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Abstract 

American-style convertible bonds commonly contain the put 

provision that allows the investors to put or sell their holdings to the 

issuer at preset prices and dates. The embedded put option includes 

a free boundary in addition to the conversion boundary. Because of 

the correlation of two moving boundaries with the convertible price, 

the valuation of puttable convertible bonds remains a classical 

problem in quantitative finance. This paper presents the valuation 

model of puttable convertible bonds under the Black-Scholes 

framework. We distinguish between the conventional pricing model 

and the current work by the realization of a jump in the put price 

across the hitting time. The jump condition permits the derivation of 

two recombining differential systems and we explore the impact of 

jump effect on the pricing dynamic of this innovative financial 

derivative. 

Keywords:  Puttable convertible bonds, free boundary problem, jump 

conditions 
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Introduction 

Puttable securities have been issued in various forms by corporations in 

recent years, often motivated by the need to protect investors against a 

significant decline in the value of derivatives. The put provision in 

puttable convertible bonds (PCB) gives the investors the right to sell their 

investments back to the issuer at prespecified prices and dates and it 

helps to mitigate the effects of security mispricing (Brick, Palmon & 

Patro., 2015). The put clause protects the investors against any or all 

types of risk factors by lowering the exercise boundary in the stock price, 

below which it is optimal for the bondholder to exercise the put option 

(Błach & Łukasik, 2017; Elkamhi, Ericsson & Wang, 2012). This is in 
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addition to the upper exercise boundary, above which it is optimal for the 

bondholder to exercise the conversion feature. Because of the downside 

risk protection, PCB has become the most successful financial 

innovation in the convertible bond market during the last few years 

(Chemmanur & Simonyan, 2010). 

The predominant methods for pricing convertibles without put 

option are analytical methods (Nyborg, 2006; Zhu, 2006) and numerical 

methods (Yang, Yu, Xu & Fan, 2018; Barone-Adesi, Bermudez & 

Hatgioannides, 2003).  However, a significant proportion of convertible 

bonds issued after the celebrated work of McConnell and Schwartz 

(1986) has only a put option (Grimwood & Hodges, 2002). While it is 

interesting to understand what drives the issuance of PCB, little attention 

has been devoted to its valuation. Most recent works on PCB have 

focused on the qualitative rationales for its issuance (Brick et al., 2015; 

Chemmanur & Simonyan, 2010). 

PCB, being an American-style security, can be redeemed by the 

bondholder before maturity either by exercising the conversion or put 

privilege. The possibility of early conversion leads to a free boundary 

𝑆𝑓1, separating the region where it is optimal to hold the bond from the 

region where conversion is optimal. On the other hand, a rational 

investor seeks to maximize the value of PCB by his put right. Unless the 

stock price rises to a significant premium over the conversion price, 

investors may be better off exercising the put option than waiting to 

convert to equity. Such a financial decision creates an additional moving 

boundary 𝑆𝑓2. Apparently, the essential difficulty in valuing PCB lies in 

the fact that there are two unknown moving boundaries comprising the 

optimal exercise prices at the varying value of time which must be found 

as part of the solution. 

Economically, the exact location of the unknown free boundaries 

(critical asset prices) is crucial to the investors because most of the 

arbitrage opportunities are expected near the free regions. However, the 

conventional pricing methods, that is the PDE-based numerical methods 

and Monte Carlo simulation method, are less dependable due to the 

discontinuity along both moving boundaries. Thus, it is desirable to 

extend the current literature by further exploring some PCB properties 

that may help to put its valuation in the proper context. In the subsequent 

sections, we review the free boundary problem of a PCB and explore 
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some of its properties including the analysis of the behaviors of optimal 

exercise prices. The paper ends with the summary and concluding 

remarks in the last section. 

2. Reduced-form Model of PCB 

Before going into details, we shall make some necessary assumptions 

including but not limited to the usual Black-Scholes (1973) assumptions. 

However, some of these assumptions may be relaxed later to reflect 

advances in PCB trading. 

 The capital market is perfect; there is no transaction cost, no taxes, 

and the information is homogeneous. 

 Trading takes place continuously in time and no restrictions exist 

against borrowing or short sales. 

 The investors are rational, they prefer wealth to loss and will always 

elect to invest in the dominant assets. 

 The underlying stock price follows a lognormal diffusion process 

with constant volatility.  

 The term structure of interest rate is flat and non-stochastic. The 

instantaneous compounding risk-free of interest is 𝑟. 
 The dividend payment to the stockholders is continuous at a rate of 

𝐷0, and zero-coupon pay on bonds. 
 The PCB indenture allows for only `block conversion' of the bonds 

into issuing stocks and there is no senior debt. 

 Both the conversion and the put features are of American type which 

means that they can be exercised at any time up to bond maturity. 

 Credit risk (default) is neglected. 

Some of our assumptions demand further comments. Block 

conversion' suggests that all investors will convert at the same time when 

the condition of the optimal conversion strategy is met. However, under 

certain financial provisions, such as monopoly on convertible holdings 

or when there is additional subordinated debt, the conversion of one 

convertible can increase the value of those left unconverted (Dutordoir, 

Lewis, Seward & Veld, 2014). In such scenarios, it would seem plausible 

to make allowance for sequential conversion strategy. To simplify the 

analysis, we assume that the possession of all convertibles is diffused; 

each investor is a price-taker and that there is no debt junior to 

convertible bonds. Thus, only block conversion is considered. 

Furthermore, it is worth mentioning that the case of convertible bonds 
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with default risk has been studied extensively in the literature. 

Considering credit risk introduces additional complexity, and most of the 

recent research on convertible bonds is concerned with the interplay of 

credit and equity risk on their valuation. 

2.1.  Problem Formulation 

Let 𝑽(𝑺, 𝒕) denote the value of a PCB, which is a measurable function 

of the underlying stock price 𝑺 and time 𝒕. Under the risk-neutral 
measure, the lognormal diffusion process that the stock price follows is 

given by the equation (1). 

dS = (µ − D0)Sdt + σSdω   (1) 

where 𝑑𝜔 is a standard Wiener process, µ is the drift rate and 𝐷0 

is the continuous dividend rate. 

Following the no-arbitrage argument, it can be shown that the fair value 

of convertible bonds (CB) satisfies the Black-Scholes equation, 

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 + (µ − 𝐷0)𝑆
𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0, 0 < 𝑆 < 𝑆𝑓1, 𝑡 > 0     (2) 

Where 𝑆𝑓1  is the critical level of the asset price at which it is 
optimal from the holder's point of view to convert the bonds into 

underlying stocks. To uniquely determine the fair price of the bond and 

optimal exercise prices, equation (2) needs to be solved with a set of 

appropriate boundary conditions. 

2.2. Boundary Conditions 

PCB is a hybrid financial derivative with the properties of both bond and 

option, hence both points of view provide a boundary condition for its 

valuation. At expiry, the holder of a PCB can decide to redeem it at face 

value 𝒁 or convert it to n units of underlying stock, ‘𝒏’ being the number 
of shares of the issuer's common stock into which convertibles can be 

converted (also known as conversion ratio). Therefore, the payoff at 

maturity reads. 

𝑉(𝑆, 𝑇) = max (𝑛𝑆, 𝑍)   (3) 

The premature termination of the contract is at the discretion of 

the bondholders who have both the put and conversion privileges. The 

conversion right allows the investor to convert the bonds into underlying 

stocks any time prior to and on the expiry date. Following the argument 
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of McConnell and Schwartz (1986), the value of the convertibles always 

stay equal to or above the conversion value (also known as parity), that 

is, the value of the investment is worth at least as much as the conversion 

value. We represent this constraint by the equation (4). 

𝑉(𝑆, 𝑡) ≥ 𝑛𝑆  𝑓𝑜𝑟 0 ≤ 𝑆≤ 𝑆𝑓1, 𝑡 ≥0   (4) 

The conversion privilege creates an upper boundary. When the 

investors decide voluntarily to convert the bond into shares, the value of 

the bond equals the parity. Otherwise, there could be an arbitrage 

opportunity. The optimal conversion conditions imply that at each point 

in time t, there is a value of 𝑆  𝑆𝑓1(𝑡)  which marks the boundary 
between the holding region and the conversion region. Therefore, the 

boundary condition at 𝑆 𝑆𝑓1(𝑡) is given by the equation (5). 

𝑉(𝑆𝑓1(𝑡) , 𝑡) = 𝑛𝑆𝑓1(𝑡),      
𝜕𝑉

𝜕𝑆
(𝑆𝑓1(𝑡) , 𝑡) = 𝑛    (5) 

Since 𝑆 is unknown in this region, a smooth-pasting condition is 
needed for determining the unknown boundary. In convertible trading, a 

possible scenario of condition (5) would be when PCB is in-the-money, 

that is, the underlying share price has increased greatly and is trading 

higher than the conversion price, then the price of PCB converges more 

and more towards conversion value. Let 𝐾 denote the put price (assumed 
constant) and guaranteed repayment if the put right is exercised by the 

holder. As previously stated, the extra put clause reduces the investors’ 

incentive distortions by allowing them to obtain a fair return if they 

observe that the firm is engaging in sub-optimal investment policies. 

Therefore, the bond stays alive only if its value is at least equal to the put 

value. This constraint is represented by the equation (6). 

𝑉(𝑆, 𝑡) ≥ 𝐾  𝑓𝑜𝑟 0 ≤ 𝑆≤ 𝑆𝑓2, 𝑡 ≥0   (6) 

Under the assumption of a complete capital market, finance 

theory predicts that the put right will be exercised optimally by the 

bondholder when the value of the convertible is equal to the put value. 

Contrary to the conversion strategy, which acts as an upper boundary, the 

optimal put strategy places a lower free boundary given by the equation 

(7). 

𝑉(𝑆𝑓2(𝑡) , 𝑡) = 𝐾,      
𝜕𝑉

𝜕𝑆
(𝑆𝑓2(𝑡) , 𝑡) = 0  (7) 
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Financially, such a boundary condition implies that the 

convertible would be of the same value as the put value under adverse 

market conditions, such as falling of the stock price, rising issuer credit 

risk and interest rate. The put provision raises the bond floor, that is, the 

value of the convertibles if it were stripped of the possibility of 

converting into underlying shares. Apparently, convertible bonds with a 

put feature are worth more than those without the provision provided the 

put privilege is effective. However, if an issuer has a severe liquidity 

crisis, he may be incapable of paying for the bonds when the investors 

wish. Furthermore, the conditions (4) and (6) suggest that at each point 

in time there are in general two distinct stock prices where downside and 

upside constraints become binding. These limiting stock prices are 

unknown and must be determined as part of the solution. In fact, they are 

unknown boundaries beyond which the governing equation (2) does not 

apply. 

The valuation problem of a PCB is now completely defined by 

a differential system composed of equations (2), (3), (5), and (7) on the 

domain [0, 𝑆𝑓1] × [0, 𝑇]. (2). This can be written as a closed differential 
system as follows, 

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ (µ − 𝐷0)𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0, 0 < 𝑆 < 𝑆𝑓1,

𝑡 > 0 

𝑉(𝑆, 𝑇) = max (𝑛𝑆, 𝑍)  

𝑉(𝑆𝑓1(𝑡) , 𝑡) = 𝑛𝑆𝑓1(𝑡)  

𝜕𝑉

𝜕𝑆
 (𝑆𝑓1(𝑡) , 𝑡) = 𝑛     (8) 

𝑉(𝑆𝑓2(𝑡) , 𝑡) = K  

𝜕𝑉

𝜕𝑆
 (𝑆𝑓2(𝑡) , 𝑡) =0  

The location of the optimal conversion boundary 𝑆𝑓1 at expiry is 

given by the equation (9). 

𝑆𝑓1(𝑇) = 𝑚𝑎𝑥 (
𝑍

𝑛
,

𝜌𝑍

𝑛𝐷0
 )   (9) 



Adegboyegun, B. J.                                   25 

                         Volume 1 Issue 1; February 2019 

where 𝜌 is the rate of continuous coupon payment on bond. Since 𝜌 =

 0 in the current paper, equation (9) can be written as 𝑆𝑓1(𝑇) =
𝑍

𝑛
. 

3. Some Properties of the Puttable Convertible Bonds 

In PCB trading, investors seek to maximize the value of their investment 

with the put privilege. Thus, it is optimal for the investor never to 

exercise the embedded put option when the convertibles’ fair value is 

higher than the put value 𝑲. The value 𝑽 (𝑺, 𝒕) of PCB must satisfy the 
constraint (6).  Equivalently, at any time 𝒕 , 𝑲 ≤  𝑽 (𝑺, 𝒕) . Now, we 
define the optimal exercise prices 𝑺𝒇𝟏(𝒕)  and 𝑺𝒇𝟐(𝒕)  as measurable 

functions of 𝑺 and 𝒕 by the equations. 

𝑆𝑓1(𝑡) = {(𝑆, 𝑡)|𝑉(𝑆, 𝑡) = 𝑛𝑆} 

𝑆𝑓2(𝑡) = {(𝑆, 𝑡)|𝑉(𝑆, 𝑡) = 𝑛𝑆} 

In the absence of counterparty risk, for the optimal put boundary 

we have 𝑆𝑓2(𝑡) = [𝑂, 𝑆�̅�2], where 𝑆�̅�2 = sup {𝑆|𝑆 ∈ 𝑆𝑓2}. 

Let 𝑡c be the hitting time of the critical put price 𝑆𝑓2;  𝑡c is the 

corresponding value of time 𝑡  at which the premium or insurance 
associated with the put option becomes worthless. Thus, at the instant 𝑡c 
and beyond, the put option becomes inactive. Clearly, 𝑡c is the minimum 
value of time satisfying 𝑉 (0, 𝑡)  ≥  𝐾 . The term 𝑍𝑒−𝑟(𝑇−𝑡) , which 

denotes the discounted cash flows coming from the convertible, becomes 

the effective lower boundary at instant 𝑡 >  𝑡c. Hence, it will be sub-
optimal for an investor to put the convertible after 𝑡 c because the 
discounted cash flow at that instant is higher than the put value. 

Following the optimal strategy of PCB, at instant 𝑡 c the value of the 
convertible is equal to the put value. Therefore, one could determine 𝑡c 
explicitly as 

𝑡𝑐 = 𝑇 −
1

𝑟
ln

𝑍

𝐾
   (10) 

It is seen in equation (10) that 𝑡c is sensitive to interest rate, the 
tenor of the contract and the ratio of cash flows coming from the 

convertible. When 𝑍/𝐾 ≥ 1, the put clause is rendered redundant and 
the bond behaves just like the standard CB. However, when 𝑍/ 𝐾 <  1, 
𝑡𝑐 exceeds 𝑇, which is financially impracticable since put price is worth 
at most equal to the principal. In PCB trading, the new-found equation 
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(10) would not only be important for numerical computation but also has 

some financial advantages in that PCB under different bond parameters 

could be easily compared. The longer 𝑡𝑐 becomes, the more valuable the 

embedded put option is. 

a) Proposition 1. The value of a PCB, 𝑉 (𝑆, 𝑡) satisfies the inequalities 

𝑉 (𝑆, 𝑡)  ≥  �̅� (𝑆, 𝑡)  for all 𝑆  and 𝑡  where �̅� (𝑆, 𝑡)  is the value of a 

non-PCB (convertible bonds without put feature). 

Proof. The indenture of an ordinary CB entitles the investors only to the 

incentive from converting the convertibles to stock before maturity, 

whereas, that of PCB entitles the investors to incentives from both put 

and conversion rights. Then 𝑉 (𝑆, 𝑡)  ≥  �̅� (𝑆, 𝑡)  can be immediately 
followed with the constraint 𝑉 (𝑆, 𝑡)  ≥  𝑛𝑆  for a non-PCB and 
𝑉 (𝑆, 𝑡)  ≥  𝑚𝑎𝑥(𝐾, 𝑛𝑆) for a PCB. 

b) Proposition 2. For the optimal put boundary, 𝑆�̅�2 , the relationship 

𝑆�̅�2 <
𝐾

𝑛
 must hold. 

Proof. We shall assume that there exists an optimal put boundary, say �̃� 
such that �̃�  ≥  𝐾/𝑛 ∀ 𝑡. This implies that when the stock price reach �̃�, 
the put right will be exercised. From the definition of 𝑆𝑓2, when the put 

right is exercised optimally, we have 𝑉 (�̃�, 𝑡)  =  𝐾  for some �̃�  ≥
 𝐾/𝑛. On the other hand, if the put boundary 𝐾/𝑛 is chosen, CB will not 
be put and 𝑉 (�̃�, 𝑡)  >  𝐾  for �̃� ≥  𝐾/𝑛 . The optimal put boundary �̃� 
does not result in the maximum value of CB. Hence, �̃� cannot be the 
optimal put boundary. This means that the optimal put boundary must 

satisfy 𝑆𝑓2  <  𝐾/𝑛. 

c) Proposition 3.  At maturity, the critical asset price 𝑆𝑓1 of the optimal 

conversion boundary of a PCB which satisfies 𝑆𝑓1(𝑇) = 𝑚𝑎𝑥 (
𝑍

𝑛
,

𝜌𝑍

𝑛𝐷0
). 

Proof. First, we need to incorporate coupon payment into 

equation (2). To achieve this, we define 𝑄 =  𝜌𝑍  as the total coupon 
payment and suppose that in every time interval (𝑡, 𝑡 +  𝑑𝑡)  the 
bondholder will receive coupon payment amounting to 𝑄𝑑𝑡. Then, we 
must add 𝑄𝑑𝑡 to the change in the value of the portfolio and equation (2) 
can be modified as follows, 

𝜕𝑉

𝜕𝜏
=

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 + (µ − 𝐷0)𝑆
𝜕𝑉

𝜕𝑆
− 𝑟𝑉, 0 < 𝑆 < 𝑆𝑓1, 𝜏 > 0      (11) 
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where 𝜏 =  𝑇 − 𝑡 is defined as the time of expiry. At expiration, 
for 𝑆 >  𝑍/𝑛 , we have 𝑉 (𝑆, 0)  =  𝑛𝑆𝑓1 . When 𝜏 →  0+ , and 𝑆 >

 𝑍/𝑛, by the continuity of PCB. 

𝑉 (𝑆, 0+)  =  𝑛𝑆𝑓1       (12) 

When the convertible is alive, it satisfies the governing equation 

(11). By substituting 

(12) into (11), we have 

𝜕𝑉

𝜕𝜏|𝜏=0+
=  −𝑛𝐷0𝑆𝑓1  +  𝜌𝑍 ≤  0      (13) 

On the other hand, for 𝑆 <  𝑍/ 𝑛 , we are in the continuation 
region. At expiry, 𝑉 (𝑆, 0)  =  𝑍 . Where 𝜏 →  0+ , 𝑉 (𝑆, 0+)  will be 
determined by equation (11). As in the continuation region, the 𝑉 (𝑆, 𝜏) 
is always above the conversion value 𝑛𝑆. To keep it alive until expiry, 
we have 

𝜕𝑉

𝜕𝜏|𝜏=0+
≥0    (14) 

The value of 𝑆  at which 
𝜕𝑉

𝜕𝜏|𝜏=0+
  changes sign satisfies 𝑆𝑓1 =

𝜌𝑍

𝑛𝐷0
. As 

𝜌𝑍

𝑛𝐷0
 lies in the interval 𝑆 >  𝑍/𝑛  only when 𝜌 >  𝐷0, if 𝜌 ≤

 𝐷0 , the changing sign point will become 𝑆𝑓1  =  𝑍/ 𝑛 . The optimal 

conversion price 𝑆𝑓1(0+)  is given by the underlying value at which 
𝜕𝑉

𝜕𝜏|𝜏=0+
changes sign. We then obtain 𝑆𝑓1(0+) by solving the following 

equation. 

𝑆𝑓1(0+) = 𝑚𝑎𝑥 (
𝑍

𝑛
,

𝜌𝑍

𝑛𝐷0
)   (15) 

3.1. Remarks 

It should be remarked that the proof of proposition (3) exists in literature 

about convertibles. It is, however, reproduced here for completeness of 

the current work. Also, it should be reminded that ρ   0 in the current 

paper. 

To this end, it is worth noting that the optimal put and conversion 

boundaries are applicable in exactly opposite scenarios (that is 

decreasing and increasing claim value). The interactions between them 
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are yet to be fully examined. Johnson (2003) quantitatively showed that 

both boundaries are independent at maturity and their mutual interaction 

is not significant over the life of the bond. Although his first assertion is 

obvious since the optimal put price is zero at the instant 𝑡𝑐 and beyond, 

however, the results in the subsequent sections do not support his second 

claim. These and some interesting yet not-well recognized properties of 

PCB will be examined subsequently. 

3.2.  Effective and Non-Effective Put Privilege 

Imagine that when the put price K is sufficiently low, say 𝐾 ≤  𝑍𝑒−𝑟𝑇 

where 𝑇 denotes the tenor of the contract, there is no incentive for the 
bondholder to redeem the convertibles under adverse market conditions 

so that the put clause is rendered redundant. In such a scenario, the 

embedded put privilege is non-effective and PCB simply resembles the 

usual standard CB. On the other hand, when K is sufficiently high one 

may foresee the early redemption of PCB prior to conversion. However, 

in financial practice, put price is always less than the face value, that is, 

𝐾 <  𝑍 . If 𝐾  were to greater than 𝑍 , then 𝑍  would be rendered 
worthless since an investor can always put the convertibles prior to 

maturity to avoid receiving 𝑍 . Interestingly, the put value could be 
sufficiently high and yet the additional privilege remains non-effective. 

A possible scenario would be when PCB is issued by firms with 

positive private information (the firms assess a lower probability of their 

put option being exercised as compared to overvalued firms). According 

to Chemmanur and Simonyan (2010), the firm can have information 

superior to investors about future earnings and cash flows (and, as such, 

about the intrinsic value of its equity). In this case, a firm whose equity 

is currently undervalued relative to its intrinsic value is more likely to 

bundle a put option when issuing a convertible debt. Though the put 

value could be sufficiently high, the investors are not likely to put the 

bond since there is an upside potential in equity. Thus, the put right 

becomes non-effective. 

4. Behaviors of the Optimal Exercise Boundaries 

4.1. Optimal Conversion Boundary 

The optimal conversion boundary 𝑆𝑓1, which comprises the critical asset 

price for optimal conversion at varying time, has been studied in the 

literature (Zhu, 2006; Zhu & Zhang, 2012). 𝑆𝑓1 decreases monotonically 
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with time, more rapidly near expiry, and finally approaches the 

conversion price at expiry. Close to the contract expiration date, 𝑆𝑓1 

changes drastically which results in a very large gradient. For a zero-

coupon PCB, the dividend on the underlying asset and unfavorable 

change in conversion terms are the major factors affecting the optimal 

exercise price, 𝑆𝑓1 . If 𝐷0  →  0 , PCB is worth more alive than 

conversion, in fact, the conversion right becomes worthless and 𝑆𝑓1  →

∞. Financially, early conversion leads to the loss of the insurance value 

associated with the embedded conversion privilege but results in no gain 

from the earlier possession of shares. However, if we relax our earlier 

assumption on the conversion ratio, any unfavorable change in 

conversion terms can be expressed in terms of reduced parity. A 

reduction in the conversion ratio may cause discontinuity in the free 

boundary. Consequently, it is optimal for investors to convert voluntarily 

before the change of conversion terms. On the other hand, in a coupon 

payment PCB, the cash flow advantage is crucial to an investor in 

decision making and this may subsequently affect the behavior of the 

critical conversion price. When the coupon earned on the bond is much 

higher than the dividend on the shares, it may be sub-optimal for an 

investor to convert prior to maturity. 

Proposition. The underlying asset of a zero-coupon PCB can be traded 

for conversion value at expiry, that is, Sf1(T)  =  Z/n 

Proof. The prove of proposition (4) follows from the proof of proposition 

(3). 

4.2.  Optimal Put Boundary 

The optimal put boundary, 𝑆𝑓2, consist of time varying put price. Studies 
involving the behavior of optimal put boundary are quite limited in 

literature. Thus, this work may form the basis for further studies in this 

area. Like the 𝑆𝑓1, 𝑆𝑓2 decreases monotonically with time, more rapidly 

near 𝑡𝑐, and finally approaches zero at 𝑡𝑐. It should be noted that, for all 

𝑡 <  𝑡𝑐, 𝑆𝑓2 decreases with time and its non-zero value is to be found as 

part of the solution, and for 𝑡 ≥  𝑡𝑐, 𝑆𝑓2  =  0. Obviously, 𝑆𝑓2 drops to 

zero at 𝑡𝑐  and such a drop constitutes a jump in the critical put price. 

When such behavior occurs in financial literatures, it always leads to an 

interesting academic exercise. Hence, it is expedient to investigate the 

effect(s) of the inevitable jump on the pricing dynamic of PCB. 
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4.3. Jump Conditions for Puttable Convertible Bonds 

The jump conditions arise when there is a discontinuous change in one 

of the independent variables affecting the claim value of derivative 

security. In the problem defined above, jump condition arises as a result 

of discontinuous change in put price. The condition relates the value of 

PCB across 𝑡𝑐. Suppose we denote 𝑡𝑐
− and 𝑡𝑐

+ as the instants right before 

and after 𝑡𝑐 , as mentioned previously, the optimal put price 𝑆𝑓2 

experiences a jump in value across 𝑡𝑐. The no-arbitrary pricing theory 

however requires that the claim’s value should remain continuous. 

Therefore, for any fixed 𝑆𝑓2 , the value of PCB remains continuous 

across 𝑡𝑐, and we have the equation  

𝑉 (𝑆, 𝑡𝑐
− )  =  𝑉 (𝑆, 𝑡𝑐

+ )   (16) 

Following the equation (16) and using the value of 𝑡𝑐 obtained 

from equation (10), we can effectively solve the pricing problem of PCB. 

To achieve this, consider dividing the domain [0, 𝑇]  into two parts, 
[0, 𝑡𝑐

− ]  and [𝑡𝑐
+ , 𝑇] . Between the two-time sub-domain 𝑉 (𝑆, 𝑡 ) is 

constant. Hence, it is a reasonable idea to solve the differential system 

(8) in two stages. The first stage in [𝑡𝑐
+ , 𝑇]  and the second stage in 

[0, 𝑡𝑐
−]. The solution obtained in the first stage will provide the terminal 

condition for the PDE system and in the second stage through the jump 

condition (16). Therefore, the free boundary problem of PCB can be 

expressed equivalently by recombining two PDE systems as follows,  

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ (µ − 𝐷0)𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0, 0 < 𝑆 < 𝑆𝑓1,

𝑡 > 𝑡𝑐 

𝑉(𝑆, 𝑇) = max (𝑛𝑆, 𝑍) 

𝑉(𝑆𝑓1(𝑡) , 𝑡) = 𝑛𝑆𝑓1(𝑡) 

𝜕𝑉

𝜕𝑆
 (𝑆𝑓1(𝑡) , 𝑡) = 𝑛   (17) 

 lim
𝑆→0

𝑉 (𝑆, 𝑡)  =  𝑍𝑒−𝑟(𝑇−𝑡) 

and 

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ (µ − 𝐷0)𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0, 0 < 𝑆 < 𝑆𝑓1,

𝑡 < 𝑡𝑐 
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𝑉 (𝑆, 𝑡𝑐
− )  =  𝑉 (𝑆, 𝑡𝑐

+ ) 

𝑉(𝑆𝑓1(𝑡) , 𝑡) = 𝑛𝑆𝑓1(𝑡) 

𝜕𝑉

𝜕𝑆
 (𝑆𝑓1(𝑡) , 𝑡) = 𝑛 (18) 

 𝑉(𝑆𝑓2(𝑡) , 𝑡) = K 

𝜕𝑉

𝜕𝑆
 (𝑆𝑓2(𝑡) , 𝑡) = 0 

Clearly, equation (17) shows that at the given time to expiry, the 

two-unknown boundaries are independent and there is no significant 

relationship between 𝑆𝑓1  and 𝑆𝑓2  for any 𝑡 ∈ [𝑡𝑐
+ , 𝑇] . These findings 

agree with the empirical analysis in literature. However, for equation 

(18), the numerical result obtained from (17) becomes its final condition 

through the jump condition (16). Also, the relationship between both 

boundaries is well pronounced because both boundaries are needed to 

properly close the PDE system. 

5. Conclusions 

We have presented two recombining PDE systems for pricing PCB. Our 

findings in this work are of great practical significance in quantitative 

finance as the results form the basis for developing the popular integral 

equation solution approaches. Moreover, with these findings the 

asymptotic behavior of the two optimal exercise boundaries near 

redemptions can be explored. Finally, our results reveal that the widely-

used classical numerical methods might not price PCB efficiently 

because of the jump effects. Thus, it is essential for the market 

practitioners and researchers to be aware of the jump associated with the 

put price of PCB. Subsequent research could explore the integral 

equations pricing methods and asymptotic behavior of the moving 

boundaries. 
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