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Abstract: This study aims to test the feasibility of using a data set of 90-day

bank bill forward rates from the Australian market to predict spot interest rates. To

achieve this goal I utilized the application of Kalman filter in a state space model with

time-varying state variable. It is documented that in the case of short-term interest

rates,the state space model yields robust predictive power. In addition, this predictive

power of implied forward rate is heavily impacted by the existence of a time-varying

risk premium in the term structure.
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1 Introduction

Many economic and financial models depend on data that are not observable.
These unobservable data are often used in an attempt to establish a frame-
work that can predict future events. Arguably, the most commonly adopted
models for this purpose is a wide range of time series models, including the
conventional linear regression model and the Autoregressive Integrated Moving
Average (ARIMA) family models. These frameworks can be written and esti-
mated as special cases of state space specifications. The application of the state
space models in econometric literature has been intensive, encompassing the es-
timation of unobserved elements such as (rational) expectations, measurement
errors and missing observations, to name but a few.

There are two main benefits to representing a dynamic system in a state
space form. First and foremost, the state space allows unobserved variables
(known as the state variables) to be incorporated into an observable model.
Second, the model can be analysed using a powerful recursive algorithm known
as the Kalman filter. Theoretically, the filter can be used to compute exact,
finite sample forecasts for a time varying coefficient specification to model the
future interest rates.
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Following the works of (Arnold et al., 2008; Chatterjee, 2005; Bhar, 1996),
this paper presents a preliminary discussion reviewing the feasibility of the
Kalman filter in estimating 2 models: the first is the well-known CIR model
in continuous time, and the second is a regression type of model predicting fu-
ture spot rates from past forward rates.

The rest of the paper will be organized as follows: section 2 introduces a
derivation of the Kalman filter algorithm in an univariate context. Next, I
provide a discussion on the combination of the filter with a Maximum likeli-
hood estimator (MLE) to create an iterative process for parameters estimation.
In section 3, I demonstrate the reformulation of one of the well-established
continuous-time interest rate models, the CIR model, into a state space form.
Then the use of Kalman filter to estimate this model, adopting from the study
of Chatterjee (2005) is presented. Section 4 provides an illustration of Kalman
filter to estimate a regression type forecasting model set up by Bhar (1996).sec-
tion 5 is the concluding section.

2 Kalman filter specification

2.1 Simple Kalman filter algorithm

I present here a brief discussion of the specification and estimation of a linear
state space model using the Kalman filtering process. Greater detail about the
methodology could be found in Harvey (1989) and Hamilton (1994).

There are two basic component of a Kalman Filter: the measurement equa-
tion and the transition equation. The measurement equation relates an unob-
served variable (Xt) to an observable variable (Yt) in the general simplified form:

Yt = mXt + εt (1)

where, m is a constant and is assumed known.

The transition equation is based on a model that allows the unobserved
variable to change through time, with the general form:

Xt+1 = aXt + θt (2)

To begin deriving the Kalman filter algorithm, we can insert an initial value
X0 that is normally distributed with mean µ0 and variance σ2

0 . Then we have
the first one-period ahead prediction of Xt, denoted as X1P :

X1P = aX0 + θ0 (3)
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where εt ∼ N(0, rt) and θ ∼ N(0, qt). Also, εt, θt and X0 are uncorrelated
and they are uncorrelated with lagged variables.

The next step is to get a predicted value of Y1, called Y1P :

Y1P = mX1P + εt = m[aX0 + θ0] + εt (4)

This is the end of the ‘prediction’ phase. The second phase of the filter is
known as the ‘updating’ phase. With updated information of actual value of
Y1, we can obtain the error, Y1E as: Y1E = Y1 − Y1P . Then we can use this
error to ”adjust” the predicted value of X1:

X1P−ADJ = X1P + k1Y1E (5)

where k1 is the Kalman gain. This variable is determined by taking the
partial derivative of the variance of X1P−ADJ . Following the work of Arnold et

al. (2008) we have: k1 =
p1m

p1m2 + r1
=

Cov(X1P , Y1P )

Var(Y1P )
where p1 = (aσ2

0 + q0)

is the variance of X1P .
Just as the β coefficient from a Linear regression model is set to reduce error,
the Kalman gain was set to reduce variance in the adjusted predicted value of
X1.

The final step is to use the new X1P−ADJ from equation (5) to repeat the
process over again to find X2P . At the end of the process we shall have a
prediction series of the dependent variable.

2.2 Incorporating MLE to the Kalman filter

The Kalman filter output provides us with estimated values of an unobservable
variable (XtP−ADJ) and a predicted timeseries of the observable variable (YtP ).
However, there are still unknown parameters in the equations, namely: εt, a and
θt, that need to be estimated.

Assuming the variables YtP follow a Gaussian i.i.d process. That is, they
are independent and identically normally distributed with mean and variance
defined as follow:

E[YtP ] = E[mXtP−ADJ + εt] = mE[XtP−ADJ ] (6)

Var[YtP ] = Var[XtP−ADJ ]m2 + rt (7)

Then we can derive a joint likelihood function:

T∏
t=1

[
1√

2π ×Var[YtP ]

]T
exp


T∑
t=1

(Y 2
tE)

2×Var[YtP ]

 (8)
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As Arnold et al., (2008) stated, we need to choose the parameters so that the
likelihood function is maximized (to provide the highest probability that the
observed data actually occurred). To simplify calculations using the likelihood
function, it is common to use the natural logarithm of it:

−T ln(2π)

2
− 1

2

T∑
t=1

ln [Var(YtP )]− 1

2

T∑
t=1

(Y 2
tE)

2×Var[YtP ]
(9)

The partial derivative of the log-likelihood function with respect to each param-
eter εt, a and θt is then set to zero in order to maximize the function.

After estimating a set of parameters (called MLEs) we apply the Kalman
filter again to produce new time series of YtP and XtP−ADJ with associated
distribution. The likelihood estimation is then performed again producing new
MLEs which will again enter the filter. This iterative process continues until
the value of the log-likelihood function can not be improved by a significant
amount (referreed to as ‘the score’). Brockwell and Davis, (2002) called the
use of maximum likelihood estimation with the Kalman filter the Expectation
Maximization (EM).

3 Kalman filter estimator for
continuous-time term structure model

3.1 The CIR model

In a continuous-time framework, the term structure of interest rates is commonly
illustrated with a one-factor model. One particular class of these models are
the so-called ‘arbitraged-based’ models, which take the observed current term
structure as given, then seek to price interest rate derivatives by arbitrage alone.
Cox et al., (1985) (hereafter CIR) developed a general asset pricing model set
up as a single good, continuous time economy with a single state variable. The
model derived a process for the short rate, r, and then explore the implication
of r on bond prices in a risk-neutral world (in the case of modelling a term
structure, we need the yield curve of a zero coupon bond). r cannot be directly
observed and is “a theoretical construct designed to facilitate the modelling pro-
cess”(Chatterjee, 2005).

In the CIR model, an agent with constant relative risk aversion faces produc-
tion opportunity which evolve according to movements in a single state variable.
This implies that the instantaneous interest rate can be thought of as a state
variable with the given process:

dr = k(θ − r)dt+ σ
√
rdWP (10)
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As mentioned in Cairns, (2004) and Chatterjee, (2005), this model accounts for
the fact that the risk-free rate must be positive. It also implied the dependence
of short-term interest volatility and the interest rate itself. dWP is a Wiener
process under the measure P . Chatterjee, (2005) then provided a risk-adjusted
process that incorporates the effect of market price of risk. Assuming the zero
coupon bond price follow a martingale process the CIR model can be rewritten
as:

dr = [k(θ − r)− λr]dt+ σ
√
rdWQ (11)

Where dWQ is a Wiener process under the Q measure and λ is the market
value of risk. Details of bond price formulae from this process could be found
at (Cairns, 2004) (pp. 67).

3.2 The Kalman filter

In dealing with the estimation of exponential affine term structure models, the
Kalman filter has been used in various papers. One assumption of the affine
models is that bond price is a linear function of the underlying state variables.
As illustrated in section 1, we can use the Kalman filter to estimate the param-
eter set given the relationship between bond yields and the unobserved state
variables.

To do this, we need to reformulate the CIR model in equation 11 into our
familiar system of measurement and transition equations. In principle, we need
only one zero-coupon bond yield as input of a one factor model. Under the
assumption that measurement errors are additive and normally distributed we
have 1 

Rt = A0 +A1Xt + εt (εt ∼ N(0, H(ψ)))

A0 = − log A(t, T )

T − t
A1 =

B(t, T )

T − t

(12)

where Rt is the continuously compounded zero-coupon bond yield, it is an affine
function of the short rate, and depends upon the long-run level of short rate θ,
the degree of mean reversion k and the volatility of the short rate σ. ψ contains
the unknown parameters: ψ = (θ, k, σ, λ, h1) with h1 is the covariance matrix of
the error terms ε. It is an n-diagonal matrix where n is the number of maturities
in the specification (here it is 1). The transition equation is as follow:

Xt = d(ψ) + φ(ψ)Xt−1 + ut (ut ∼ N(0, Qt)) (13)

Similarly, Qt is the covariance matrix of ut, it is a m-diagonal matrix where
m is the number of factors in the model. It is further assumed that the error
terms, εt and ut, are normally distributed and uncorrelated, thus enabling the

1The detailed formulation of A(t, T ) and B(t, T ) can be found in (Cairns, 2004; Chatterjee
2005)
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calculation of the MLE.

Subsequently we can use a Kalman filter algorithm to obtain information
about Xt, by recursively calculate the distribution of Xt conditional on the ob-
servation of the zero-coupon yields (Rt).

Following a repetitive process of prediction and updating phases and utilizing
an MLE similar to the one shown in Section 1, Chatterjee, (2005) was able to
obtain a statically significant vector (ψ) of the one-factor CIR model for the
UK treasury bond yields with 8 different maturities. The estimation of the
mean-reversion parameter is 0.1443 and indicates an expected 4.8 years for
short rate to return half-way to its long-run average mean θ = 0.0879. This
slow mean-reversion process is characterized by a low but significant volatility
estimate σ = 0.0081. The market price of risk (λ) is −0.1176 and is necessary
for positive risk premia. We can now put these estimates back to the model to
get the stochastic process describing the short rate rt.

3.3 The presence of a time-varying risk premium

Numerous empirical studies have emphasized on testing the Unbiased Forward
rate Hypothesis (hereafter the UFH) which implies that the forward rate is a rel-
atively accurate predictor of the future spot rates. With some restrictions, this
hypothesis is sometimes considered analogous to the Expectation Hypothesis,
which states that all market expectations eventually reflect actual fluctuations,
and also implies that market is “efficient”. Although the hypothesis can be
applied to any financial market indicator, the bulk of the research has been
focused on the exchange market so far.

Although there is significant support for the UFH across a wide range of
academics, almost as great are the evidence against it. To our best knowledge,
there exists a continuous debate of the validity of this theory. Macaulay (1938)
was among the first to test the UFH where he found no evidence to support
it. His study was in conjunction with (Culbertson, 1957; Shiller et al., 1983;
Fama and Bliss, 1987) and (Bekaert et al., 2001), all of whom partly rejected
the UFH. In these papers, forward rates are documented to be systematically
higher than realized spot rates by an amount known as ‘risk premium’ (also
called ‘term premium’ by some researchers since it is implied in the term struc-
ture of interest), which provides compensation for the risk borne when lending
over longer periods of time. In particular, Fama (1984) asserted that because
forward rates “contain not only information of future spot rates but also that
of a risk premium”, and that unadjusted variation in this premium could signif-
icantly reduce the predicting power of forward rates. He provided an intuitive
examination of the existence of this premium which caused the implied forward
rates to deviate from the long-term expectation of spot rates.

Gordon (2003) used a Kalman filter specification to produce time-varying
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estimates of the risk premium implied in the term structure. Gordon’s goal was
to estimate the observed difference between expected and realized interest rates.
He argued that while market interest rates might provide the best measure of
average expectations, they first need to be ‘disentangled’ from the term pre-
mium. He concluded that the volatile gap between forward rates and spot rates
is a result of changes in both interest rate forecasts and in the premia. This
research provided us with a tractable approach to estimating the term premium
as a supplementary for our main test.

4 Estimating time-varying parameters with
Kalman filter

4.1 Data description

Forecasts of risk-free interest rate, especially short-term rates, are always of
great interest to academics. In Australia, the 90-day bank bill rate is considered
the primary benchmark for interbank financing, and is one of the key financial
variables in the economy. It is a target instrument that the Reserve Bank use to
implement monetary policy and an important economic indicator for regulators
and governments. It is also a key variable for business since it forms the basis
of floating rate loans and most of the financial instruments that can be used to
manage interest rate risk. Moreover, longer-term interest rates reflect, at least
in part, the expected values of future short rates. For all these reasons, a good
model of the short-term interest rate is of great practical importance.

As one of the short-term interest rates, the Australian 90-day bank bill rate
is important because it affects economic activity through a number of channels.
Floating rates mortgages and fixed-income securities are often pegged against
it, so changes in the rate affects consumer income and spending. The rate can
also provide the basis for the risk-free rate used in capital asset pricing models,
thus affects corporate decision making. The short-term interest rate also affects
the exchange rate and money supply, which is impacted by, and also leads to
changes in inflation.

Within the scope of this paper we collected data of short-term rates including
90 days and 180 days and monthly bank bill rates. Data is collected from the
Data stream vendor and the Reserve bank of Australia. As mentioned in section
1, since the daily data is most likely incomplete (due to omission of weekends
and holidays), it is best used in regression type modelling. In contrast, the
monthly data series has a stable frequency, therefore is more suitable for a time
series approach. Presented in Table 1 are the descriptive statistics of these time
series.

There are no significant differences between the 90 days and 180 days time
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Table 1: Descriptive statistics of Australian 90 days and 180 days bank bill rates
(in percentage).

Daily Monthly
90 days 180 days 90 days 180 days

Mean 5.3494 5.4204 5.524423 5.5905
Standard Error 0.0220 0.0224 0.0714 0.0749
Median 5.4 5.42 5.335 5.405
Mode 5.41 5.69 4.92 4.72
Standard Deviation 1.0969 1.1160 1.1062 1.1609
Sample Variance 1.2032 1.2456 1.2237 1.3477
Kurtosis 0.2697 0.3695 -0.0287 0.2690
Skewness 0.2097 0.2215 0.4698 0.5717
Range 8.115 8.245 5.27 6.14
Maximum 8.115 8.245 8.37 9.15

Daily data range: 31 Dec 2001 - 07 Aug 2009 (2468 observations)
Monthly data range: Jul 1992 - Jun 2012 (240 observations)

series in terms of basic statistics such as mean, median or standard error. This
might indicates no difference in market expectation in the short term compared
to the mid term.

4.2 Results

Estimates from state space model: The model set up in this section follows
Bhar’s (1996) framework, in an attempt to estimate the time-varying parameters
of a model capturing the relationship between the implied forward rates and the
spot interest rates. For this project, I collect data of the daily 90-day and 180-
day Australian bank bill rate to compute the 90-day forward rates using the
“bill parity” formula:

[1 + f(i)t+j,t]
i

=
[1 + r(i+ j)t]

(i+j)

[1 + r(j)t]
j

, j > 0 (14)

where f(i)t+j,t is the i-period forward rate for future period t+ j.
Next I will set up a linear state space specification as follows:

• Measurement/signal equation:

rt = α1 + β1 ∗ ft + εt (15)

• State/transition equations:{
αt = αt−1 + η1t and βt = βt−1 + η2t

with η1t ∼ N(0, σ2
1) and η2t ∼ N(0, σ2

2)
(16)
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In this model: rt is the spot rate and ft is the implied forward rate; the initial
value of state variables are α0 ∼ N(0, σ2

α) and β0 ∼ N(0, σ2
β). To simplify the

notations, define αt = (α, β) as a 2x1 vector of unobserved state variables. Also,
set rt = yt = αt ∗Zt+ εt where Zt = (1, ft). Then define the mean and variance
matrix of the conditional distribution of αt as:

at|s = Es(αt)
Pt|s = Es[(αt − at|s)(αt − at|s)′]

By setting s = t − 1 we can obtain the one-step ahead mean at|t−1 and
variance Pt|t−1 (at|t−1 is the minimum MSE estimator of αt while Pt|t−1 is the
MSE of αt. We can form the one-step ahead estimate of the signal variable:
y′t = yt|t−1 = Et−1(yt) = E(yt|at|t−1) = at|t−1 × Zt.

The corresponding prediction error: ε′t = εt|t−1 = yt−y′t|t−1 and its variance

F ′t = Var(εt|t−1) = ZtPt|t−1Z
T
t +Var(εt). With this framework I have to provide

the initial value for the state variables and their variance matrix: α1|0 = 0
and P1|0 = 10, 000 (initial distribution of the SVs is diffuse prior). The final
estimated coefficients and root mean square estimates of the SV1 and SV2 (State
variables) are 3.618406, 0.247653 and 0.143754, 0.030583 respectively.2

Next, I use a Kalman smoothing technique to get the evolution of the state
variables: the fixed interval smoothing uses data sequence up to time period T
to form expectations at any period up to T .

• Smoothed estimates of states: α′t = at|T = ET (αt)

• Smoothed estimates of state variances: Vt = varT (αt)

• Smoothed estimates of the signal variables: y′t = E(yt|α′t) = Ztα
′
t

The results are shown as in Figure 1.

2Please See appendix for reference
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Figure 1: Graph of smoothed state estimates (α′t = at|T = ET (αt)). Blue curves
are the varying pattern of the state variables (α and β, both of which have a
confidence interval equals twice the length of the Root Mean Squared Errors
(red curves)). Sample period ranges from 31 Dec 2001 to 17 Oct 2011.

At the first glance we can see that the evolution of the two state variables
mirror each other relatively closely. There are some notable features about the
evolution pattern: the most visible feature is that the model’s parameters are
not constant overtime:

• At mid 2002, the value of α decrease close to zero, while that of β moving
up to 1. This is very adjacent to supporting the Unbiased Expectation
Hypothesis, which suggests the equality of the forward rates and future
spot rates.

• However, from mid-year 2008 to 2009, interest rate decrease sharply from
around 8% to 3 % (perhaps due to government large stimulation package
after the global financial crisis), corresponding with a decline of α and
increase of β. This result is consistent with the existence of a risk premium
suggested by (Fama, 1984) and generally does not support the Unbiased
Expectation Hypothesis.

Figure 2 shows the fitting of the 1-step ahead and smoothed forecast from the
estimated state space model. Both follow the actual data very closely, although
the smoothed method seems to perform better.
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Figure 2: Graphs of smoothed forecasts (green line) and one-period ahead fore-
casts (red line) for Australian 3-months interest rate. Sample period ranges
from 31 Dec 2001 to 17 Oct 2011.

Estimating risk premium: In their respective studies of New Zealand and
Australian markets, Guthrie et al., (1999); Krippner, (2002) have documented
a statistically significant term premium on money market rates. Bhar (1996)
also found a time-varying premium in Australian rates. None of these studies
have addressed the question of a time-varying premium in any detail, although
the literature suggest that a constant term premium is a reasonable assumption.
We used Gordon’s (2003) framework to estimate this premium with 3 specifica-
tions that assume different behaviour of the premium: constant, random walk
and mean reverting. To see which specification perform best, we used these
estimates to fit the 1-period ahead excess forward return. This will help us
determine whether the validity of the UFH is influenced by a time-varying term
premium.

Our result indicates the existence of a time-varying term premium on short-
term interest rates in Australia, and the premium appears to be best described
as slowly mean-reverting. This supports the findings of Gordon (2003). We
can see that the evolution of the excess forward return is similar to that of the
first state variable (α) in our time-variant specification. More importantly, it
appears that a model with changing term premium does explain the deviation
of the forward interest rate from the expected future rates much better than
the traditionally assumed constant premium model. A relevant finding is doc-
umented by Gravelle and Morley (2005) who estimated term premia displaying
significant time variation in Canadian market, and suggesting that the Expecta-
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tions Hypothesis is strongly rejected. Gravelle and Morley (2005) also provided
noteworthy methodology that could add more substance to our future works,
for instance the extended and modified Kalman filter specification accounting
for changes in interest rate volatility, possible permanent changes in term pre-
mia, and overlapping forecast errors. In particular, these authors documented
some evidence of a positive relationship between term premia and interest rate
volatility. Moreover, other macroeconomic and political factors are also impor-
tant, especially exchange rate volatility.

Forecast Random Walk Term Premium Forecast With Constant Term Premium

Forecast With Mean Reverting Term Premium

Figure 3: Forecasts of excess forward returns with different specifications of
term premium. Sample period ranges from 31 Dec 2001 to 17 Oct 2011.

Though not included in this paper’s objectives, identifying factors that in-
fluence the size or variability of the term premium provide motivation for future
researches. With respect to this matter, Chiang (1988); Hamburger & Platt
(1975) examined the effect of timing in monetary policies. I believe that the
argument of Demiralp (2008) regarding the effect of target interest rate on 3
month Treasury rate expectation provides a possible explanation of the empir-
ical results.
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5 Conclusion

Within this project’s scope, my modelling of continuous time term structure
starts out with the specification of a time series process for the instantaneous
spot interest. The no-arbitrage condition then permits the derivation of a bond
pricing formula whereby the bond price is a function of the unobserved instan-
taneous spot rate and the model’s parameters. Using the yields on zero-coupon
bonds as inputs for the estimation process, the CIR model can be estimated by
a MLE approach based on the Kalman filter.

In addition, the Kalman filter provide a strong framework to modelling
regression-type specification and allows us to estimate time-varying parame-
ters. This additional assumption could significantly enhance the model’s pre-
dictive power, especially when there is significant fluctuation in the short-term
rates during the sample period. The result indeed implies the existence of time-
varying state variables that explain for the rejection of the Unbiased Hypothesis.

The rejection of said hypothesis is believed by many to be a result of risk/term
premia which were not controlled for in this research. We then provide exam-
ination of an existing Australian term premium and find that it is a potential
source of variation in the expectation of interest rates. Our result confirms the
existence of varying premia in Australian term structure. This finding is in
line with studies of Fama (1984); Gordon (2003); Gravelle and Morley (2005).
However, the evidence presented the current paper is preliminary at best, and
further works on the topic of factors affecting the validity of UFH are needed.
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Appendix

Figure 4: Result of final 1-step ahead estimate of state variables. Sample period
ranges from 31 Dec 2001 to 17 Oct 2011.

15


