
BUITEMS
Quality & Excellence in Education

12

NOTATIONS FOR FACILITATING SOFTWARE SECURITY DESIGN

NOTATIONS FOR FACILITATING SOFTWARE SECURITY DESIGN

Muhammad Nadeem1* and Adul Hussain Shah Bukhari1

1 Faculty of Information and Communication Technology, Balochistan University of Information
Technology, Engineering & Management Sciences, Quetta

*Corresponding author e-mail: rabbea_09@yahoo Nadeem@buitms.edu.pk

Abstract
The conventional software designing tools do not address the software security design, the
security considerations are taken care of independently and there is no de facto unified
mechanism•to•design•software’s•functional•requirements•along•with•the•security•requirements,•it
allows the applications more vulnerable to the security threats, this is especially true in client-
server / web based systems. In this research designing notations are being proposed that can be
integrated with the existing designing tools to address software security design. The notations
have less abstraction in order to design security requirements more clearly and effectively.
Security is not a feature that can be added to software or "bolted on" after other software features
are codified, nor can it be "patched in" after attacks have occurred in the field. Instead, security
must be built in from the very beginning (requirements specification) and included in every
subsequent System Development Life Cycle phase.

________________________________________________________________________________

Keywords: Software Design, Security, Notations, Reliability, UML

INTRODUCTION
The existing software designing tools, both
classical and object oriented, have notations /
symbols that are capable to design the
functionality of the system but lack the
notations to design the security of the system,
therefore its strongly needed that there must
be notations that can be used with the existing
tools that cover both the functional and
security design of the software, this will result
in generation of artifacts representing both
functional and security requirements.

The Motivational Factors
The software is the essential part of
Information Technology infrastructure for an
enterprise; hence the enterprise security
involves the security of the software being
used, the authors strongly support the view
that the security requirements should be
reflected in the artifacts
created for software functional requirements at
the analysis or design stage.

How this Research is organized
The first part of this research investigates the
de facto designing and modeling tools being
used by the software designers; and explores

to how much extent do they address the
software security requirements? The second
part proposes some notations that can be
used with the existing software designing &
modeling tools to address software security
design along with the rest of the design. Some
examples have also been presented that use
the proposed notations.

Importance of Security
The security needs are evident at every stage
for an enterprise, the application security lies
at the core of the security paradigm as
depicted by figure-1.

Figure 1 – Security Architecture



BUITEMS
Quality & Excellence in Education

13

This• research• discusses• the• application’s
security to be achieved by proper design of
software applications.

LITERATURE REVIEW

The Contribution of Umlsec
UMLSec has been proposed as an extension
of UML, it addresses four security concepts
namely• “Fair• Exchange”,• “Confidentiality• or
Secrecy”,• “Secure• Information• Flow”• and
“Secure• Communication• Link”• to• facilitate• the
security aware software designing [1].

The concepts presented in UMLSec are
very good initiative to secure systems
development however the authors have found
that abstraction level of UMLSec is very high,
which leads to problems to depict the security
requirements in the software design artifacts.

Integration of MAC and UML Artifacts
Researchers have been focusing on the notion
that security must be give key importance in
the design of software applications at all
stages of the lifecycle for accurate and precise
policy definition, authorization, authentication,
enforcement, and assurance. UML is one of
the dominant players in software design used
for specifying, visualizing, constructing and
documenting artifacts of software. UML
provides alternate diagrams to get different
perspectives for different stakeholders, e.g.:
use case diagrams for the interaction of users
with system components, class diagrams for
the static classes and relationships among
them, and sequence diagrams for the dynamic
behavior of instances of the class diagram.

However,• UML’s• support• for• the• definition• of
security requirements for these diagrams and
their constituent elements (e.g., actors,
systems, use cases, classes, instances,
include/ extend/ generalize relationships,
methods, data, etc.) is lacking. Efforts have
already been made e.g., in [2] security issue
by incorporating Mandatory Access Control
(MAC) into use case, class, and sequence
diagrams, providing support for the definition of
clearances and classifications for relevant
UML elements have been addressed.

Policy Based Security Frameworks
Web-based applications are one of the
important candidates that need secure

development practices to be adopted; they
comprise dynamic, extensible and
interoperable collections of services, software
components and information shared by various
entities performing transactional tasks. In
defining a general-purpose policy-based
security framework, security policies for the
confidentiality, integrity and availability of
services and information need to be
considered. In [3], the policies for
authentication, access control, security
management, identity administration and
accountability have been proposed; and the
implementation mechanisms and component-
based generic security services for web-
enabled applications are also discussed.

Security for Mobile Application
Designing
Designing applications for mobile devices
needs special attention as there is involvement
of public medium (i.e. wireless), possibility of
loss or theft due to small size, extensive
mobility, and power consumption issues etc.
we typically need to address the following
security concerns [4]:

Table 1 – Security concerns of mobile applications
S# Security Concern
1 User identification
2 Secure storage
3 Secure data communication
4 Secure network access
5 Secure content
6 Secure software execution environment
7 Temper resistant implementation

The security concerns discussed in Table-1
depict the need of secure system design;
these factors are generally true for all
embedded systems; the factors identified were
a source of motivation for the researchers to
work out on the notations that can be used for
the design of secure systems.

RESEARCH METHODOLOGY

THE PROPOSED NOTATIONS
This section contains the detailed description
of the notations for designing software
security. The notations are especially useful
when designing security related client-server /
web based software applications.

NOTATIONS FOR FACILITATING SOFTWARE SECURITY DESIGN



BUITEMS
Quality & Excellence in Education

14

NOTATIONS FOR FACILITATING SOFTWARE SECURITY DESIGN

CREATING NOTATIONS
The figure 3 gives a general structure of the
notations used in this research.

Figure 2: Guidelines for designing security notations
Each symbol used to depict some security
scenario has a security descriptor table
associated with it; which is a collection of key-
value pairs, the general structure of the
“Security•Descriptor•Table•has•been•shown•in
table-2.

Table 2 – General Structure of Security Descriptor
Security Descriptor

S# KEY VALUE
1 PSDT An Integer value
2 Attribute Value
3 Attribute Value

4 (custom parameter) (Description of custom
parameter)

Each symbol used to depict some security
scenario has a security descriptor table
associated with it, which is a collection of key-
value pairs. The security descriptor table has
some mandatory attributes having their
respective values, in order to provide flexibility
the designer may add additional key-value
pairs in the security descriptor table.

THE SYMBOLS USED TO MODEL NEW
NOTATIONS

ENCRYPTION

Figure 3 - Encryption
The figure 4 depicts the encryption process, A
security descriptor i.e., tabular structure, is
associated with each symbol; it is pointed to by
the• “security• notation”• using• PSDT• which
stands for Pointer to Security Descriptor Table,

the PSDT is an integer value that starts from
“1”• in• a• given• design• artifact• and• is
incremented by one, and assigned to the next
notations• used.• The• “Security Descriptor
Table”• holds• the• collection• of• key-value pairs
that describe details about the security
requirement. More rows can be added at the
end of the table to hold the optional or custom
“Key-Value”•pairs,•see•table-3.

Table 3 – Security Descriptor Table for Encryption
Security Descriptor

S.# KEY VALUE
1 PSDT An Integer value
2 Source Describes source
3 Destination Describes destination

4 Protocol / Algorithm Defines Protocol to be
used

5 Server port Defines server port to be
used

6 Client port Defines client port to be
used

7 (custom parameter) (Description of custom
parameter)

CLIENT COMPUTER AUTHENTICATION

Figure 4: Client Computer Authentication
The figure 5 represents the notation proposed
for the Client Computer Authentication; the
associated• “Security• Descriptor• Table”• is
shown in the table-4.

Table 4 – Security Descriptor Table for Client
Authentication

Security Descriptor
S.# KEY VALUE
1 PSDT An Integer value
2 Client Describes client machine
3 Destination Describes destination machine

4 Mechanism

Describes the authentication
mechanism to be used, e.g., IP
based authentication, Certificate
based authentication etc.

5 (custom
parameter)

(Description of custom
parameter)

Client Destination
PSDT

Source Destination
PSDT

PSDT
 S

The symbol that
represents some
security related

The PSDT is an
integer value that
represents Pointer

to Security



BUITEMS
Quality & Excellence in Education

15

NOTATIONS FOR FACILITATING SOFTWARE SECURITY DESIGN

SERVER COMPUTER AUTHENTICATION

Figure 5: Server Computer Authentication
The figure 6 represents the notations proposed
for Server computer authentication; the
associated• “Security• Descriptor• Table”• is
shown in table-5.

Table 5 – Security Descriptor Table for Server
Authentication

Security Descriptor
S# KEY VALUE
1 PSDT An Integer value
2 Client Describes client machine

3 Server Describes the server
machine

4 Mechanism

Describes the authentication
mechanism to be used, e.g.,
IP based authentication,
Certificate based
authentication etc.

5 (custom parameter) (Description of custom
parameter)

SESSION MAINTAINED COMMUNICATION

Figure 6: Session maintained communication
The figure 7 represents notation proposed for
“Session  Maintained  Communication”;
associated• “Security• Descriptor• Table”• is
shown in table-6.

Table 6 – Security Descriptor Table for Sessions
Security Descriptor

S.# KEY VALUE
1 PSDT An Integer value

2 Source Describes source

3 Destination Describes destination

4 Protocol / Mechanism
Defines Protocol /
Mechanism to be used
e.g., HTTP etc

5 Session Expiry time n – time units

6 (custom parameter) (Description of custom
parameter)

CONTENT VERIFICATION USING HASH

Figure 7: Content verification using hash value
The figure 8 represents the notation proposed
for  “Content  verification  using  hash  value”;
associated• “Security• Descriptor• Table”• is
shown in table-7.

Table 7 – Security Descriptor Table for Hashing
Security Descriptor

S# KEY VALUE
1 PSDT An Integer value

2 Source Describes source machine

3 Destination Describes destination
machine

4 Algorithm /
Mechanism

Defines Algorithm /
Mechanism to be used
e.g., MD5 Hash etc

5 (optional / custom
parameter)

(Description of optional
parameter)

AUTHENTICATION

Figure 8: Authentication
The figure 9 represents the notation proposed
for  “Authentication”;  the  associated  “Security
Descriptor•Table”•is•shown•in•table-8.

Table 8 – Security Descriptor Table for Authentication
Security Descriptor

S# KEY VALUE
1 PSDT An Integer value

2 User
User description who needs
to be authenticated for
certain resource

3 Resource
Describes resource being
accessed e.g., a file, service
or device etc.

4 Service /
Mechanism

Defines authentication
service or mechanism to be
used, e.g., password based
authentication, biometric
technique etc.

5 (custom parameter) (Description of custom
parameter)

User Resource
PSDT

Source Destinatio
nPSDT

Source Destinati
PSDT

Client Server
PSDT



BUITEMS
Quality & Excellence in Education

16

NOTATIONS FOR FACILITATING SOFTWARE SECURITY DESIGN

USER VERIFICATION USING SENSORY
EXPERIENCE

Figure 9: Sensory experience
The figure 10 represents the notation
proposed• for• “User• verification• using• sensory
experience”;  the  associated  “Security
Descriptor Table”•is•shown•in•table-9.

Table 9 – Security Descriptor Table for Sensory
Experience

Security Descriptor
S# KEY VALUE
1 PSDT An Integer value

2 User
User description who needs
to be authenticated for
certain resource

3 Resource
Describes resource being
accessed e.g., a file, service
or device etc.

4 Mechanism

Defines mechanism to be
used, e.g., user is asked to
recognize a pattern
containing a particular
phrase / letters, or he may
be required to recognize an
audio or visual situation.

5 (custom parameter) (Description of custom
parameter)

AUTHORIZATION

Figure 10: Authorization
The figure 11 represents the notation
proposed  for  the  “Authorization”;  the
associated “Security• Descriptor• Table”• is
shown in the table-10.

Table 10 – Security Descriptor Table for Authorization
Security Descriptor

S# KEY VALUE
1 PSDT An Integer value

2 User
User description who needs
to be authorized for certain
resource

3 Resource

Describes resource being
accessed e.g., a file,
operation, service or device
etc.

4 Mechanism

Defines mechanism to be
used for the authorization,
e.g., Role Based Access
Control (RBAC) etc.

5 (custom parameter) (Description of optional
parameter)

ANONYMOUS ACCESS

Figure 11: Anonymous access
The figure 12 represents the notation
proposed  for  “Anonymous  Access”;  the
associated• “Security• Descriptor• Table”• is
shown in the table-11.

Table 11: Security Descriptor Table for Anonymous
Access

Security Descriptor
S# KEY VALUE
1 PSDT An Integer value

2 User
User description who
anonymously accesses
certain resource

3 Resource

Describes resource being
accessed e.g., a file,
operation, service or device
etc.

4 Mechanism Defines mechanism to be
used for anonymous access.

5 (custom parameter) (Description of custom
parameter)

RESULTS AND DISCUSSION

USING NOTATIONS WITH EXISTING TOOLS
The proposed notations were used with the
existing design and modeling tools, some of
the examples are discussed in this section.

USING NOTATIONS WITH UML DIAGRAMS
In this example a user enters the Login ID and
password which is encrypted and sent to the
server for the verification, on repeated login
failures the user is asked to recognize a
pattern in order to ensure that it is not a
machine trying to guess a password. This
problem is solved using UML activity diagrams
with integration of proposed notations.
Table 12 – Security Descriptor Table for Figure 13

User . Resource
PSDT

User Resource
PSDT

 A

User Resource
PSDT



BUITEMS
Quality & Excellence in Education

17

NOTATIONS FOR FACILITATING SOFTWARE SECURITY DESIGN

Figure 12: The Enhanced Activity Diagram
Following are the Security Descriptor tables
(table 12 & 13) associated with figure 13.

Table 13 – Security Descriptor Table for Figure 13
Security Descriptor

S# KEY VALUE
1 PSDT 1

2 Source User’s•machine

3 Destination Authentication Server

4 Protocol / Algorithm Public Key Encryption

CONCLUSIONS
With the passage of time the importance of
security is increasing and this growth shall be
exponential in the future. The security of
software applications in general and web
based / client server applications in particular
lie at the center of the security focus. Security
designing tools and frameworks will become
very common in the next few years, therefore
as a theoretical work to support such future
frameworks and CASE tools there is need of
extensive research in security design. This

research contributes by proposing notations to
facilitate software security design.

FUTURE WORK / OPEN ISSUES
Currently this research has focused the
security concerns related to web applications /
client server computing, but security
encompasses several other areas as well the
common examples may be the security of
code being executed in a machine, security of
passwords and other credentials stored
somewhere etc. also need to be modeled and
the design notations are not yet proposed.
The proposed security techniques shall be
evaluated by carrying out a project by two
different groups first using the proposed
security techniques for designing the
application and the second group using the
conventional methods for the same, the
software designed using security aware
designing tools should be less vulnerable to
the threats.

The software developers / designers feel
handicapped unless they have proper CASE
tools to facilitate them and make the software
engineering process more and more efficient.
Developing the CASE (Computer Aided
Software Engineering) tools to facilitate
software designers has got vital importance; it
is being left for the future work.

There are still some security concepts that
may be too abstract to be represented as a
notation that may be used to model software
security, therefore when ever designing
notations for any security concept / issue care
must be taken on the fact weather it can
represent the concept precisely or not.
Designing confusing notations may lead to
ambiguity to the designing process.

Security Descriptor
S# KEY VALUE
1 PSDT 2

2 User System user

3 Resource Account

4 Mechanism
Recognize a fuzzy word
being displayed in a
bitmap image

Input user ID &

PSDT: 1

NOYES

PSDT: 2

Perform rest of the

Failed login attempts > 3



BUITEMS
Quality & Excellence in Education

18

CALIBRATION OF TIME DOMAIN REFLECTOMETRY (TDR) SOIL MOISTURE POINT PROBE FOR TWO SOILS

ACKNOWLEDGMENT
The central and critical intellectual acknowledgement belongs to my supervisor Dr. A. H. S. Bukhari
for his guidelines and continuous support throughout this work both in technical and research paper
writing areas.

REFERENCES
· Jan• Jurjens,• “UMLSec:• Extending• UML• for• Secure• Systems• Development”,• Software• &

Systems Engineering, Department of Informatics, Munich University of Technology, Germany,
2002.

· Thuong Doan and Steven Demurjian,•“MAC•and•UML•for•Secure•Software•Design”,•FMSE’•04,
October 29, 2004, Washington, DC, USA, copyright ACM 1-58113-971-3/04/0010.

· Marian Ventuneac, Tom Coffey, Ioan Salomie, "A policy-based security framework for web-
enabled applications", marian.ventuneac@ul.ie, University of Limerick, Department of Electronic
and Computer Engineering, Proceedings of the 1st international symposium on Information and
communication technologies, 2003

· Anand Raghunathan, Srivaths Ravi, Sunil Hattangady, and Jean-Jacques Quisquater,
"Securing Mobile Appliances: New Challenges for the System Designer"; NEC Laboratories
America,  Princeton,  NJ,  USA;  Proceedings  of  the  “Design,  Automation  and  Test  in  Europe
(DATE)”•Conference•and•Exhibition,•©•2003•IEEE


	Research J.pdf

