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Abstract.: In this study, vibration frequency analysis of three layered
functionally graded material (FGM) cylinder-shaped shell is studied with
FGM central layer whereas the internal and external layers are of the
same isotropic materials. Sander’s shell theory is applied for strain and
curvature-displacement relationships. The Rayleigh Ritz method is em-
ployed to attain the shell frequency equation. Influence on natural fre-
quencies (NFs) is observed for various volume fraction laws. The charac-
teristic beam functions are used to estimate the dependence of axial modal
functions. Results are obtained for thickness to radius ratios and length to
radius ratios for different edge conditions. The validity of this method is
checked for numerous results found in the open literature.
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1. INTRODUCTION

Vibration of cylinder shaped shells is a general field of research in mechanical dynam-
ics. These shells from composed of various kinds of materials. Loy et al. [1] examined the
fundamental frequencies of circular shaped shells by the generalized differential quadrature
method (DQM). Loy et al. [2] investigated vibrations of FGM cylinder shaped shells. These
shells were fabricated by nickel and stainless steel. They used Love’s shell theory for shell
dynamical equations. The Rayleigh-Ritz procedure was employed to obtain the governing
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shell equations. Naeem and Sharma [3] explored the behavior of vibration frequencies for
cylindrical shells with different end conditions. Ritz polynomial functions were utilized
to estimate the axial modal dependence. Pradhan et al. [4] analyzed vibration of FGM
cylinder shaped shell for different end conditions. They determined impact of volume frac-
tions on the shell natural frequencies. Zhang et al. [5] examined vibrations of cylindrical
shells with fluid by employing wave propagation approach. Chen et al. [6] investigated
the three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shell’
for simply supported edge conditions. They studied variation in natural frequencies for
various physical parameters. Patel et al. [7] analyzed vibration frequencies of functionally
graded cylinder shaped shells by using finite element method. Higher order approxima-
tion theory was used by them. Flugge’s shell theory and a semi-reverse procedure were
utilized by Li and Batra [8] to examine the axial buckling of three-layered cylindrical shell
with FGM middle layer for simply-supported boundary conditions at both ends. Zhang et
al. [9] presented vibration behavior of cylinder shaped shell by employing the local adap-
tive DQM. They used Goldenveizer-Novozhilov shell theory to obtain the shell frequency
equations. Vibration analysis for FGM cylindrical shell under three volume fraction laws
(VFLs) was studied by Arshad et al. [10]. This analysis was based on Love’s shell theory.
These VFLs organized the material arrangements in the shell radial direction. Li Xuebin
[11] scrutinized the vibration behavior of cylinder-shaped shell by using Flugge’s shell the-
ory. Wave propagation technique was employed by him to observe impacts of irregularity
of waves in cylindrical shells. Ansari et al. [12] studied vibration frequencies of FGM
cylindrical shell depended on Sanders’ shell theory via allied analytical technique under
a variety of end point conditions. Iqbal et al. [13] used wave propagation approach to
examine vibration of FGM cylinder shaped shells. The axial modal dependence was es-
timated by characteristic beam functions. Arshad et al. [14-15] investigated vibration of
bi-layered cylindrical shells (CSs) depended on Love’s shell theory by employing Ritz for-
mulation. First layer was organized from FGM and second was structured from isotropic
material. Further they did work on two-layered FGM cylindrical shell where both layers
are were of FGM materials. Naeem et al. [16] examined vibration of cylindrical shell by
employing the generalized DQM. They verified the present validity of the technique by a
few comparisons of the results. Vel [17] worked on exact elasticity solutions for the vi-
brations of FGM cylinder shaped shells under isotropic end point conditions. Isvandzibaei
and Moarrefzadeh [18] determined vibration analysis for two kinds of FG cylindrical shells
by Rayleigh-Ritz formulation under simply supported edge conditions. They observed im-
pact of arrangements of essential materials (stainless steel and nickel) on shell frequencies.
Naeem et al. [19] presented vibration study of immersed thin FGM cylindrical shells for
compressed fluid. The fluid impacts were checked with the use of acoustic wave equation.
They used wave propagation approach and Hankel function of second kind in relationship
with fluid loaded term to formulate the eigenvalue problem. Vibration frequencies of im-
mersed CSs which were based on elastic foundations was analyzed by Shah et al. [20].
These shells were of isotropic nature and immersed in fluid. Shell motion equations were
determined by applying the wave propagation approach with Love’s shell theory. Vibra-
tion analysis of three-layered FGM cylindrical shell depended on Loves shell theory under
different end point conditions have been investigated by Naeem et al. [21]. Sofiyev and
Kuruoglu [22] studied the instability of three-layered FG cylindrical shell. They employed
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Donnell’s shell theory and Galerkin technique to investigate the time dependent periodic
axial compressive loads. Influence of a number of VFLs for various edge conditions were
determined by them. Ghamkhar et al. [23-24] studied the effect of FGM central layer
thickness for vibration analysis of three-layered CSs by employing Ritz formulation. Fur-
ther they determined vibration frequencies of FGM three-layered CSs with effect of ring
supports. A number of volume fraction laws were applied to study this vibration analysis.
The influence of one ring support along shell length was investigated for a number of edge
conditions.

2. MATHEMATICAL FORMULATION

Here a cylindrical shell is considered for vibration study with geometric parameters
viz.length L, radius R and thickness h shown in the Fig. 1. An orthogonal cylindrical
coordinate system(x, θ, y) is fixed at the mid surface of the shell. Herex, θ and z lie in
the axial, angular and radial directions of the shell respectively. Shell deformation dis-
placements represented by the functionsu1(x, θ, z) and u2(x, θz) lie in the longitudinal,
tangential and transverse directions of the shell respectively.

FIGURE 1. Coordinate System and three layered cylinder shaped Shell Geometry.

The strain energy signified by= for a cylinder shaped shell expressed as:

= =
1
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∫ l

0

∫ 2π

0

KT [S]KRdθdx (2. 1)

Where
K = e1, e2, γ, K1,K2, 2τ (2. 2)

wheree1, e2, γ andK1,K2, τ denote the strains and curvatures reference surfaces respec-
tively. HereT denotes the matrix transpose. For shell motion equations, strain and curva-
ture displacement relationships are assumed from Sanders’ shell theory and described as:
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and [S] can be expressed as

[S] =
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

(2. 5)

whereaij ’s symbolize the extensional stiffness,bij ’s the bending stiffness.anddij ’s the
bending shiftness.(i,j=1,2 and 6) . These material coefficients are related with rigid moduli
and the shell thickness variable. Their relationships are defined as:

a(ij), b(ij), d(ij)
∫ h/2

−h/2

Qij(1, z, z2)dz (2. 6)

whereQ(ij)’sare the reduced stiffness for isotropic materials and stated as in Loy et al. [1]:

Q11 = Q22 = E(1− u2) =, Q12 = µE(1− µ2)−1, Q66 == 0.55E(1 + µ)−1 (2. 7)

Here Young’s modulus has been denotedE by µ and signifies the Poisson ratio. The stiff-
nessbij ’s=0 for homogenous cylinder shaped shells andb′ijs 6= 0 for in-homogeneous
FGM cylinder shaped shells and their values depend on the material distribution.Q′ijs ’s
are functions of the physical properties: Young’s modulus and Poisson’s ratio of shell ma-
terials. Using the Eqs. ( 2. 2 ) and ( 2. 5 ) in the strain energy relation ( 2. 1 ),= taken the
following form:
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Substituting the strain-displacement and curvature displacement relationships from expres-
sions ( 2. 3 ) and ( 2. 4 ) into the above expression ( 2. 8 ), we obtain the following form of
the shell strain energy as:
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The cylindrical shell kinetic energy is symbolized byΓ and is expressed as:
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where time variable has been designated byt and mass density is represented byρ . Mass
density per unit length is denoted byρtand it is described as

ρt =
∫ h

2
−h

2

ρdz (2. 11)

The Lagrange energy functional for a cylinder-shaped shell is represented byΠ and is for-
mulated by difference between the kinetic and strain energies of the shell. It is written in
the following expression:

Π = Γ −= (2. 12)

3. NUMERICAL PROCEDURE

Various numerical techniques are employed to solve shell problems. Energy variational
procedures are considered suitable for these problems. Main two types of such procedures
are Rayleigh-Ritz method and Galerkin method. Here the Rayleigh-Ritz procedure is uti-
lized to investigate vibration characteristics of cylinder shaped shells. To apply this method,
the displacement fields are separated and assumed in the followings:

u1(x, θ, t) = xmU1(x) cos(nθ)sinωt

v1(x, θ, t) = ymV1(x) sin(nθ)cosωt (3. 13)

w1(x, θ, t) = zmW1(x) cos(nθ)sinωt

wherexm, ym andzm signify the amplitudes of vibration in the x,θ and z direction.The ax-
ial and circumferential wave modes have been signified by m and n respectively,ω stands
for the shell angular vibration frequency. FunctionsU1(x), V1(x), W1(x) stand for the ax-
ial modal dependence.

U1 =
dϑ(x)

dx
, V1(x) = W1(x) = ϑ(x) (3. 14)

where the axial modal function has been denoted byϑ(x) which fulfills boundary condition
prescribed at the two shell ends. Various functions are adopted for this shell modal depen-
dence like polynomial functions, trigonometric and beam functions. In practice,ϑ(x) is
taken as the beam function. For classical modal dependence, modal functions and vari-
ables which are given as:

ϑ(x) = β1 cosh(Υmx) + β2 cos(Υmx)− σm(β3sinh(Υm)x) + (β4sin(Υm)x) (3. 15)
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Here values ofβj , (j = 1, 2, 3, 4)vary in accordance with the type of boundary conditions
applied on shell edges. When the differential equation is solved for a specific edge condi-
tion, a transcendental is obtained and its roots are denoted byΥm and the parametersσm

depend on the value ofΥm.
Firstly the expressions for the shell strain and kinetic energies from ( 2. 9 ) and ( 2. 10 )
are substituted into the Lagrange functional ( 2. 12 ) along with the modal displacement
functions from the expression ( 3. 13 ) and by applying the principle of minimum energy,
we get

∏
max into the following form

∏
max

=
πhLR

2
[R2ω2ρt

∫ 1

0

(
β2(xmU1)2 + β2(ymV1)2 + β2(zmW1)2

)
dX

−
∫ 1

0

α2β2a11

(
dU1

dX

)2

+ a22(−nβymV1 + zmW1)2

+2αβa12

(
xm

dU1

dX
(−nβymV1 + zmW1)

)
+ a66(αβym

dV1

dX
+ nβxmU1)

−2α3β2b11

(
xm

dU1

dx

)(
z2
m

d2W1

dX2

)
− 2αβ2b12

(
xm

dU1

dX

) (−n2zmW1 + nβymV1

)

−2αβ2b12(−nβymV1 + zmW1)
(

z2
m

d2W1

dX2

)

−2βb22(−nβymV1 + zmW1)(−n2zmW1 + nβymV1)

−4βb66

(
αβym

dV1

dX
+ nβxmU1

)(
nαzm

dW1

dX
− 3αβym

4
dV1

dX
+

nβ

4
xmU1

)

+α4β2d11

(
z2
m

d2W1

dX2

)2

+ β2d22(−n2zmW1 + nβymV1)2 + 2α2β2d12(z2
m

d2W1

dX2
)

×(−n2zmW1 +nβymV1)+4d66(nαzm
dW1

dX
− 3αβym

4
)
dV1

dX
+

nβ

4
xmU1)2]dX (3. 16)

To apply the Rayleigh’Ritz procedure,
∏

max is minimized with regard to the vibration
amplitudesxm, ym andzm,we get a system of linear algebraic simultaneous equations in
xm, ym andzm, which follows as:

∂
∏

max

∂xm
=

∂
∏

max

∂ym
=

∂
∏

max

∂zm
= 0 (3. 17)

After proper arrangement of terms, the resulting system of equations is written in matrix
form as: {

[c]−∆2 = R2ω2ρt

}
(3. 18)

8) The system generates an eigenvalue problem comprising of the eigen-frequencies and
eigen-mode shapes. Here

∆2 = R2ω2ρt (3. 19)
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[C]and [M] are stiffness and mass matrices of the cylindrical shell respectively, and

XT = [xm, ym, zm]. (3. 20)

With the help of MATLAB software, the solution of the eigenvalue equation ( 3. 18 ) is
obtained to get shell natural frequencies.

4. FUNCTIONALLY GRADED MATERIALS

In this three layered cylindrical shell, the middle layer is constructed by FGMs and
isotropic is used for internal and external layers as shown in Fig 1. Here the stiffness
moduli are improved as:

aij = a
(ISO)
ij + a

(FGM)
ij + a

(ISO)
ij

bij = b
(ISO)
ij + b

(FGM)
ij + b

(ISO)
ij (4. 21)

dij = d
(ISO)
ij + d

(FGM)
ij + d

(ISO)
ij

where i,j=1, 2, 6 and superscript(ISO) denotes the isotropic internal and external layers
and(FGM) denotes the central FGM layer. The FGMs contain two necessary materials.
These materials are stainless steel and nickel. The material parameters for stainless steel
material are:E2, ν2, ρ2and for nickel material are:E1, ν1, ρ1 . The thickness of internal
and external layer is presumed to be h/7. Then the actual material quantities for FGM layer
are given as:

Ef = [E1 − E2]
(

14z + 5h

10h

)N

+ E2 (4. 22)

νf = [ν1 − ν2]
(

14z + 5h

10h

)N

+ ν2 (4. 23)

ρf = [ρ1 − ρ2]
(

14z + 5h

10h

)N

+ ρ2 (4. 24)

Material properties for central FGM layer vary fromz = −5h
14 to z = 5h

14 .From the above
relations, the effective material properties becomeEf = E2, νf = ν2 andρf = ρ2, at
z = −5h

14 and forz = 5h
14 material properties areEf = E1, νf = ν1 andρf = ρ1 The

shell is contained only stainless steel material atz = −5h
14 and consisted of only nickel

material atz = 5h
14 The distribution of materials in a FGM shell is controlled by several

volume fraction laws. Three volume fraction laws are expressed in mathematical form. If
z symbolizes the basic shell thickness variable then the volume fraction lawVf of a FGM
is formulated as:

Vf =
(

14z + 5h

10h

)N

(4. 25)

whereh represents the shell thickness andN denotes the power law proponent which may
take values from zero to infinity. A volume fraction law formulated by Arshad et al. [10]
as:

Vf = 1− exp−( 14z+5h
10h )N

(4. 26)
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And the material properties are written as:

Ef = [E1 − E2]
[
1− exp( 14z+5h

10h )N
]

+ E2 (4. 27)
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ρf = [ρ1 − ρ2]
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1
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Trigonometric volume fraction law for a FGM cylinder-shaped shell is stated as:

Vf1 = sin2

[(
14z + 5h

10h

)N
]

, Vf2 = cos2

[(
14z + 5h

10h

)N
]

(4. 30)

Here
Vf1 + Vf2 = 1

The material parameters for FG cylindrical shell are written as:

Ef = [E1 − E2]sin2

[(
14z + 5h

10h

)N
]

+ E2 (4. 31)

Vf = [V1 − V2]sin2

[(
14z + 5h

10h

)N
]

+ V2 (4. 32)

ρf = [ρ1 − ρ2]sin2

[(
14z + 5h

10h

)N
]

+ ρ2 (4. 33)

5. RESULTS AND DISCUSSION

For authenticity of the current work, results for simply supported - simply supported
(ss−ss) and clamped - clamped(c−c)cylindrical shells are compared with others available
in the literature. Frequency parameters are compared with those presented in Zhang et al.
[9]. This comparison showed in Table 1 and Table 2.Comparison of natural frequencies(Hz)
with those available in Loy & Lam [1] for clamped-free(c−f)isotropic cylindrical shell is
displayed in the Table 3. It can be observed that the current results are in good agreement
with those acquired by different techniques.

Types of three layered FGM cylindrical shell by exchanging the FG essential materials
are presented in Table 4. wherez1, z2 andz3 signify the Aluminum, Stainless Steel and
Nickel material respectively. Material properties for the above materials are presented in
reference [2] and [4].
Table 5 displays the natural frequencies (Hz) versus for type I shell with four boundary con-
ditions;ss− ss, c− c, c− f and clamped-simply supported (c− s ) Nature frequencies are
obtained with three volume fraction Laws; polynomial, exponential and trigonometric. It
is noticed that NFs (Hz) for clamped-clamped edge conditions are maximum as compared
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TABLE 1. Frequency parameterδ = ωR
√

(1− ν2)ρ/E comparison for
simply-supported isotropic cylinder shaped shell.(ν = 0.3,m = 1, h =
0.05, R = 1, L = 20)

n
1 2 3 4

Zhanget al [9] 0.0161 0.03927 0.10981 0.21028
Present 0.0161 0.03927 0.10981 0.21028
Difference 0.006 0.001 0.001 0

TABLE 2. Comparison of frequency parameterδ = ωR
√

(1− ν2)ρ/E
for an isotropic cylindrical shell with clamped edge conditions.(ν =
0.3,m = 1, h = 0.05, R = 1, L = 20)

N
1 2 3 4

Zhanget al [9] 0.03285 0.04064 0.10997 0.21032
Present 0.0344 0.04077 0.11001 0.21038
Difference % 4.7 0.33 0.03 0.02

TABLE 3. Comparison of frequency parameterδ = ωR
√

(1− ν2)ρ/E
c − f cylindrical shell. (m = 1ν = 0.28, , h = 63.5mm,R =
1.63mm,L = 502mm)

N
2 3 4 5 6

Loy & Lam [1] 319.5 769.9 1465.7 2366.9 3479
Present 319.52 769.86 1465.73 2366.93 3470

TABLE 4. Configurations of shell types

Types of she Internal Layer Central Layer External Layer
Type I z1 z2/z3 z1

Type II z1 z3/z2 z1

with other edge conditions. Nature frequencies are decreased forn = 1 to n = 2 then start
to increase forn = 3 to onwards. They have same behavior for three volume fraction laws.
Nature frequencies under polynomial volume fraction law are greater than those which are
obtained with exponential and trigonometric volume fraction laws. In trigonometric vol-
ume fraction law case, nature frequencies are minimum forn = 1, 2 as compare to other
two laws and for n=3 to onwards they are greater than those which are attained with expo-
nential volume fraction law.
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Table 6 shows the behavior of nature frequencies versus n with three volume fraction
laws for type-II cylindrical shell. Natural frequencies (Hz) for shell type-II are less than
those for shell type-I. Nature frequencies with polynomial volume fraction law are mini-
mum as compared to other two volume fraction laws. Nature frequencies (Hz) with trigono-
metric volume fraction law are maximum forn = 1, 2 and forn = 3 to onwards NFs with
exponential volume fraction law are maximum.

Effects of volume fraction laws on NFs are changed with the increase of n. Effects of
volume fraction laws for Type-I Type-II cylindrical shell are opposite.

TABLE 5. Vibrations of natural frequencies (Hz) for shell Type I versus
(n)(= 20, N = R = m =, h = 0.01)

n ss− ss c− c c− f cs
Polynomial volume fraction law

1 13.4124 28.6769 5.1109 20.7003
2 7.8167 11.8892 6.6724 9.4717
3 18.4309 18.94 18.3 18.6141
4 35.1014 35.2031 35.0487 35.1409
5 56.7103 56.7469 56.6684 56.7274
6 83.1631 83.1847 8.1231 83.1751
7 114.4417 114.4587 114.4019 114.4522
8 150.5401 150.5556 150.5002 150.5501
9 191.456 191.4709 191.4159 191.4585
10 237.1881 237.2028 237.1479 237.1979

Exponential volume fraction law
1 13.349 28.5415 5.0867 20.6025
2 7.7492 11.8149 6.6044 9.4026
3 18.2378 18.748 18.1068 18.4213
4 34.7308 34.83327 34.6783 34.7703
5 56.111 56.1476 56.0694 56.128
6 82.284 82.3055 82.2444 82.2959
7 113.2379 113.2488 113.1924 113.2423
8 128.9486 148.964 148.9091 148.985
9 189.4319 189.4467 189.3922 189.4417
10 234.6806 234.6951 234.6407 234.6902

Trigonometric volume fraction law
1 13.3033 28.4436 5.0867 20.5318
2 7.7577 11.7975 6.6230 9.3993
3 18.2947 18.8001 18.1648 18.4765
4 34.8421 34.9432 34.7898 34.8814
5 56.2914 56.3278 56.2498 56.3084
6 82.5489 82.5703 82.5092 82.5608
7 113.5964 113.6134 113.5569 113.6068
8 149.4282 149.4437 149.2886 149.4382
9 190.042 190.0568 190.0022 190.0517
10 235.4364 235.4609 235.33964 235.4461

Table 7 and Table 8 represent the Natural frequencies (Hz) versus ratios with three VFL
for shell type-I& II respectively. Natural frequencies (Hz) are decreased with increase in
ratios. At for shell type-I, natural frequencies with EVFL and TVFL are decreased0.6%
and0.7% from the NFs with PVFL respectively. Then forL/R = 10, 20, 30, 40, 50,natural
frequencies with EVFL and TVFL are decreased1% and0.7% from the NFs with PVFL
respectively. Now for shell type-II at , the NFs with EVFL are increased0.6% and for
L/R = 10, 20, 30, 40, 50, these are increased1% from the NFs with PVFL. Natural fre-
quencies with TVFL are increased0.8% for all edge conditions and for all L/R ratios as
compared with the NFs under PVFL.
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TABLE 6. Vibrations of natural frequencies (Hz) for shell Type II versus
(n) L = 20, m = R = N = 1, h = 0.01

n ss− ss c− c c− f cs
Polynomial volume fraction law

1 13.412 28.6566 5.1019 20.6871
2 7.8126 11.8806 6.6659 9.4659
3 18.4136 18.9231 18.2824 18.597
4 35.0677 35.1696 35.0149 35.1072
5 56.6556 56.6923 56.6138 56.6727
6 83.0829 83.1045 8.043 83.0948
7 114.3312 114.3483 114.2915 114.3417
8 150.3948 150.4104 150.55 150.4048
9 191.2712 191.2862 191.2313 191.2811
10 236.9593 236.974 236.9192 26.9691

Exponential volume fraction law
1 13.4765 28.7936 5.1263 20.1858
2 7.8802 11.9554 6.7338 9.53352
3 18.6062 19.1146 18.4749 18.7892
4 35.4371 35.5389 35.2841 35.4767
5 57.2529 57.2897 57.2108 57.2701
6 83.9590 83.9807 53.9188 83.9711
7 115.5371 115.5542 115.4969 115.5476
8 151.9810 151.9967 151.9408 151.9911
9 193.2886 193.3036 193.2482 193.2985
10 239.4585 239.4733 239.417 239.4684

Trigonometric volume fraction law
1 13.5237 28.8946 5.14433 20.8588
2 7.8728 11.9742 6.7164 9.5398
3 18.5526 19.0659 18.4203 18.7374
4 35.33323 35.4349 35.279 35.3721
5 57.0830 57.1200 57.0409 57.1002
6 83.1097 83.7314 83.6694 83.7217
7 115.1937 115.2109 115.1537 115.2043
8 151.5294 151.5451 151.4893 151.5395
9 192.7141 192.7292 192.6738 192.7240
10 238.7468 238.7616 238.7064 238.7567

TABLE 7. Vibrations ofNFs (Hz) for Type I shell against (L/R)(m =
1, n = 3, h = 0.01, N = 1)

L/R ss− ss c− c c− f cs
Polynomial volume fraction law

5 36.8567 66.4695 22.1105 51.3224
10 20.1803 26.0434 18.5822 22.5091
20 18.4309 18.9401 1833001 18.6141
30 18.3128 18.4198 18.290 18.3517
40 18.2882 18.3237 18.2740 18.3014
50 18.2798 18.2750 18.2721 18.2856

Exponential volume fraction law
5 36.6473 66.1704 21.9207 51.0730
10 19.9895 2.8541 18.3891 22.3203
20 18.2378 18.7480 18.1068 18.4213
30 18.1197 18.2270 18.0859 18.1586
40 18.0951 08.1305 18.0809 18.1083
50 18.0866 18.1019 18.0790 18.0925

Trigonometric volume fraction law
5 36.5848 65.9807 21.9475 50.9445
10 20.0311 25.8512 18.4450 223428
20 18.2947 18.8001 18.1648 18.4765
30 18.1775 18.2838 18.1441 18.2167
40 18.531 18.188 18.1391 18.1662
50 18.1447 18.1598 18.1372 18.1505

6. CONCLUSIONS

In this work, frequency analysis of three layered FGM cylinder shaped shell with effect
of different volume fraction laws has been done. The internal and external layers of shell
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TABLE 8. Vibrations of NFs (Hz) for Type II shell against (L/R)(m =
1, n = 3, h = 0.01, N = 1)

L/R ss− ss c− c c− f cs
Polynomial volume fraction law

5 36.8882 66.5355 22.0958 51.3612
10 20.1688 26.0370 18.5649 22.4998
20 18.4136 18.9231 18.2824 18.5970
30 18.2952 18.4024 18.2614 18.3341
40 18.2706 18.3061 18.2564 18.2837
50 18.2621 18.1773 18.2546 18.2681

Exponential volume fraction law
5 37.0994 66.8381 22.2856 51.6133
10 20.3594 26.2269 18.774 22.6888
20 18.6062 19.1146 18.474 18.7892
30 18.4878 18.5947 18.4539 18.5266
40 18.4631 18.4985 18.4489 18.4762
50 18.4546 18.4698 18.4469 18.4605

Trigonometric volume fraction law
5 37.1662 67.0350 22.2623 51.7475
10 20.3212 26.2332 18.7050 22.6696
20 18.5526 19.0659 08.4203 18.7374
30 18.4333 18.5412 18.3992 18.4725
40 18.4084 18.4442 18.3941 18.4217
50 18.3999 18.4153 18.3922 18.4052

TABLE 9. Vibrations of NFs (Hz) for Type I shell against (h/R)(m =
1, n = 3, L = 5, R = 1, N = 1)

L/R ss− ss c− c c− f cs
Polynomial volume fraction law

0.001 31.6449 63.6643 12.2544 47.6673
0.02 48.4245 74.3994 38.9295 61.1259
0.05 100.1659 115.6461 93.2609 107.0556
0.1 192.5161 203.2648 185.1386 197.43
0.5 906.8766 926.1353 889.1769 916.1126

Exponential volume fraction law
0.001 31.1968 63.367 12.1955 47.4445
0.02 49.0521 74.0164 38.5451 60.7551
0.05 99.1934 114.7568 92.2789 106.1207
0.1 190.4934 201.3361 183.1391 195.4435
0.5 896.0648 915.3367 878.6115 905.2815

Trigonometric volume fraction law
0.001 31.6485 63.6485 12.2359 47.6494
0.02 49.4589 74.5301 38.9038 61.1995
0.05 100.1598 115.8339 933.1933 107.1308
0.1 192.4305 203.4122 185.0081 198.4391
0.5 906.1589 925.8633 888.9012 915.5236

are fabricated by isotropic material and the central layer is of FGM. Sander’s theory is
used for strain and curvature displacement relationships. To solve the current problem
Rayleigh Ritz method is employed. Variation of natural frequencies is investigated for
four edge conditions. It is concluded that the material distribution governed by the volume
fraction laws has little effect(< 1%) on vibration frequency. However, Natural frequencies
are examined with effect of three VFLs. It is noticed that natural frequencies becomes
maximum with the increase in thickness to radius ratios. These are decreased with the
increase of L/R ratios. It is also observed that natural frequencies (Hz) with three volume
fraction laws have little(≤ 1%) difference. Their values are very close to each other.
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ing the paper. All authors read and approved the final manuscript.
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TABLE 10. Vibrations of NFs (Hz) for Type II shell against (h/R)(n =
3, L = 5, R = N = 1)

L/R ss− ss c− c c− f cs
Polynomial volume fraction law

0.001 31.6485 63.6485 12.2359 47.6494
0.02 49.4589 74.53301 38.9038 61.1995
0.05 100.1598 115.8339 93.1933 107.1308
0.1 192.4305 203.4122 185.0081 198.4391
0.5 906.1587 925.53.. 555.6012 915.5236

Exponential volume fraction law
0.001 31.7985 63.9492 12.2953 47.8748
0.02 49.8323 74.9163 39.2878 61.5728
0.05 101.1324 116.7250 94.1735 108.0666
0..1 194.4520 205.3409 187.0045 199.4251
0.5 916.9833 936.6757 899.477 326.3688

Trigonometric volume fraction law
0.001 31.9086 64.1715 12.3363 48.0411
0.02 49.8160 75.0470 39.1938 61.6312
0.05 100.2218 116.5924 93.8861 107.8694
0.1 193.8298 204.7849 186.3726 198.8307
0.5 912.6673 923.2424 894.9835 922.0206
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