2
respectively denote the numbersAn and A,.We observe here that; andw, are in fact
complex numbers if©;. We should recall that the open bdl(a,r) and the closed ball

B (a,r) with centrea and radius- are repectively defined as follows:

B(a,r) = {z1 +i222inCq: ||(21 + 4222 — (a4 i203))|| < r}and
B(a,r) = {z1+i222inCy: (21 +i2z2 — (a+i20))|| <7}

Then the open and closed discuss with centre a andragii; respectively denoted by
D (a;r1,72) and D (a;r1,72) are defined as

D (a'r , ) . 21 + 4222 INCq : 21 + i920 = wiey + waes, and
Thi2) = |w1—(a—i15)|<r17\w2—(a—i1ﬁ)\<r2

— 21 +i229INCq @ 21 + i920 = wiey + wae

D(a;rl,TQ): 1 242 2 1 242 161 262,

lwy — (@ —i18)| < 71, lwe — (@ — i1 B)] < g

2.6. Compact Set{cf.[3]}. AsetK C C, is compact if for a collectio of open sets in
C, with the propertyk’ C U{G : G € ¢ }, there is a finite number of sefs;, Gs, ...., G,
in¢suchthatkK c GiUG> U .... UG,.

2.7. Uniformly Convergence inCo{cf.[3]}. A sequenct f,,} of bicomplex holomorphic
functions defined on domaifi C C; is said to be converge uniformly on a compact subset
of S to a bicomplex functiory if for any compact subsek” of S and fore > 0, there is a
positive integerny such that

[fn (n) = f (w)]| <€

foralln > ng andw € K. By the notationf,, — f, we consider thaf f,,} converges tq¢
in Cs.

2.8. Bicomplex Holomorphic Function{cf.[10]}. We start with a bicomplex valued func-
tion

f :QCCy — Cs.
The derivative off at a pointyy € Q2 is defined by

f'(w) = lim f(wo + h) — f(wo)

h—0 h

provided the limit exists and the domain is so chosen that
h = hg 4+ i1hy + i9hs + i1i2hs

is invertible. It is easy to prove thatis not invertible only forhy = —hsz,hy = hs OF
ho = hg, hl = —hg.i.e.h ¢ 02,

If the bicomplex derivative off exists at each point of its domain then in similar to
complex function,f will be a bicomplex holomorphic function if2. Indeed if f can be
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expressed as

fw) = g1(21,22) +i292(21, 22)
w = Zl+1222€ﬂ

then f will be holomorphic if and only ifg;, go are both complex holomorphic igy, 25
and
991 _ 092 991 _ 0Ogo

821 - 822 782’2 821 '
Moreover,
/ g1 . 092
f (OJ) o (922 + 7/2821.
Alternatively, Letf (z) be a bicomplex valued function of the bicomplex variable-
x + jy, defined in a regiofT". Let 2y be a pointinT. Then f(z) will be termed analytic
at zo if and only if there exists a bicomplex numbgr(zy) such that for any > 0 there
exists aj, > 0 such that
‘ f(z) — [ (20)

zZ— 20
whenevel|z — z|| < d. and|z — zg| # 0.
A function f (z) will be termed analytic in aregiof if it is analytic at each point of.

—f (Z())H <e€

2.9. Bicomplex Entire Function{cf.[10]}. A function f is said to be a bicomplex entire
function if f is analytic in the whole bicomplex plaii&,.

2.10. Decomposition Theorem of Ringlelcf.[11]}. Let f (z) be analytic in a region T,
and let7; and7, be the component regions of T, in the— andz;—planes, respectively.
Then there exists a unique pair of complex-valued analytic functi@ts,) andh (z2),
defined inTy andT5, respectively, such that

f(z)=g(z1)e1+h(z2)e

for all z in T. Conversely, ifg (z1) is any complex-valued analytic function in a region
T, andh (z2) is any complex-valued analytic function in a regifn then the bicomplex
valued functionf(z) defined by the formula is an analytic function of the bicomplex
variablez in the product-regiofl” of 77 andTs.

2.11. Zero and Pole of a Bicomplex Functioqcf.[11]}. By Decomposition Theorem of
Ringleb, if f (z) is analytic in a neighbourhood of the origin th¢riz) will said to have a
zero of order at least, wheren is a positive integer, at the origin if and only if bojt{z; )
has a zero of order at leastat z; = 0 andh (z2) has a zero of order at leastat zo = 0.
By Decomposition Theorem of Ringleb, ff(z) is analytic in a deleted neighbourhood

of 2 = 29 = 2¥e; + 2Jes.Thenf (z) will be said to have a pole of order at mastwhere
n IS @ non negative integer, in the nil plane with respecitd both ¢ (z;) has a pole of
order at most atz; = zYandh (22) has a zero of order at leas@t z; = 2. If both g (21)
andh (z2) have a pole of ordert at these pointsf (=) will be said to have a pole of order
n.

Example Let f(z) = 21.Thenz = lis the zero off in C, and on the other hand,

z

z = 0is the pole of order 1 of in Cs.
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2.12. Convex Function{cf.[2]}. Let us now recall the definition of convex function.
A function f(z) of real variablez is said to be convex downwards or simple convex
if the curvey = f(z) betweenz; andz, always lies below the chord joining the points

(z1,91), (v2,y2) wherey, = f (x1) andyz = f (z2) .
The equation of the chord is

Y2 —
y—ypn = —— (v —11)
T2 —T1
. T —x Tr—
e,y = 1y2+(1+ 1>y1
To — X1 Ty — T1

. r — I T2 — X
er = () s (222
T2 — 1 T2 — 1
Thereforey = f (x) is convex iff analytically the following condition is satisfied.,
r—x To — X
y < ( 1)m+< : )m
To — X1 T2 — X1

iel flz) < <x“)f@ﬂ+<“x>f@0~

T2 — T1 T2 — X1

2.13. Univalent Function or Simple Function {cf.[11]}. A bicomplex valued function
fis univalent (i.e. simple) in a regioB if it is regular, one valued and does not take any
value more than once i i.e. f(z1) # f(z2) whenever, # z3, 21,29 € D.

In this paper our prime concern is to derive the bicomplex analog of some well known re-
sults, especially Hadamard's three circles theorem with its convex form, Jenson'’s Inequal-
ity on univalent (i.e. simple) functions i@;. We do not explain the standard definitions
and notatios of the theories of bicomplex valued entire functions as those are available in
{cf.[20], [2], [7] and [8]}.

3. LEMMAS
In this section we present some relevant lemmas which will be needed in the sequel.

Lemma 3.1. [2] Limit of a uniformly convergent sequence of univalent functio@rs
either simple or constant.

Lemma 3.2. [14][11] Let f be analytic in the deleted neighbourhoodhadind has a pole of
orderm > 1at« iff f can be expressed in the forfr{z) = v(2) s some neighbourhood

(Z—(Jt)m

of o wherey) is analytic atz = o andy (a) # 0,wherec is zero off.

Proof. Let & = aje; + ases be a pole off of orderm and letf (z) = f1(21)e1 +
f2 (22) es [Ringleb Decomposition].

Then from the definition of pole we can say tha and «- is a pole of ordem for
J1(21) and f (22) respectively, wherev, az, f1 (21), f2 (22) € Ci.

Then in some neighbourhood of, f; («;) for i = 1,2 has Laurent seies expansion
{cf.3]},

m

fi(z) = ay (21— a1)"+Y bj (21 —a1) ™7, whereb,, #0,
n=0 j=1
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and
f2 (22) = Z a;; (22 — O[Q)n +Z b;/ (22 — Olg)ij s Whereb;;l # 0.
n=0 j=1

Therefore by Ringleb decomposition 6fin C, it follows that,

m

o= {z:a;I (21 - )" +Zb; (21 — al)_j} 61+{Z a, (z9 — 042)"+Zb; (22 — az)—j} e,
n=0 j o

1

I
M8

(anel + anez) [(z1€1 + 22€2) — (1€1 + 2ea)]”
0
o

+ Z (b;el + b;,eg) [(2161 + 2262) — (05161 + ageg)]_j
n=0

3
Il

Sinceb,, # 0,b, # 0 we haveb,, # 0 and also in view ofi,, = a,e; + a,ea,b; =
bie1 + b, ez we may write that,

FE) =) an(z—a)"+) bj(z—a)”
n=0

(Z _a)ma

wherev (z) = (z — )™ ¢ (2) + by + mil b; (z —a)™ 7. Clearly  (z) is bicomplex
j=1

valued analytic at = o andy) () = by, 720.
Next let us suppose that in some neighbourhood ef «, f (z) = (i(j;m where is
analytic atz = o andy (a) # 0.

118

Now, we expand in Taylor’s series around in order to get) (z) =
ag # 0 becomes) («) # 0{cf.[10]}. Hence,

io: Qn (Z - a)n
flz) = =

(z =)

Qg aiy A —1 —
= (zfoz)m_k(z_a)m—l_k ....... + — —|—Zan(z—a)" .

a, (z — a)"where

n=0
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which is the bicomplex analog of Laurent Series expanssiofi afounda. Since in the
principal part of the above series the coefficientof- o)~ is non vanishing, it therefore
follows thata is a pole off of orderm > 1.Thus the theorem is established. O

Lemma 3.3. [14][11]The pointx is a zero of ordem (> 1) of a bicomplex valued analytic
function f iff f can be expressed in the forfr(z) = (2 — a)™ ¢ (z) , where¢ is analytic
at« and¢ () # 0 and the representation is valid in some neighbourhood,afthere«
is zero off.

Lemma 3.4. The pointx is a pole of ordern (> 1) of a bicomplex valued functiofiff it
is a zero of ordern of ;.

Proof. Since f has a pole of ordem at z = «. By Lemma3.2 we may write, in some
neighbourhood ot = «a, f(2) = ¢ (2) (2 — a) "where¢ is analytic atz = a and
¢ (o) # 0. Therefore

1 m
—— =z—«a z
Fa =GO
wherey (z) = is analytic atv andy (o) =
m.
Conversely let,z = « be a zero of ordermn of % . Then we can writ% =
(z — a)™ g (z) in some neighbourhood ef where g is analytic at andg («) # 0.
So,

3 # 0. So,« is a zero off( 3 of order

¢(Z) (b(oz

1 h(z)
f z) = m = m
T e
whereh (z) = ( 705 Is analytic at: = o andh () = g(a # 0. Henceh is a pole of order
m > 1. O

4. THEOREMS

In this section we present the main results of our paper.
Theorem 4.1 is the bicomplex analig of Hadamard's Three Circle Theorem.

Theorem 4.1. Let f (z) be bicomplex valued analytic in < ||z|| < r3 and letr; < ry <
rs. If M; be the maximum value ¢f (z)|| on the circleg|z|| = r; fori = 1,2,3, then

log =2 log =3 log =2
™3 o ™
M2 < M, . MS .

Proof. Let us consider the function* f (z) wherek is a constant to be detemined. Since

ll= Hix Hf( )” - 27 i= 172337
The maximum value offz—* f (z)|| on||z|| = r1 and||z|| = r; are given byM1 and Md
respectively.
Let k£ be determined by the condition that
My, My

LI5S 4.1
T (4 1)
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and\ by the condition
ri\ ré A=, (4. 2)
Taking logarithm on both sides of (4. 2 ) we get that,

Alogry + (1 — N)logrs = logrs

i.e,logrs —logre = A(logrs —logry)

ien = 8ln) (2) (4.3)

log (:—f)

logrs —logry  logry —logr;

So,

1-A=1- = . 4. 4)
logrs —logry  logrs —logry
Now any quantitys can be written as
a=a o™
Therefore from ( 4. 2 ) we have,
My M; M} MyTH
R R
It follows that
My Ms  M{-M3TH
rko ok rh '
From above we observe that the maximunj|ef  f (z)|| on circles||z| = r, and||z|| =
M. Ml A
rg are respectlvel)fL and 7> and these are equal, each being equ&ﬁe—
Now let us consider the maximum Bt " f ()| on circles| z|| = r, and we get that

My _ M S M3

k= k
) T'a

i.e., My < M- M3~
Putting the value oA and1 — A from (4. 3) and ( 4. 4) in the above we obtain that
My < Miog(rs/rz)/log(ra/n) ) Méog(rz/n)/log(rs/n)
Raising both sides to the powksg (r3 /71 ) it follows that

log =2 log =3 log =2

v ™ 0g &
M, T <M, " Mg .

This completes the proof of the theorem. O

Remark 4.2. Hadamard's Three Circle Theorem {#; may be expressed by saying that

M (r) is a convex function dbg r as we see in the following theorem.
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Theorem 4.3. If f (z) is a bicomplex valued analytic in the closed ring< ||z|| < 73,
and if M (r;) denotes the maximum value |pf (z)|| on the circles||z|| = r; with
r < ry < rgthen

< logrs — log o
~ logrs —logry

logry — log

log M (r3) og M (r1) + log M (r3) (4.5)

logrs — logry
Proof. In view of Theorem 4.1 we have,

(M (1)} % < M)} %M ()} (4. 6)
Therefore we obtain (4. 5) . O

Remark 4.4. The sign of equality holds wheft(2) is of the formuz™, wherea is a constant
in C, as we see below.

Consideringf (z) = az™ wherea,z € Co.ThenM (r;) = max{||f (z)| : |z] =
r; fori=1,2,3} = ||a||r? on the circleg|z|| = r; fori =1,2,3. Now

log M (r2)

log ||a|| + nlogre
logrs — logr logry — logr
MlogM(rl) + MlogM(rg)
logrs — logry

logrs — log 1o

= =37 0602 1
og 15 710gr1(0gllall +nlogr:) +

logrs — logry

1 —1
ool = % (log|af| + nlog )
logrs — logry

log||a|| + nlogrs.
The equality in Theorem 3.6 holds fae™.

Theorem 4.5. Let f (z) be a bicomplex valued entire function which does not vanish at the
origin. Also letry, o, s, ....., 7, be the moduli of zeros , 29, 23, ....., 2, Of f (2) arranged
as a non decreasing sequence, multiple zero being repeated. Then

R"fON<M(R)-ry-rg 13- rn  Whenr, < R < rp41.

Proof. Let us consider the function
4.7

wherez,, is i, conjugate of,,, {cf.[10]}
Sincef (z) is entire inCy, it follows that F' (z) is also entire irCs.
Now, by idempotent decompositions of bgthF" we can write (4. 7 ) as

, . , . n JR?2—(Ze+7"e Zel+7e
(e () (5 ()1 ) [T ool
(4. 8)

wherez = 2'e; + 2 es andz’, 2" are all inC;.
Also, if

"

z2 =21+ 1929 = (21 — ilzg) e + (21 + ilzg) €y = 2,61 + 2z e
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then,

Z =2 — 29 = (2’1 — 7;122)61 + (2’1 + i122)€2 = ?61 +7€2.

Now from ( 4. 8 ) we can write that,

11—
—~
%
I
N\
N
-
N

A() = (Z> nl R(Z ) (4.9)
and o

F (z) — f (z) ﬁlm (4. 10)
Now as

R? (z/—a'> (?—g) = R? (zl~?— (a'~?+g'z,) +d .Z),

’ ’

and on the circl#z" =R,z -2 =z

= R? therefore it follows that
By (4 =) R (=)

R? [R% - (a7 + ?z’) + a’ﬂ
= (R -d) (R - o)

(R% - ?z'> (R% - ?z’)

’ ’ 2 - 7 2
i.e., | Ry (z — a) = ‘R% —a'z ’
R? —d2
e, | ——F—~|=1. 4.11
Z e b Rl (Z/ _ a/) ( )
Replacing:’ by z,, to( 4. 11) we have
R% — 72/ ’
U AR g on‘z‘:R. 4. 12
TREETN ' (4. 12)
Similarly we can write that
R% - ZTZ” "
—= =1 = Ro. 4.13
R =) on |z Ry ( )
By (4. 12 and (4. 9) we obtain that
‘Fl (z) - ’fl (z)‘ on ‘z‘ ~ R, (4. 14)
Similarly by (4. 13) and in view of (4. 10),
’Fg (z) - ‘ fo (z) on |2"| = R,. (4. 15)
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ConsideringR = \/@ ,combining (4. 14 ) and (4. 15) it follows thet (2)| =
IIf (z)|| on]z|| = R. So by the maximum modulus principle @ {cf.[6]},

1F ()l < max [ (z)]| = max |Lf (2)]]-

ChoosingM (R) to be the maximum modulus dff ()| on|/z|| = R, we get that

1f ()| <M (R).
Puttingz = 0in (4. 7 ) we obtain that
n R2
_ = ||F <M
SO I &5y |F(0)] < M (R)
. ~ R
m=1 m
) R-R-R----R(nfactorg
i.e.||f(0)] - < M(R
AL R P Y P R P (%)
B
Tl.T‘Q.TB.....Tn
ie, R"||f (0)| < M (R)-ry-rg-13+ """ .
Thus the theorem is established. O

Remark 4.6. Theorem 4.3 is analogous to Jenson’s InequalitZiq cf[2]}.

The next two theorems show some light on the bicomplex analog of result connected
with univalent functions.

Theorem 4.7. Let {f,,} be a sequence ifi,.Also letf,, = f.e; + f,/;eg,where{f;L}

and {fn} are sequence ift;. Then{f,} is a uniformly convergent sequence of univa-

1"

lent functions inC, iff {fn} and {fn } are uniformly convergent sequences of univalent
functions inC;.

Proof. Let { f,,} be uniformly convergent sequence of univalent function84nSo{f,}

is a uniformly convergent sequence of analytic functions ne- f;Lel + f;; e2 , Where
{f,'L} and{f;;} are uniformly convergent sequences of analytic functigis[3]}.

Now, as{ f,,} is a sequence of univalent functions, we haves w implies thatf,, (z) #
fn (w) wherez, w € Cs.

Letz = z1e1 + z9e2, w = wyeg + woeg Wherezy, zo, wi, wo € Cq. Since,z # w, we
get

z1€1 + 2262 F  wier + waeg
t.e.z1 # wp and zy # ws. (4. 16)

Hence, fn(2) # fn(w)
Qe fry (1) €1+ fo (22) €2 # fr (i) er + [, (w2) ea.
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e, f (1) # fo (1) and £, (22) # f, (w2). (4. 17)
Hence combining (4. 16 ) and (4. 17 ) we can write thatt w; = f,, (z1) # f,, (w1)
andzy # wy = [, (22) # £ (ws). So,{f;l} and{f,';} are both uniformly convergent
sequences of univalent functions@h.

"

Conversely Iet{f,’L} and {fn } be both uniformly convergent sequence of univalent

"

functions inC;. Therefore,{f;} and{fn} are uniformly convergent sequences of an-
alytic function. Since,f,, = f,',,el + f;;@gthe sequencg f,,} is uniformly convergent
sequence of analytic functiofef. [3]}. Now letz # w,i.e.,z; # wy and zo # ws.
Since{f,,;} and{f;;} are univalent functions. So as # w; andz, # ws we have

respectively thaf, (z1) # f,, (w1) andf,, (z2) # f, (wa).
Hence it follows that

Fr(z1)er+ fo (z2) €2 # fr (i) er + fr (ws) ez
i.e., fn(2) £ fn(w).

Thus{f,} is a uniformly convergent sequence of univalent functior84n O

Theorem 4.8. Limit of a uniformly convergent sequence of univalent function84ris
either simple or constant.

Proof. Let {f,,} be uniformly convergent sequence of univalent function84n

"

Then,f, = f,llel + f,:eg, where {fn} and {fn } are sequences ifr; . (4. 18)

So, in view of Theorem 3.8 we can say tl{a,fn} and {fn} are uniformly convergent
sequences of univalent functions@.Thus by Lemma 2.1 the respective limits of a uni-
formly convergent sequence of univalent function€inis either simple or constant. So,
limits of {fn} and{f;,f} are either simple or constant.

Hence from (4. 18), the limit of f,,} in Cs is either simple or constant. O

5. FUTURE PROSPECT

Hin the line of the works as carried out in the paper one may think of the formation
of Hadamard’s three circles theorem with its convex form, Jenson’s Inequality and the

notion of univalency(i.e., simplicity) of functions with the help of the idempoténts,
1+;’1i2 , 1*;'11'27 1+;1i3, 17;’1753’ 1+;'2753’ 1*;21'3 - 1+i“2*1i" and 1_””271% in (Cn and these
derivations may be posed as open problems for the future workers in this area.

6. ACKNOWLEDGMENT

Authors are thankful to the referees for their valuable suggestions towards the improve-
ment of the paper. The first and fourth authors sincerely acknowledge the financial support
as rendered by DST-FIST 2019-2020.

Authors are grateful to the reviewers for their valuable suggestions.



22 D.Dutta,S.Dey,S.Sarkar and S.K.Dutta

REFERENCES

[1] D. Alpay,M.E.Lunna-Elizarras, M.Shapiro and D.C. StrupBasics of functional analysis with bicomplex
scalars, and bicomplex schur analysgpringer, 2013.

[2] J.B. Conway,Functions of one complex variabl8econd edition, Springer International Student Edition,
Narosa Publishing house, 2002.

[3] K.S.Charak, D.Rochon and N.Sharmdormal families of bicomplex merpmorpfic functiodgn. Pol.
Math.103,No.3 (2012) 303-317.

[4] D.Dutta, S.Dey, S.Sarkar and S.K.Datta, Apte on infinite product of bicomplex number3,
Frac.Calc.Appl12(1),No. 12 (2021) 133-142.

[5] W. R. Hamilton,On a new species of imaginary quantities connected with a theory of quaterRiotged-
ings of the Royal Irish Academg, (1844) 424-434.

[6] A. Kumar, P.Kumar, and P.DixitMaximum and minimum modulus principle for bicomplex holomorphic
functions,Int. J. Eng. Sci. TechnoB, No. 2 (2011) 1484-1491.

[7] M.E.Lunna-Elizarras, M.Shapiro, D.C. Struppa and A. VajiB&Gomplex numbers and their elementary
functions, CubpA Mathematical Journall4, No. 2 ( 2013) 61-80.

[8] M.E.Lunna-Elizarras, M.Shapiro, D.C. Struppa and A. VajBomplex Holomorphic functions, The Al-
gebra Geometry and Analysis of Bicomplex numpRikhauser Springer International Publishing Switzer-
land, 2015.

[9] M.E.Lunna-Elizarras, C.O.&ez-Ragaldo and M.Shapii©n the Laurent series for bicomplex holomorphic
functions,Complex Variables and Elliptic Equatiort2,No.9 (2017) 1-22.

[10] G.B. Price An introduction to multicomplex spaces and functidviarcel Dekker Inc. New York, 1991.

[11] James.D.RileyContribution to the theory of functions of bicomplex variablehoku Math. J2, (1953)
132-165.

[12] C. Segrele rappresentazioni reali delle forme complesse a gli enti iperalgelveith. Ann.40 (1892)
413-467.

[13] N. SpampinatoSulla rappresentazioni delle funzioni di variabili bicomplessa total mente derivatnih,
Mat. Pura. Appl14,No.4 (1936) 305-325.

[14] D.RochonA bicomplex Reimann zeta functidrokyo. J. Math27, No. 2 ( 2004) 357-369.



