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Abstract-- Tensegrity structures which are comprised of bars and strings are very lightweight structures and they have the capability 

to deform and remain stable. For these properties they have been utilized in various fields of engineering for various purposes. One of 

the potential application of tensegrities is in the area of robotics. Three bar tensegrity is a basic unit structure, the dynamics of which 

can be utilized for tensegrity based robots. Due to its similar geometrical shape and easy control of strings, and by the application of 

inward compressive load, the movement of whole robot can be controlled.  In this paper, the dynamics of three bar tensegrity 

structure has been studied under compressive load. The mathematical model for the structure has been built; and node matrix and 

connectivity matrix have been defined to describe the structure. The simulation has been performed on ADAMS software to analyze 

the movements of bar and deformation in strings under the effect of compressive load. All the strings have been grouped according to 

the similar deformation experienced by them. In addition to that, compression and twisting of top layer of the structure has been 

investigated. The obtained results provide the base for the construction of extremely lightweight robotic structure 
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I.  INTRODUCTION 

HE word ‘tensegrity’ is a combination of two words: 

tension and integrity [1], which implies that a kind of 

structure that have a certain strength under the action of 

tension force. Tensegrity is a new type of structure which is 

composed of strings bearing tensile loads and bars possessing 

compressive loads thus forming a stable structure. Guest [2] 

gave the similar definition of tensegrity but also explained that 

the compression members (bars) should not be in contact with 

each other.  

Tensegrity structures found numerous applications in the 

field of architecture, medical and engineering; although it was 

first considered as part of arts only. David [3], [4] using 

tensegrity concepts designed long-span structure which is now 

known as Georgia Dome, was practically made in U.S as main 

hall for 1996 Atlanta Summer Olympic Games. Tensegrities 

are considered as smart structures and their property of being 

lightweight and stiff structure, they have been used as 

deployable structures, experimentally demonstrated by NASA 

[5], [6] Principles of tensegrity have also been widely 

interpreted in the field of biomedical engineering. Human 

skeleton which is composed of 206 bones can be modelled as 

bars that are being pulled by the tension force of ligaments, 

tendons and muscles making a stable vertical structure [7] 

Zhang and other authors [8] have defined a reliable and 

simple method for prismatic tensegrity structure 

configurations, members and nodes of which possessing 

dihedral symmetry. R. Connelly [9] has explained finite 

number of configurations for obtaining stable structures but 

they must maintain their shape when they are in motion in 

three-space. Skelton [10] proposed that variations in lengths of 

strings can cause change in shape of the structure, while 

retaining the tensegrity conditions of equilibrium and stability. 

Basit [11] analyzed the dynamics of six bar ball type 

tensegrity structure by applying compression and expansion 

forces and observed a dynamic similarity between certain 

groups of bars and strings. Luo and other authors [12] studied 

the driving of six bar tensegrity robot and using the simulation 

and by building up a physical model they verified that 

tensegrity robot motion can be achieved by altering the bar’s 

length but they did not study the change in strings’ length to 

shift center of gravity of robot to cause the motion. Chandana 

[13] used genetic algorithm in simulation for 3-strut tensegrity 

robot to achieve forward gait by controlling length of vertical 

strings of the structure. 

Tensegrity structures are highly tunable and they can show 

variations in shape easily under the effect of external force or 

torque, therefore they are being employed as deployable 

structure applications and also they can be used as robotic 

structure. In our present work, we have done dynamic analysis 

of the three-bar prismatic tensegrity structure under 

compressive load. Firstly, the connectivity and geometry of 

the structure has been defined and mathematical model has 

been formed. Secondly, simulation model has been built on 

ADAMS software and motion of bars and deformation in 

strings have been analyzed along with compression and 

twisting of top layer of the structure. Finally, the feasibility of 
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our dynamic analysis in the field of robotics is discussed.  

II.  MATHEMATICAL MODEL OF THREE BAR TENSEGRITY 

STRUCTURE 

Referring to Fig. 1, the prismatic bar tensegrity structure 

can be considered as two regular polygons separated by a 

definite height. Both the polygons are at a rotated angle with 

respect to each other. The vertices of the polygons form the 

nodes of the structure which are connected by bars and strings. 

The three bar prismatic tensegrity structure consists of three 

bar and nine strings. There are six horizontal strings; three on 

each bottom and top side of the structure. The remaining three 

are vertical strings connecting the top and bottom triangles by 

their vertices, thus forming a stable tensegrity configuration. 

  For mathematical modelling, the number of bars is denoted 

by p and the circle formed by vertices of triangle has radius r 

and the triangles are separated by a height h0 as shown in Fig. 

1. 

 

Fig. 1.  Mathematical model 

Each node of the structure can be denoted by ni therefore 

the co-ordinates of bottom nodes are given by, 
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The co-ordinates of top nodes are also obtained similarly 

but there must be addition of rotation angle α  
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Where θ is the angle between the nodes as shown in Fig.1. 

The value of angle θi is given by, 
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The angle α is the rotation angle which also defines p-1 

different species of the structure. According to Skelton [14] 

and Motro [15] for a stable configuration it is given as 

follows: 

, j=1,2,...,p-1
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The nodes obtained from above formulations can then be 

arranged column wise in a matrix to form the node matrix as 

follows: 

, ...1 2 6 3 6
N n n n


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(6) 

To represent the connection of each member of the 

tensegrity structure with each node; bar connectivity matrix 

and string connectivity matrix are formed according to the 

following rule: 
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(7) 

Combining the Bar connectivity matrix and String 

connectivity matrix, the overall Connectivity matrix becomes, 
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Lastly, the Bar matrix and String matrix are defined 

according to the following equations: 

T
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(10) 

For our model, we considered j=1 type three bar tensegrity 

structure and selected radius as 200 mm and height as 500 

mm, we obtained the bottom and top node co-ordinates which 

are arranged column wise in the node matrix N as follows:  

1 2 3 4 5 6           n         n           n          n          n        n    

200 -100 -100 -173.2 0 173.2

0 173.2 -173.2 100 -200 100

0 0 0 500 500 500

N
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(11) 

Bar connectivity according to rules mentioned in (7) is 

given as follows: 
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And string connectivity is given by, 

  (13) 
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Bar matrix and String matrix are not shown here because 

they can be simply obtained by the multiplication of node 

matrix by the transpose of  Bar connectivity matrix and String 

connectivity matrix respectively. Based on the mathematical 

model, a MATLAB code generated the three bar tensegrity 

model as shown in Fig. 2 where the thick blue lines represents 

bars and the thin red lines represents strings, authenticating 

mathematical model. 

 

 

Fig. 2.  Three bar tensegrity structure 

 

After the formation of mathematical model, we proceed for 

the dynamic analysis of three bar tensegrity structure in the 

next section. 

III.  SIMULATION 

Using the node coordinates mentioned in node matrix N 

(11) and following the connectivity pattern of members 

mentioned in Bar connectivity (12) and String connectivity 

matrices (13) a simulation model was built in ADAMS 

software for analyzing the effect of compressive forces on the 

bars and strings. Three forces of 100 N were applied on each 

top node that is n4, n5 and n6. The bottom nodes were fixed to 

a plate using spherical joint and the plate on which nodes were 

attached was fixed to the ground thus structure will be 

compressed upon application of the load. The simulation 

model is shown in Fig. 3, the blue color represents bar while 

the strings are represented as springs of red colors. The node 

numbers are mentioned on each node while the string and bar 

members are shown by arrow 

 

 

Fig. 3.  Three bar tensegrity structure before applying 

compressive load  

 

The parameters for simulation are shown Table I below. 

 
TABLE I 

Simulation parameters 

Bar length 631.9 mm 

Bar radius 5 mm 

Bar material density 2.74e-6  kg/mm3 

Young's Modulus 7.1705e4 N/mm2 

Poisson's Ratio 0.33 

Horizontal strings length 346.4 mm 

Vertical strings length 510. 6 mm 

Spring stiffness 15 N/mm 

Damping coefficient 10 N.s/mm 

Preload in strings 50 N 

External load 100 N 

 

As shown in Fig. 4, as the compressive force was applied 

on the structure, the top of structure was rotated anti-

clockwise. Applied load caused the motion in bar and they are 

displaced from their original location and also the original 

height of the structure is decreased under the effect of 

compressive loads.  
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Fig. 4. Three bar tensegrity structure after applying 

compressive load 

   

For analyzing the displacement of bars, we will see the 

displacement of center of mass of each bar because for a 

robotic structure, movement of center of mass cause the 

motion in overall structure until it reaches to another stable 

position. Therefore, movement of center of gravity of bar 1, 

bar 2 and bar 3 in X, Y and Z directions are shown in Fig. 5, 6 

and 7 respectively.  

 

 
Fig. 5.  Displacement of center of gravity in x direction of 

each bar 

 

 
Fig. 6.  Displacement of center of gravity in y direction of 

each bar 

 

 

 

 
Fig. 7.  Displacement of center of gravity in z direction of 

each bar 

 

For a robot, it is necessary that the bars should not come in 

contact with each which will cause hindrance while 

locomotion therefore a certain distance is necessary for the 

overall robot motion. The distance between each bar center 

after applying the load is shown in Fig. 8. 

 

 
Fig. 8.   Distance between center of mass of each bar 

 

The external force also caused the deformation in all the 

strings of the structure. For strings 1, 2 and 3 there was 

observed a negligible deformation as shown in Fig. 9. The 

deformation was same in strings 4, 5 and 6 as shown in Fig.10 

while group of strings 7, 8 and 9 had similar response among 

them as shown in Fig. 11. 

 

 
Fig. 9.  Deformation in Strings 1, 2 and 3 
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Fig. 10.  Deformation in Strings 4, 5 and 6 

 

 
Fig. 11.  Deformation in Strings 7, 8 and 9 

 

Further in the next section the obtained results are tabulated 

and discussion is carried out. 

IV.   RESULTS AND DISCUSSION  

The bars are the main component of the tensegrity structure 

because they possesses the primary mass and in a robotic 

application their movement will result in the overall 

locomotion of the robot. Disturbance in center of mass results 

in motion of a robot, therefore we observe from the graphs in 

Fig. 5, 6 and 7, the displacement of center of gravity of each 

bar of three bar tensegrity which are listed in the table below: 
 

TABLE 2. BARS CENTER OF MASS DISPLACEMENT 

 

 
Displaceme

nt in X (mm) 

Displaceme

nt in Y (mm) 

Displaceme

nt in Z (mm) 

Ba

r 1 
13.92 31.17 5.94 

Ba

r 2 
34.87 3.86 5.94 

Ba

r 3 
20.90 33 5.94 

 

As shown in Table II, the overall structure displaced equally 

in Z direction while there are different displacements in X and 

Y directions. It is also be noted that structure is transformed 

into another stable position after displacement. These 

displacements can be controlled using linear motors in bars to 

give specific motion to robotic structure while maintaining 

equilibrium in a new position. Also, the bars should not come 

in contact with each other during displacement hence a safe 

distance of 30.90 mm is observed between mass centers of 

each bar as shown in Fig. 8. 

With regard to the strings, a similarity of deformation was 

observed among the strings therefore they can be grouped as 

per similar deformation. For analyzing of the strings’ 

deformations, we make strings groups as Group 1 which 

consists of strings s1, s2 and s3, Group 2 which consist of 

strings s3, s4 and s5 and Group 3 which consist of strings s7, 

s8 and s9. The maximum deformations in each group of 

strings are listed in the table below: 
 

TABLE 3. STRING  DEFORMATIONS 

Strings group Maximum deformation 

(mm) 

Group-1 1.75e-10 

Group-2 7.23 

Group-3 5.45 

 

As shown in Table III Group -2 strings experienced 

maximum deformation among all strings, which results in the 

anti-clockwise rotation of the structure as shown in Fig. 4. 

This rotational property can be utilized for forward 

locomotion of the robot and strings length can be controlled 

using a motor and pulley at the nodes end of the structure for 

the requisite movement of overall robot. 

Thus, the simulation results illustrate that it is possible to 

construct a robotic structure based on basic three bar 

tensegrity structure by analyzing its dynamics and controlling 

the length of strings and the motion of bars. The resulting 

structure will be lightweight and can produce locomotion. 

Moreover, actuation in any member causes motion in whole 

structure therefore various combinations of members’ 

actuation can be used to produce gait. 

V.  CONCLUSION  

In this paper, a simple dynamic analysis of three bar 

tensegrity structure was carried out and its implementation in 

the field of robotics was discussed. Mathematical model was 

built for three bar tensegrity structure and node matrix, bar 

connectivity and string connectivity were defined. Using 

ADAMS simulation, motion of all bars and deformation in all 

strings were found. Finally, the results were discussed and it is 

concluded that a lightweight robotic structure based on 

tensegrity is possible. Similar methodology can be used for 

dynamic analysis of other type of complex tensegrity 

structures. As a future work, the physical robot can be built 

using three bar tensegrity structure to prove the dynamic 

analysis results achieved in this paper. 
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