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Abstract
Several models for logic have been developed in previous century. Each model has its own
algebra of truth values. Frequently used algebras for truth values are Boolean Algebra for
classical logic and Heyting Algebra and Brouwerian algebra for intuitionist logic logic and
Brazilian logic respectively. Each of these algebras is a distributive lattice. In this paper we
consider lattices which admit certain binary operations that force distributivity. For Boolean
algebra this binary operation is induced by an endofunction which turns out to be negation
for the Boolean algebra. These binary operations and corresponding negations for Heyting
algebras and Browerian algebras, are discussed in detail. At the end we give a necessary
and sufficient condition for a lattice to be a Boolean algebra.

Keywords: Boolean algebra, Heyting algebra, Brouwerian algebra, negation, excluded middle.

Corresponding author’s emial: nawaz@buitms.edu.pk

1.   INTRODUCTION
Truth tables for the classical connectives form a valuation system in the sense of [1] with the

Boolean algebra {0, 1} as algebra of truth values, where 0 is interpreted as "false” and 1 as

"true". In this logic only possible truth values are true and false. On the level of equivalence

and equations the subjects of propositional logic and Boolean algebras are essentially the

same. Fuzzy logic uses interval [0, 1] for truth values and the Brazilian logic uses the

Brouwerian algebra. Presently mathematicians are attempting to develop a model, known as

Quantal Logic [2], for non-commutative context. Algebra of truth values for this model of

logic is known as Quantale [2, 3].

Law of excluded middle is valid in Classical logic (modeled by Boolean algebra) which is

consequence of a Úù a = 1 that holds in any Boolean algebra. Other laws valid in classical

logic include ex falso quodlibet, De Morgan’s laws, elimination of double negation and

introduction of double negation which are consequences of a Ùù a = 0, ù (a Ù b) = ù a Úù b,

ù (aÚ b) = ù a Ùù b and ù ù a = a.

Proofs that appeal to the law of excluded middle mostly do not give a way of deciding that

which alternative holds and mathematicians keep on striving for more neat proofs. An

example of proof by appeal to excluded middle is the proof [1, 4] for the statement that there

is solution of xy = z with x and y irrational and z rational (call” there is solution of xy = z with

x and y irrational and z rational” as f). The proof goes as follows.
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If Ö2Ö2 is rational (call “Ö2Ö2 is rational” asy) then there is solution of xy = z with x = Ö2, y =

Ö2 and z = Ö2Ö2. If Ö2Ö2 is irrational (that isùy) then there is solution of xy = z with x = Ö2 Ö2, y

= Ö2 and z = 2.

Note that we are not given a way to decide that which alternative holds. This is a serious flaw.

Both of the references [1] and [4] do not mention a constructive proof for “There is solution of

xy = z with x and y irrational and z rational”. One is left with feeling that perhaps constructive

proof for this statement is not known. However there is a much simpler and neat solution to

this problem. Just take x = Ö2 and y = log2 25. Then xy (= 5) is rational.

Heyting algebras are algebras of truth values for valuation systems for Intuitionistic logic.

They play a role in intutionistic logic analogous to that of Boolean algebras in classical Logic.

In Intuitionistic logic [4] aÚù a = 1, ù (a Ù b) = ù a Úù b and ù ù a ≤ a do not hold however

a Ùù a = 0, ù (a Ú b) = ù a Ùù b and a ≤ ù ù a are valid. Hence excluded middle, one of De

Morgan’s Laws and elimination of double negation are not valid in intuitionistic logic, while

intuitionistic negation satisfies ex falso quodlibet, introduction of double negation and one of

the De Morgan’s Laws.

The statement y Ú ù y is not valid intuitionistically. This means, in particular, that in

intuitionistic logic we are not entitled to infer f from y ® f and ù y ® f. However, in

classical logic, we infer f from y ® f and ù y ® f (which is an instance of excluded middle).

Dual to intuitionistic logic is Brazilian Logic which is modeled by Brouwerian algebra. For

any a in a Brouwerian algebra, it is the case that a Úù a = 1, ù (a Ù b) = ù a Úù b and ù ù a ≤ a

while a Ùù a = 0, ù (a Ú b) = ù a Ùù b and a  ≤ ù ù a may fail.

Thus for the Brouwerian negation, law of excluded middle, one of Demorgan’s Laws and

elimination of double negation are valid while law of ex falso quodlibet, one Demorgan’s Law

and introduction of double negation are not. Brouwerian algebra is also a good home for

Paraconsistent logic as a slight overlap is there in a and ùa which is in conformity with “in the

semantics of many paraconsistent logics, truth and falsity may overlap” [5]. It is pertinent to

recall here that in his Nobel Lecture [6] Harold Pinter said “There are no hard distinctions

between what is real and what is unreal, nor between what is true and what is false. A thing is

not necessarily either true or false; it can be both true and false.”

It is important to note here that ù has different meaning for each of the cases mentioned above.

For a Boolean algebra ù a is just the complement of a, for Heyting algebra of open subsets of a

topological space ù a stands for interior of complement of a and for Brouwerian algebra of

closed subsets of a topological space ù a is closure of complement of a. Phrases like pseudo-

complementation and supplementation are also used for ù respectively in the context of

Heyting algebra and Brouwerian algebra. In this paper we shall denote these negations by

h(a,0) and g(a,1) where h and g are binary operations on the corresponding Heyting algebra

and the Brouwerian algebra respectively.
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Some authors use the term Brouwerian algebra to mean the structure we have defined as

Heyting algebra [7], however our definition is in conformity with work published in recent

years [8, 9, 10].

2. Preliminaries

We recall few definitions and propositions from [11] and [12].

Definition 2.1: A lattice is a set with two binary operations Ú, Ù and two distinguished

elements 0, 1 respectively as their unit elements, and that Ú and Ù are associative,

commutative and idempotent and Ú and Ù satisfy absorptive laws.

Definition 2.2: A Boolean algebra is a distributive lattice A which is equipped with an

additional unary operation ù: A A such that ùa Ù a = 0 and ùa Ú a = 1.

Definition 2.3: Heyting algebra [12, 13] is a lattice A equipped with a binary operation

h : A x A A defined as c < h(a , b) iff c Ù a < b.

Dual to the concept of Heyting algebra is the concept of Brouwerian algebra.

Definition 2.4: Brouwerian algebra is a lattice A equipped with a binary operation

g : A x A A defined as g(a, b) ≤ c Û b ≤ a Ú c.

For any lattice A the inequalities

a Ú (b Ù c) ≤ (a Ú b) Ù (a Ú c) and (a Ù b) Ú (a Ù c) ≤ a Ù (b Ú c)

are trivially valid because for the former b ≤ a Ú b and c ≤ a Úc gives

b Ù c ≤ (a Ú b) Ù (a Ú c), also a ≤ (a Ú b) Ù (a Úc), therefore a Ú (b Ù c)  ≤  (a Ú b) Ù (a Úc).

For the later b, c ≤ b Ú c gives a Ù b ≤ a Ù ( b Ú c ) and a Ù c ≤ a Ù ( b Ú c ) therefore

(a Ù b) Ú (a Ù c)  ≤ a Ù (b Ú c).

A lattice A is distributive if a Ù ( b Ú c ) = ( a Ù b ) Ú ( a Ù c ) for all a, b, c Î A,
We note that, if above law holds then so does its dual i.e. a Ú ( b Ù c ) = ( a Ú b ) Ù ( a Ú c )
and vice versa.

Proposition 2.1: If a, b, c are any three elements of a distributive lattice A then there exists at
the most one x Î A such that x Ù a = b and x Ú a = c.

Proposition 2.2: For a Boolean algebra A
c ≤ ùa Ú b Þ a Ù c ≤ b and a Ù c ≤ b Þ c ≤ ùa Ú b.

The first implication is the consequence of ùa Ù a = 0 while the second follows from

ùa Ú a = 1. Proof requires distributivity of A.

3. Results

Proposition 3.1: If a lattice A admits an endofunction f : A A such that

c ≤  f(a) Ú b Û a Ù c ≤ b for all a, b, c Î A. Then

i. A is distributive

ii. For all a, b, c Î A, c ≤ f(a) Ú b Þ a Ù c ≤ b iff a Ù f(a) = 0

iii. For all a, b, c Î A, a Ù c ≤ b Þ c ≤  f(a) Ú b iff a Ú f(a) = 1

Proof:
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i.

It only remains to establish that a Ù (b Ú c) ≤ (a Ù b) Ú (a Ù c).

Defining property of f combined with a Ù b ≤ a Ù b and a Ù c ≤ a Ù c gives

b ≤  f(a) Ú (a Ù b ) and c ≤  f(a) Ú (a Ù c ).

Therefore b Ú c ≤  f(a) Ú ( (a Ù b ) Ú (a Ù c ) ). Hence a Ù (b Ú c) ≤ (a Ù b) Ú (a Ù c ).

ii.

c ≤  f(a) Ú b Þ a Ù c ≤ a Ù (f(a) Ú b) = (a Ù f(a)) Ú (a Ù b) = a Ù b ≤ b. We note that this

proof required distributivity.

For converse let c = f(a) and b = 0 then f(a)  ≤  f(a) Ú 0.

Therefore a Ù f(a) ≤ 0. And hence a Ù f (a) = 0.

iii.

a Ù c ≤ b Þ f(a) Ú (a Ù c) ≤  f(a) Ú b Þ (f(a) Ú a) Ù (f(a) Ú c) ≤  f(a) Ú b

Þ f(a) Ú c ≤  f(a) Ú b Þ c ≤ f(a) Ú b. Proof of this part also depends on the distributive law.

Conversely since a Ù 1 ≤ a therefore 1 ≤  f(a) Ú a and hence f(a) Ú a = 1.

Corollary 3.1.1: For any lattice A the following are equivalent

i. A is distributive and admits an endofunction f: A A such that a Ù f (a) = 0 and

a Ú f(a) = 1

ii. A admits an endofunction f : A A such that c ≤  f(a) Ú b Û a Ù c ≤ b.

Proposition 3.2: A lattice A is a Boolean algebra if and only if it admits an endofunction

f: A A such that c ≤  f(a) Ú b Û a Ù c ≤ b for all a, b, c Î A

Corollary 3.2.1. In a Boolean algebra A

1. The following are equivalent

i. ùa Ù a = 0

ii. c ≤ ùa Ú b Þ a Ù c ≤ b

2. The following are equivalent

i. ùa Ú a = 1

ii. a Ù c ≤ b Þ c ≤ ùa Ú b

Corollary 3.2.2. In a Boolean algebra A

c ≤ ùa Ú b Û a Ù c ≤ b

It is well known that every Boolean algebra A becomes a Heyting algebra with

h : A x A A defined as h(a , b) = ùa Ú b.

Also for a Heyting algebra A we may define

ù: A A as ùa = h(a , 0).

But this does not make A into a Boolean algebra. In fact the condition

(a Ù c ≤ b Þ c ≤ ùa Ú b) of above theorem does not hold in this case. For if it does, then in

particular for c = 1 and b = a we obtain 1 ≤ ùa Ú a (because a Ù 1 < a) which is not true in

general as the lattice W of open subsets of a topological space is a Heyting algebra in which
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ùa = h(a , 0) stands for the exterior of a and we know that union of an open set with its

exterior does not give the whole space in general. For further details see [12] which also

discusses a sublattice A of P(X) (the power set of an infinite set X) consisting of all finite

subsets of X together with X itself. A is not a Heyting algebra because h(a , 0) is not defined

for a non-empty subset a of X. This sublattice A of P(X) is in fact the lattice of closed subsets

of co-finite topology on X and is an example of following concept.

Lattice of closed subsets of a topological space is Brouwerian algebra. For closed sets of a

topological space g(a, b) ≤ c Û b ≤ a Ú c means that g(a , b) is the smallest closed set whose

union with a contains b.

In particular we have g (a , 1) £ c Û 1 = a Ú c. For closed sets this means that g(a , 1) is the

smallest closed set whose union with a is 1.

Proposition 3.3: If lattice A admits a binary operation g: A´A A such that

g(a, b) ≤ c Û b ≤ a Ú b for all a, b, c Î A. Then A is distributive.

Proof: It only remains to establish that (a Ú b) Ù (a Ú c) ≤ a Ú (b Ù c).

Since (a Ú b) Ù (a Ú c)  ≤ a Ú b therefore g (a, (a Ú b) Ù (a Ú c))  ≤ b

Similarly g (a, (a Ú b) Ù (a Ú c)) ≤ c, we thus conclude that g (a, (a Ú b) Ù (a Ú c)) ≤ b Ù c.

Therefore (a Ú b) Ù (a Ú c) ≤ a Ú (b Ù c)

Proposition 3.4:

Let A be a lattice, g be a binary operation on A, then the following are equivalent

(a)  g(a , b) £ c iff b £ a Ú c

(b)  i. g(a , a) = 0 ii. a Ú g(a , b) = a Ú b

iii. b Ú g(a , b) = b iv. g (a , b Ú c) = g(a , c) Ú g(a , b)

Proof: Suppose (a) holds, then

i. a £ a Ú 0 Þ g(a , a) £ 0

ii. From definition of g we have b £ a Ú g(a , b). Therefore a Ú b £ a Ú g(a , b).

Also b £ a Ú b, therefore g(a , b) £ b and hence a Ú g(a , b) £ a Ú b.

iii. As above, b £ a Ú b gives g(a , b) £ b. Therefore b Ú g(a , b) = b.

iv. Again by definition of g we have b £ a Ú g(a , b) and c £ a Ú g(a , c).

Therefore b Ú c £ a Ú g(a , b)Ú g(a , c). Hence g(a , b Ú c) £ g(a , b) Ú g(a , c).

Also g(a , b Ú c) £ g(a , b Ú c) gives b Ú c £ a Ú g(a , b Ú c).

Now from b £ b Ú c £ a Ú g(a , b Ú c) we have g(a , b) £ g(a , b Ú c).

Similarly g(a , c) £ g(a , b Ú c). Hence g(a , b) Ú g(a , c) £ g(a , b Ú c).

Conversely suppose that (b) holds and g(a , b) £ c. Then from (ii) b £ a Ú g(a , b).

Therefore b £ a Ú g(a , b) £ a Ú c. Therefore b £ a Ú c.

Now suppose that b £ a Ú c. Then from (iii)

On Boolean, Heyting and Brouwerian Algebras



BUITEMS
Quality & Excellence in Education

91

c = c Ú g(a , c) ³ g(a , a) Ú g(a , c) = g(a , a Ú c) ³ g(a , b)

Because g(a , -) is order preserving (this follows from iv). Hence g(a , b) £ c iff b £ a Ú c

Corollary 3.4.1: a Ú g(a , 1) = 1

Proof: Since g(a , 1) £ g(a , 1) therefore 1 £ a Ú g(a , 1) and therefore a Ú g(a , 1) = 1.

(This means a Ú ùa = 1 where ùa is closure of complement of a)

Note: a Ù g(a , 1) = 0 is not true in general because for a, closed in a topology, a Ù g(a , 1)

may not be empty.

Proposition 3.5:

In a Boolean algebra A

1. TFAE

i. g (a, b) £ c iff b £ a Ú c ii. g (a, b) = ùa Ù b

2. TFAE

i. c £ h (a, b) iff a Ù c £ b ii. h (a, b) = ùa Ú b

Proof: 1. i. Þ ii.

Since A is Boolean algebra, we have ùa Ú a = 1 and ùa Ù a = 0.

We shall prove that g (a, b) = ùa Ù b.

Now a Ú (ùa Ù b) = (a Úùa) Ù (a Ú b) = 1 Ù (a Ú b) = a Ú b gives b £ a Ú (ùa Ù b).

Thus g (a, b) £ ùa Ù b.

Also g (a, b) £ g (a, b) gives b £ a Ú g (a, b)

Therefore ùa Ù b £ ùa Ù (a Ú g (a, b)) = (ùa Ù a) Ú (ùa Ù g (a, b)) = 0 Ú (ùa Ù g (a, b))

= ùa Ù g (a, b) £ g (a, b).

Hence g (a, b) = ùa Ù b.

ii. Þ i. Suppose ùa Ù b £ c then a Ú (ùa Ù b) £ a Ú c therefore (a Ú ùa) Ù (a Ú b) £ a Ú c and

hence 1 Ù (a Ú b) £ a Ú c so that (a Ú b) £ a Ú c therefore b £ a Ú b £ a Ú c.

Now suppose that b £ a Ú c then ùa Ù b £ ùa Ù (a Ú c). Applying distributive law and

ùa Ù a = 0 we get ùa Ù b £ ùa Ù c £ c and hence ùa Ù b £ c.

2. i. Þ ii. We shall prove that h(a, b) = ùa Ú b

Since a Ù (ùa Ú b) = (a Ùùa) Ú (a Ù b) = (a Ù b) £ b therefore ùa Ú b £ h(a, b).

Also h(a, b) £ h(a, b) gives a Ù h(a, b) £ b.

Therefore ùa Ú (a Ù h(a, b)) £ ùa Ú b and using distributive law and ùa Ú a = 1 on the left

hand side we obtain ùa Ú h(a, b) £ ùa Ú b which gives h(a, b) £ ùa Ú h(a, b) £ ùa Ú b.

Hence h(a, b) = ùa Ú b.

ii.Þ i. Suppose that c £ ùa Ú b then a Ù c £ a Ù (ùa Ú b). Using distributive law and

ùa Ù a = 0 on the right hand side we obtain a Ù c £ a Ù b £ b, hence a Ù c £ b.
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Now suppose that a Ù c £ b then ùa Ú (a Ù c) £ ùa Ú b. Again the distributive law and

ùa Ú a = 1 give c £ ùa Ú c £ ùa Ú b and hence c £ ùa Ú b.

Corollary 3.5.1: Every Boolean algebra is a Brouwerian algebra as well as Heyting algebra.

Corollary 3.5.2: For a Boolean algebra A

g (a, 1) = h (a, 0) =ùa.

Proposition 3.6: If a lattice A admits binary operations g and h as described above then

h(a, 0) £ g(a, 1).

Proof: From the definitions of g and h, we have

g (a, 1) £ c iff 1 £ a Ú c ……………. (1)

c £ h (a, 0) iff a Ù c £ 0 ………….. …(2)

These two in particular give a Ù h (a, 0) = 0 and a Ú g (a, 1) = 1.

Now a Ù h (a, 0) = 0 gives (a Ù h (a, 0)) Ú g (a, 1) = 0 Ú g (a, 1).

Applying distributive law we obtain (a Ú g (a, 1)) Ù (h (a, 0) Ú g (a, 1)) = g (a, 1).

And using a Ú g (a, 1) = 1 we get h (a, 0) Ú g (a, 1) = g (a, 1) hence h (a, 0) £ g (a, 1).

Proposition 3.7: TFAE

i. a Ú h (a, 0) = 1

ii. a Ù g (a, 1) = 0

iii. g (a, 1) = h (a, 0).

Proof: i. Þ ii. Suppose a Ú h (a, 0) = 1 then 1 £ a Ú h (a, 0) and therefore g (a, 1) £ h (a, 0)

by (1) above. This gives a Ù g (a, 1) £ 0 by (2). Therefore a Ù g (a, 1) = 0.

ii. Þ iii. Suppose a Ù g (a, 1) = 0 then a Ù g (a, 1) £ 0. Then (2) gives g (a, 1) £ h (a, 0) and

hence g (a, 1) = h (a, 0) by proposition 3.6.

iii. Þ i. Suppose h (a, 0) = g (a, 1) then a Ú h (a, 0) = a Ú g (a, 1) and therefore

a Ú h (a, 0) = 1.

Proposition 3.8: A lattice A equipped with binary operations g and h as above is a Boolean

algebra if and only if any one of above equivalent conditions is satisfied.

Proof: Simple, define ùa = g (a, 1) (or equivalentlyù a = h (a, 0)).

We note that g(a Ú b, 1) = g(a , 1) Ù g(b, 1) may not hold in a Brouwerian algebra, however,

we have

Proposition 3.9: g(a Ù b, 1) = g(a , 1) Ú g(b, 1)

Proof: (a Ù b) Ú g(a , 1) = (a Ú g(a , 1)) Ù (b Ú g(a, 1)) = 1 Ù (b Ú g(a, 1)) = b Ú g(a, 1).

Similarly (a Ù b) Ú g(b , 1) = a Ú g(b, 1). Therefore

(a Ù b) Ú g(a , 1) Ú g(b , 1) = b Ú g(a, 1) Ú a Ú g(b, 1) = a Ú g(a, 1) Ú b Ú g(b, 1) =1 (by

corollary 3.4.1). And therefore 1 £ (a Ù b) Ú g(a , 1) Ú g(b , 1) which gives

g(a Ù b, 1) £ g(a , 1) Ú g(b , 1) ………………… (3)
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Also (a Ù b) Ú g(a Ù b, 1) = 1 gives (a Ú g(a Ù b, 1)) Ù (b Ú g(a Ù b, 1)) = 1. And therefore

a Ú g(a Ù b, 1) = 1 and b Ú g(a Ù b, 1) = 1. Or 1 £ a Ú g(a Ù b, 1) and 1£ b Ú g(a Ù b, 1).

Therefore g(a , 1) £ g(a Ù b, 1) and g(b , 1) £ g(a Ù b, 1). This gives

g(a , 1) Ú g(b , 1) £ g(a Ù b, 1) ………………... (4)

From (3) and (4) we obtain g(a Ù b, 1) = g(a , 1) Ú g(b, 1).
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