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Abstract 

Metal organic networks (MONs) are defined as one, two and three dimensional unique complex 
structures of porous material and subclass of polymer’s coordination. These networks also show 
extreme surface area, morphology, excellent chemical stability, large pore volume, highly crystalline 
materials. The major advantages of MONs are tailorability, structural diversity, versatile applications, 
highly controllable nano-structures and functionality. So, the multi-functional applications of these 
MONs are made them more helpful tools in many fields of science in recent decade. In this paper, we 
light on the two different MONs with respect to the number of increasing layers of metal and organic 
ligands together. We define the novel multiplicative Zagreb connection indices (ZCIs) such that 
multiplicative fourth ZCI and multiplicative fifth ZCI. We also compute the main results for 
multiplicative Zagreb connection indices of two different MONs (zinc oxide and zinc silicate).  
 
Keywords: Connection number, multiplicative Zagreb indices, metal organic networks 
 

1. Introduction 

Metal organic networks (MONs) are most popular chemical compounds which consist of metal ions 
and organic ligands. These networks have large pore diameters, intensive surface areas and giant pore 
volumes. A variety of MONs is presented in modern chemistry. Therefore, zinc based MONs could be 
modified into devices for luminescent characteristics, see [1]. The electron-rich T-conjugated 
fluorescent ligands are friendly to construct Zn based MONs through nucleophilic properties in 
efficient luminescent sensors, see [2]. MONs are widely used in gas and energy storage devices, 
assessment of chemicals, separation and purification of different gasesm, sensing, , heterogeneous 
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catalysis, environmental hazard, adsorption analysis, toxicology, biomedical applications and 
biocompatibility. The cancer imaging, drug delivery and biosensing have been cured with the help of 
biomedical applications of zinc based MONs. So, the physical stability and mechanical properties of 
these networks have become a theme of useful content due to the abovementioned specifications. 
 
In non-linear optically active MON +2Zn  is commonly used as a connecting point to prevail undesired 
d-d transitions in the visible region. The toxicology, biomedical applications and their biocompatibility 
are currently reported production procedures of zinc based MONs, see [3]. Eddaoudi et al. [4] discussed 
the isoreticular series (IRMOF-1 to IRMOF-16) of 16 highly crystalline materials.  The fixed and free 
diameter of pores from IRMOF-1 to IRMOF-16 varies in the range of 3.8-19.1 0A and 12.8-28.8 0A , 
respectively. All the IRMOFs considered as the ordinary topology of )13(6CaB  and happened through 

the prototype IRMOF-1 which exists oxide-centered OZn4  tetrahedron. Some IRMOF such as 
IRMOF- (8, 10, 12 and 16) have been seen in non-crystalline porous networks for 2SiO  xerogels and 
aerogels (16). For more informations, we refer to [5-7]. 
 
MONs also predicts the physico-chemical properties such as impregnating suitable active material [8], 
grafting active groups [9], ion exchange [10], post synthetic ligand [11], changing organic ligands and 
biosensors enhancing sensitivity, response time and selectivity [12]. Lin et al. [13] (2009) presented 
the MONs related applications such as photo-catalysis, sensing, electro-catalysis, catalyst for 
production of fine chemicals and super-capacitors. The versatile applications of MONs are delivery of 
drugs [14], adsorption [15], storage of gases [16-18], sensing [19], catalysis for the separation and 
purification [20-21]. 
 
Graph theory provides beneficial tools  in the field of moderm chemistry and pharmacology which 
depict the physical and chemical properties of chemical compounds such as heat of evaporation, flash 
point, heat of formation, boiling point, melting point, temperature, pressure, tention, partition 
coefficient, density, and retention in chromatography, see [22-24]. The very famous degree based TI 
was firsly discussed by Gutman and Trinajstić in 1972 to check the chemical physibility for the total 
π-electron energy of the chemical compound [25]. So, these topological indices (TIs) are one of the 
tabular (or numeric) tools which show biological, chemical and physical properties of chemical 
compounds. Awais et al. [26] (2020) studied two different MONs )(1 pMON  and )(2 pMON , where 

2≥p  with the help of generalized indices and their connection indices. Hong et al. [27] used these 
MONs to compare for chemical suitability among some well-known degree based TIs. Recently, 
Nadeem et al. [28], Haoer [29] and Kashif et al. [30] also used thses MONs in the shape of line graphs 
& studied some physical properties of these MONs of line graphs for different TIs, computing 
neighborhood and M-polynomials for different TIs. For more knowledge about MONs insight of TIs, 
we prefer to [31-33].  
 



 

Tang et al. [34] (2009) used the concept of connection number which defined Gutman and Trinajstić 
in [25] to compute Zagreb connection indices of the subdivision based operations on networks. Now-
a-days, these degree and connection number based TIs are abundantely used in the topological 
properties of four-layered neural networks, see [35]. Javaid et al. [36] and Liu et al. [37] computed 
these TIs of rhombus silicate & rhombus oxide networks and cellular neural networks. Javaid & Jung 
[38] and Raheem et al. [39] computed M-polynomial based TIs of silicate & oxide networks and 2D-
lattice of three-layered single-walled titania nanotubes. Moreover, Zhao et al. [40] computed reverse 
degree based TIs of zinc based MONs. Moreover, a variety of networks has been defined by using 
connection number (or leap degree) based TIs, see [41-47]. 
In this paper, we define the multiplicative fourth ZCI and multiplicative fifth ZCI. We also discuss 
multiplicative first ZCI, multiplicative second ZCI and multiplicative third ZCI. We compute 
abovementioned multiplicative ZCIs of two different MONs such as zinc oxide (ZNOX (p) =IRMOF-
10) and zinc silicate (ZNCL(p)=IRMOF-14) networks with respect to the increasing layers 1≥p , 
taking both metal nodes and linkers together. The rest of the paper is designed as: section II gives the 
preliminaries and definitions, Section III gives the main results for different MONs (zinc oxide and 
zinc silicate) and Section IV gives conclusions. 
 

2. Preliminaries 
The vertex and edge sets are V(G) and E(G) for simple and connected network G. A network is 
connected if their exists no loops and multiple edges. |V(G)| and |E(G)| are the cardinalities of vertex 
set and edge set which are equal to u and v, respectively. A path between two vertices generates a 
connected network. The distance between two vertices m and n is the shortest path between them. It is 
denoted by ),( nmdG . The length of shortest and longest paths between m and n is called m-n geodesic 

and detour respectively. In general [48], }),();({)/( qnmdGVmqnNG =∈=  is the open q-

neighborhood set of n, where q represents a positive integer and )/(|)/(| qndqnN GG =  is called q-

distance degree of a vertex n. In particular , If 1=q , === )(|)1/(|)1/( ndnNnd GGG degree of n 

(number of vertices at distance one from particular vertex n). If 2=q , === )(|)2/(|)2/( nnNnd GGG τ
connection number of n (number of vertices at distance two from particular vertex n). A network 
becomes chemical if it holds graphical terms vertex and edge equal to chemical terms atom and bond, 
respectively. In chemical networks, the degree of any vertex is at most 4. For more chemical 
terminologies, we suggest to see [49]. 
 
Definition 2.1. For a (molecular) network G, the first Zagreb index ))(( 1 GM , second Zagreb index 

))(( 2 GM  and third Zagreb index ))(( 3 GM  are defined as 
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These degree based TIs are introduced by Gutman, Trinajstić, Ruscic and Furtula, see [25], [50-51]. 
These are abundantely used to predict better findings in molecular networks such as ZE-isomerism, 
absolute value of correlation coefficient, entropy, acentric factor, heat capacity, density, volume, 
temperature, boiling point, accentric factor and entropy [52-53]. 
 

Definition 2.2 (see [54]). For a (molecular) network G, the first multiplicative Zagreb index ))(( 1 GMZ  
and second multiplicative Zagreb index ))(( 2 GMZ  are defined as 
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Definition 2.3 (see [55]). For a (molecular) network G, the first multiplicative Zagreb index ))(( 1 GMZ  
is also defined as 
                                   ∏
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Definition 2.4. For a (molecular) network G, the first Zagreb connection index ))(( 1 GZC , second 

Zagreb connection index ))(( 2 GZC  and modified first Zagreb connection index ))(( *
1 GZC  are defined 

as 
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These connection based TIs are defined by Ali and Trinajstić [56] (2018). They also reported that these 
connection based TIs are more correlated among the thirteen physicochemical properties of octane 
isomers than classical Zagreb indices. 
 
Definition 2.5. For a (molecular) network G, the first multiplicative ZCI ))(( 1 GMZC , second 
multiplicative ZCI ))(( 2 GMZC , third multiplicative ZCI ))(( 3 GMZC  are defined as 
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These connection based multiplicative Zagreb indices are defined by Haoer et al. [57]. They used these 
multiplicative versions by the same sense which named as multiplicative leap Zagreb indices.  
 
Definition 2.6. For a (molecular) network G, the fourth multiplicative ZCI ))(( 4 GMZC  and fifth 
multiplicative ZCI ))(( 5 GMZC  are defined as  
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Definition 2.7. Zinc Oxide Network (ZNOX(n)):  A chemical compound zinc oxide (ZnO) is 
insoluble in water which is inorganic compound of white powder shape and density 5.61 g/c 3m . The 
zinc oxide is heated with carbon (coke) who reduces to the metal vapor to condense the liquid from 
which the solid metal freezes. 

)()()()( ggss COZnCZnO +→+  

Zinc is a reactive metal to produce hydrogen gas  and zinc ion ( +2Zn ). It also reduces those metal ions 
whose reduction potentials are greater than +2Zn .  Zinc oxide is mostly used in making glazes , rubher, 
enamels, photoconductive surfaces, pigment in white paint, and protective coating for other metals. 
Zinc oxide related MON is 34 )(BPDCOZn  which is also known as IRMOF-10. IRMOF-9 is a catenated 

version of IRMOF-10. IRMOF-10 is three dimensional cubic networks with pore size 16.7/20.2 0A in 
diameter, see [58]. The MON of zinc oxide of dimention 1 is presented in Figure 1.  
 

 

 

 

 

 

 

 

                                       



 

                       Figure 1: Metal Organic Network (ZNOX(p) R≅ ). In particular p=1. 
 

Let ≅R ZNOX(p) be the metal organic (zinc oxide) network of dimention p in the plane, see Figure 1. 
The partition of R with respect to vertex set V( R ) and edge set E( R ). We can easily see that each 
vertex of degrees and connection numbers sets are { }4,3,2  and { }8,5,4,3,2  respectively. We have V1 = 
{n ∈ V ( R )| 𝑑𝑑𝑛𝑛 = 2}, V2 = {n ∈ V ( R )| 𝑑𝑑𝑛𝑛 = 3} and V3 = {n ∈ V ( R )|𝑑𝑑𝑛𝑛 = 4}, where | V1| = 42p +30, 
| V2| = 26p +14 and | V3| = 2p +2. So,    |V( R )|  = |V1 |+ | V2 | + | V3| = 70p + 46. The partition of 
vertices with respect to connection number are V1 = {n ∈ V ( R )|, 𝜏𝜏𝑛𝑛 = 2}, V2 = {n ∈ V ( R )| , 𝜏𝜏𝑛𝑛 = 3}, 
V3 = {n ∈ V ( R )| 𝜏𝜏𝑛𝑛 = 4}, V4 = {n ∈ V ( R )| 𝜏𝜏𝑛𝑛 = 5} and V5 = {n ∈ V ( R )| 𝜏𝜏𝑛𝑛 = 8}, where | V1| = 
2p+6, | V2| = 28p+20, | V3| = 30p+10, | V4| = 8p+8 and | V5| = 2p+2. So,  |V ( R )| = | V1| + | V2| + | V3| 
+ | V4| + | V5| = 70p + 46. Now, the partition of vertices with respect to degrees and connection numbers 
are V1 = τ,dV = 2,2V ={n ∈ V ( R )| 𝑑𝑑𝑛𝑛 = 2, 2=nτ }, V2 = 3,2V ={n ∈ V ( R )| 𝑑𝑑𝑛𝑛 = 2, 3=nτ }, V3 = 4,2V ={n 

∈ V ( R )| 𝑑𝑑𝑛𝑛 = 2, 4=nτ }, V4 = 4,3V ={n ∈ V ( R )| 𝑑𝑑𝑛𝑛 = 3, 4=nτ }, V5 = 5,3V ={n ∈ V ( R )| 𝑑𝑑𝑛𝑛 = 3, 5=nτ

} and V6 = 8,4V ={n ∈ V ( R )| 𝑑𝑑𝑛𝑛 = 4, 8=nτ }, where | V1| = 8p, | V2| = 50p +1,  | V3| = 14p, | V4| = 22p 

+1, | V5| = 16p and | V6| = 4p,  So,    |V( R )| = |V1 |+ | V2 | + | V3|+ | V4|+ | V5|+ | V6| = 114p +2. These 
vertex partitions are presented in Tables 2.1, 2.2 and 2.3. 

Table 2.1: Partitions of 'R s vertices  with respect to degree. 

dV  2 3 4 

dV  42p+30 26p+14 2p+2 

 

Table 2.2: Partitions of 'R s vertices  with respect to connection number. 

τV  2 3 4 5 8 

τV  2p+6 28p+20 30p+10 8p+8 2p+2 

 

Table 2.3: Partitions of 'R s vertices  with respect to degree and connection number. 

τ,dV  2,2 2,3 2,4 3,4 3,5 4,8 

τ,dV  8p 50p+1 14p 22p+1 16p 4p 

Now, There are four types partitions of edge sets of R with respect to degree as |E( R )| =  |𝐸𝐸2,2
𝑑𝑑  |+  |𝐸𝐸2,3

𝑑𝑑  
|+ |𝐸𝐸3,3

𝑑𝑑  |+|𝐸𝐸3,4
𝑑𝑑 |  = 85p + 55 and there are seven types partitions of edge sets of R  with respect to 



 

connection number of vertices as |  E( R )| = |𝐸𝐸2,3
𝑐𝑐  |+ |𝐸𝐸3,3

𝑐𝑐  |+|𝐸𝐸3,4
𝑐𝑐 | +|𝐸𝐸3,5

𝑐𝑐  |+ |𝐸𝐸4,4
𝑐𝑐  |+|𝐸𝐸4,5

𝑐𝑐 | + |𝐸𝐸5,8 
𝑐𝑐 | = 85p + 

55. These edge partitions are shown in Tables 2.4 and 2.5. 
 
Table 2.4: Partitions of  'R s edges with respect to degree. 

d
ndmdE )(),(  dE 2,2  dE 3,2  dE 3,3  dE 4,3  

d
ndmdE )(),(  6p+16 52p+28 9p+3 8p+8 

 
Table 2.5 : Partition of 'R s edges with respect to connection number. 

c
nmE )(),( ττ  cE 3,2  cE 3,3  cE 4,3  cE 5,3  cE 4,4  cE 5,4  cE 8,5  

c
nmE )(),( ττ  4p+12 4p+12 24p+12 4p+12 21p+7 12p+4 8p+8 

 
Definition 2.8. Zinc Silicate Network (ZNSL(n)): Silicate )( 4SiO  is the most wonderful class of 
minerals. Silicate is the chemical mixture of metal carbonate or metal oxide with sand. Tetrahedra is 
used as the basic unit of silicate. So, all silicates gain 4SiO  tetrahedral. In chemistry, silicon ions and 
oxygen ions are represented by the centre vertices and corner vertices of 4SiO  respectively. In graph 
theory, we show centre vertices  and corner vertices of 4SiO with silicon nodes and oxygen nodes. If 
we require a variety of silicate networks, it is easy to change the arrangement of the tetrahedron silicate. 
Zinc silicate related MON is 34 )(PDCOZn  which is also known as IRMOF-14. IRMOF-14 is three 

dimensional cubic structures with pore size 14.7/20.1 0A in diameter, see [58]. The MON of zinc 
silicate of dimention 1 is presented in Figure 2.  
 
 
 
 
 
 
 
            
 
 

 
 
 
 
 
 
                              Figure 2: Zinc silicate network (ZNSL(p) K≅ ). In particular p=1. 
 



 

Let ≅S ZNOX(p) be the metal organic (zinc silicate) network of dimention p in the plane, see Figure 2. 
The partition of S with respect to vertex set V( S ) and edge set E( S ). We can easily see that each 
vertex of degrees and connection numbers sets are { }4,3,2  and { }8,6,5,4,3,2  respectively. We have V1 
= {n ∈ V ( S )| 𝑑𝑑𝑛𝑛 = 2}, V2 = {n ∈ V ( S )| 𝑑𝑑𝑛𝑛 = 3} and V3 = {n ∈ V ( S )|𝑑𝑑𝑛𝑛 = 4}, where | V1| = 42p 
+30, | V2| = 38p +18 and | V3| = 2p +2. So,    |V( S )|  = |V1 |+ | V2 | + | V3| = 82p +50. The partition of 
vertices with respect to connection numbers are V1 = {n ∈ V ( S )|, 𝜏𝜏𝑛𝑛 = 2}, V2 = {n ∈ V ( S )| , 𝜏𝜏𝑛𝑛 = 3}, 
V3 = {n ∈ V ( S )| 𝜏𝜏𝑛𝑛 = 4}, V4 = {n ∈ V ( S )| 𝜏𝜏𝑛𝑛 = 5}, V5 = {n ∈ V ( S )| 𝜏𝜏𝑛𝑛 = 6}, and V6 = {n ∈ V ( S
)| 𝜏𝜏𝑛𝑛 = 8}, where | V1| = 2p+6, | V2| = 16p+16, | V3| = 48p+16, | V4| = 8p+8, | V5| = 6p+2 and | V6| = 
2p+2. So,  |V ( S )| = | V1| + | V2| +| V3| +| V4| +| V5| +| V6| = 82p + 50. Now, the partition of vertices 
with respect to degrees and connection numbers are V1 = τ,dV = 2,2V ={n ∈ V ( S )| 𝑑𝑑𝑛𝑛 = 2, 2=nτ }, V2 

= 3,2V ={n ∈ V ( S )| 𝑑𝑑𝑛𝑛 = 2, 3=nτ }, V3 = 4,2V ={n ∈ V ( S )| 𝑑𝑑𝑛𝑛 = 2, 4=nτ }, V4 = 4,3V ={n ∈ V ( S )| 𝑑𝑑𝑛𝑛 

= 3, 4=nτ }, V5 = 5,3V ={n ∈ V ( S )| 𝑑𝑑𝑛𝑛 = 3, 5=nτ }, V6 = 6,3V ={n ∈ V ( S )| 𝑑𝑑𝑛𝑛 = 3, 6=nτ }, and V7 =

8,4V ={n ∈ V ( S )| 𝑑𝑑𝑛𝑛 = 4, 8=nτ } where | V1| = 8p, | V2| = 30p +1,  | V3| = 30p +3, | V4| = 30p +3, | V5| 

= 14p +1 and | V6| = 8p and | V7| = 4p  So,    |V( S )| = |V1 |+| V2 | +| V3|+| V4|+| V5|+| V6|+| V7| = 124p 
+8. These vertex partitions are presented in Tables 2.6, 2.7 and 2.8. 

Table 2.6: Partitions of 'S s vertices  with respect to degree. 

dV  2 3 4 

dV  42p+30 38p+18 2p+2 

 

Table 2.7: Partitions of 'S s vertices  with respect  to connection number. 

τV  2 3 4 5 6 8 

τV  2p+6 16p+16 48p+16 8p+8 6p+2 2p+2 

 

Table 2.8: Partitions of 'S s vertices  with respect to degree and connection number. 

τ,dV  2,2 2,3 2,4 3,4 3,5 3,6 4,8 

τ,dV  8p 30p+1 30p+3 30p+3 14p+1 8p 4p 

Now, there are four types partitions of edge sets of S with respect to degree as |E( S )| =  |𝐸𝐸2,2
𝑑𝑑  |+  |𝐸𝐸2,3

𝑑𝑑  
|+ |𝐸𝐸3,3

𝑑𝑑  |+|𝐸𝐸3,4
𝑑𝑑 |  = 103p +61 and there are seven types partitions of edge sets of S  with respect to 



 

connection number of vertices as |  E( S )| = |𝐸𝐸2,3
𝑐𝑐  |+ |𝐸𝐸3,3

𝑐𝑐  |+|𝐸𝐸3,4
𝑐𝑐 | +|𝐸𝐸3,5

𝑐𝑐 |+ |𝐸𝐸4,4
𝑐𝑐 |+|𝐸𝐸4,5

𝑐𝑐 |+|𝐸𝐸4,6
𝑐𝑐 |+ |𝐸𝐸5,8

𝑐𝑐 | + 
|𝐸𝐸6,6
𝑐𝑐 |= 103p + 61. These edge partitions are shown in Table 2.9 and 2.10. 

 
Table 2.9: Partitions of  'S s edges according to degree. 

d
ndmdE )(),(  dE 2,2  dE 3,2  dE 3,3  dE 4,3  

d
ndmdE )(),(  10p+14 64p+32 21p+7 8p+8 

 
Table 2.10: Partition of 'S s edges according to connection number. 

c
nmE )(),( ττ  cE 3,2  cE 3,3  cE 4,3  cE 5,3  cE 4,4  cE 5,4  cE 6,4  cE 8,5  cE 6,6  

c
nmE )(),( ττ  4p+12 6p+2 12p+4 4p+12 42p+14 12p+4 12p+4 8p+8 3p+1 

 
 

3. Main Results for MONs 
In this section, we compute the main results for first multiplicative ZCI, second multiplicative ZCI, 
third multiplicative ZCI, fourth multiplicative ZCI and fifth multiplicative ZCI of two different MONs 
(zinc oxide and zinc silicate). 
 
Theorem 3.1: Let ≅R ZNOX(p) and ≅S ZNOX(p) be two MONs of dimensions p ≥ 1. Then, first 
multiplicative ZCI of two MONs R and S are as follows:  
(a)  311411510

1 10016359936.31049815296.1104772608.2)( pppRMZC ×+×+×=  
910211 10769472000.11056154368.710504392704.2 ×+×+×+ pp , 

(b)  413513612
1 10881936078.710261490421.310892236186.4)( pppSMZC ×+×+×=  

1213213313 10630745795.110522029036.110381459805.510132173844.9 ×+×+×+×+ ppp . 
Proof (a). By principle, 
                                     ∏
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2)]([ nRτ × ∏
∈ cVn 4

2)]([ nRτ × ∏
∈ cVn 5

2)]([ nRτ × ∏
∈ cVn 8

2)]([ nRτ  

By using Table 2.2 
22222 )8)(22()5)(88()4)(1030()3)(2028()2)(62( +×+×+×+×+= ppppp  

)128128()320012800096000()432074882016( 22 +×++×++= ppppp  
211311411510 10504392704.210016359936.31049815296.1104772608.2 pppp ×+×+×+×=  

910 10769472000.11056154368.7 ×+×+ p . 
 
(b). By principle, 



 

                                     ∏
∈

=
)(

1 )(
GVn

GMZC 2)]([ nGτ  

∏
∈

=
cVn 2

2)]([ nSτ × ∏
∈ cVn 3

2)]([ nSτ × ∏
∈ cVn 4

2)]([ nSτ × ∏
∈ cVn 5

2)]([ nSτ × ∏
∈ cVn 6

2)]([ nSτ × ∏
∈ cVn 8

2)]([ nSτ  

By using Table 2.7 
222222 )8)(22()6)(26()5)(88()4)(1648()3)(1616()2)(62( +×+×+×+×+×+= pppppP  

)92163686427648()51200204800153600()345646081152( 222 ++×++×++= pppppp  
313413513612 10132173844.910881936078.710261490421.310892236186.4 pppp ×+×+×+×=

1213213 10630745795.110522029036.110381459805.5 ×+×+×+ pp . 
 
Theorem 3.2: Let ≅R ZNOX(p) and ≅S ZNOX(p) be two MONs of dimensions p ≥ 1. Then, 
second multiplicative ZCI of two MONs R and S are as follows:  
(a)  617717814

2 10785365205.91033829567.11057655233.9)( pppRMZC ×+×+×=  
217317418518 10729399844.21043990477.111048995058.210469533816.2 pppp ×+×+×+×+

1516 10522410054.310004443423.4 ×+×+ p , 

(b)  +×+×+×= 8229221021
2 10979549374.410380469133.110479074071.1)( pppSMZC  

422522622722 10775140623.210931561944.610688848174.91011547872.9 pppp ×+×+×+×  
1819222 10086724573.6107965757.131068160423.13 ×+×+×+ pp . 

Proof (a). By principle, 
                                     ∏

∈

=
)(

2 )(
GEmn

GMZC )]()([ nm GG ττ ×  

∏
∈

=
cEmn 3,2

)]()([ nm RR ττ × × ∏
∈ cEmn 3,3

)]()([ nm RR ττ × × ∏
∈ cEmn 5,3

)]()([ nm RR ττ × × ∏
∈ cEmn 5,4

)]()([ nm RR ττ ×  

× ∏
∈ cEmn 4,4

)]()([ nm RR ττ × × ∏
∈ cEmn 4,3

)]()([ nm RR ττ × × ∏
∈ cEmn 4,4

)]()([ nm RR ττ × × ∏
∈ cEmn 8,5

)]()([ nm RR ττ ×  

= c
RE )(3,2 )3)(2( × c

RE )(3,3 )3)(3( × c
RE )(5,3 )5)(3( × c

RE )(5,4 )5)(4( × c
RE )(4,4 )4)(4( × c

RE )(4,3 )4)(3( ×

c
RE )(4,4 )4)(4( × c

RE )(8,5 )8)(5(  

By using Table 2.5, 
)12)(824()16)(412()20)(412()15)(124()9)(412()6)(124( +×+×+×+×+×+= pppppp  

)40)(88()16)(39( +×+× pp  

)61443686455296()144004800014400()259286402592( 222 ++×++×++= pppppp  

)1536061440464( 2 ++× pp  
518617717814 10469533816.210785365205.91033829567.11057655233.9 pppp ×+×+×+×=  

pppp 16217317418 10004443423.410729399844.21043990477.111048995058.2 ×+×+×+×+  
1510522410054.3 ×+ . 



 

 
(b). By principle, 
                                     ∏

∈

=
)(

2 )(
GEmn

GMZC )]()([ nm GG ττ ×  

∏
∈

=
cEmn 3,2

)]()([ nm SS ττ × × ∏
∈ cEmn 3,3

)]()([ nm SS ττ × × ∏
∈ cEmn 5,3

)]()([ nm SS ττ × × ∏
∈ cEmn 5,4

)]()([ nm SS ττ ×  

× ∏
∈ cEmn 4,4

)]()([ nm SS ττ × × ∏
∈ cEmn 4,3

)]()([ nm SS ττ × × ∏
∈ cEmn 4,4

)]()([ nm SS ττ × × ∏
∈ cEmn 6,4

)]()([ nm SS ττ × × ∏
∈ cEmn 6,6

)]()([ nm SS ττ × × ∏
∈ cEmn 8,5

)]()([ nm SS ττ ×  

= c
SE )(3,2 )3)(2( × c

SE )(3,3 )3)(3( × c
SE )(5,3 )5)(3( × c

SE )(5,4 )5)(4( × c
SE )(4,4 )4)(4( × c

SE )(4,3 )4)(3( ×

c
SE )(4,4 )4)(4( × c

SE )(6,4 )6)(4( × c
SE )(6,6 )6)(6( × c

SE )(8,5 )8)(5(   

By using Table 2.10, 
×+×+×+×+×+×+= )12)(412()16)(1236()20)(412()15)(124()9)(26()6)(124( pppppp  

)40)(88()36)(13()24)(412()16)(26( +×+×+×+ pppp  

×++×++×++= )92165529682944()144004800014400()129643201296( 222 pppppp  

)115204608034560()30721843227648( 22 ++×++ pppp  

+×+×+×+×= 7228229221021 1011547872.910979549374.410380469133.110479074071.1 pppp

+×+×+×+× 321422522622 10769365766.710775140623.210931561944.610688848174.9 pppp
1819222 10086724573.6107965757.131068160423.13 ×+×+× pp . 

 
Theorem 3.3: Let ≅R ZNOX(p) and ≅S ZNOX(p) be two MONs of dimensions p ≥ 1. Then, 
third multiplicative ZCI of two MONs R and S are as follows:  
(a)  4511612

3
9

10927234560.710707608883.510719958016.8)( pppRMZC ×+×+×= , 

(b)  513614715
3 10421059994.610872683423.510926317998.1)( pppSMZC ×+×+×=  

310412 10586471424.410935341711.2 pp ×+×+ . 
Proof (a). By principle, 
                                     ∏

∈

=
)(

3 )(
GVn

GMZC )]()([ nnd GG τ×  

∏
∈

=
2,2Vn

)]()([ nnd RR τ× × ∏
∈ 3,2Vn

)]()([ nnd RR τ× × ∏
∈ 4,2Vn

)]()([ nnd RR τ× × ∏
∈ 4,3Vn

)]()([ nnd RR τ×  

× ∏
∈ 5,3Vn

)]()([ nnd RR τ× × ∏
∈ 8,4Vn

)]()([ nnd RR τ×  

By using Table 2.3, 
)84)(4()53)(16()43)(122()42)(14()32)(150()22)(8( ×××××+××××+××= pppppp  

)30720()134429568()1929600( 222 ppppp ×+×+=  



 

4511612 9

10927234560.710707608883.510719958016.8 ppp ×+×+×= . 
 
(b). By principle, 
                                     ∏

∈

=
)(

3 )(
GVn

GMZC )]()([ nnd GG τ×  

∏
∈

=
2,2Vn

)]()([ nnd SS τ× × ∏
∈ 3,2Vn

)]()([ nnd SS τ× × ∏
∈ 4,2Vn

)]()([ nnd SS τ× × ∏
∈ 4,3Vn

)]()([ nnd SS τ×  

× ∏
∈ 5,3Vn

)]()([ nnd SS τ× × ∏
∈ 6,3Vn

)]()([ nnd SS τ× × ∏
∈ 8,4Vn

)]()([ nnd SS τ×  

By using Table 2.8, 
)63)(8()53)(114()43)(330()42)(330()32)(130()22)(8( ×××+××+××+××+××= pppppp  

)84)(4( ×× p  

)128()216030240()8641728086400()1925760( 222 ppppppp ×+×++×+=  
412513614715 10935341711.210421059994.610872683423.510926317998.1 pppp ×+×+×+×=

31010586471424.4 p×+ . 
 
Theorem 3.4: Let ≅R ZNOX(p) and ≅S ZNOX(p) be two MONs of dimensions p ≥ 1. Then, 
fourth multiplicative ZCI of two MONs R and S are as follows:  
(a)  615715814

4 1069475598.1610208763867.510010112154.6)( pppRMZC ×+×+×=  
215315416516 10577175665.210611232853.910062710329.210533150975.2 pppp ×+×+×+×+

1314 10225967464.210709945774.3 ×+×+ p , 

(b)  +×+×+×= 8199191018
4 10370553558.41021163861.110298184225.1)( pppSMZC  

419519619719 10383565961.2106457658.510503908024.810915708269.3 pppp ×+×+×+×  
1516217318 10342321915.510561547944.310309875773.61069847671.5 ×+×+××+ ppp . 

Proof (a). By principle, 
                                     ∏

∈

=
)(

4 )(
GEmn

GMZC )]()([ nm GG ττ +  

∏
∈

=
cEmn 3,2

)]()([ nm RR ττ + × ∏
∈ cEmn 3,3

)]()([ nm RR ττ + × ∏
∈ cEmn 5,3

)]()([ nm RR ττ + × ∏
∈ cEmn 5,4

)]()([ nm RR ττ + ×

∏
∈ cEmn 4,4

)]()([ nm RR ττ + × ∏
∈ cEmn 4,3

)]()([ nm RR ττ + × ∏
∈ *

4,4
cEmn

)]()([ nm RR ττ +  

× ∏
∈ cEmn 8,5

)]()([ nm RR ττ +  

= c
RE )(3,2 )32( + × c

RE )(3,3 )33( + × c
RE )(5,3 )53( + × c

RE )(5,4 )54( + × c
RE )(4,4 )44( + × c

RE )(4,3 )43( + ×

*
)(4,4

c
RE )44( + × c

RE )(8,5 )85( +  

By using Table 2.5, 



 

)7)(824()8)(412()9)(412()8)(124()6)(412()5)(124( +×+×+×+×+×+= pppppp  
)13)(88()8)(39( +×+× pp  

)17921075216128)(3456115203456)(144048001440( 222 ++++++= pppppp  

)249699847488( 2 ++ pp  
516615715814 10533150975.21069475598.1610208763867.510010112154.6 pppp ×+×+×+×=

pppp 14215315416 10709945774.310577175665.210611232853.910062710329.2 ×+×+×+×+
1310225967464.2 ×+ . 

 
(b). By principle, 
                                     ∏

∈

=
)(

4 )(
GEmn

GMZC )]()([ nm GG ττ +  

∏
∈

=
cEmn 3,2

)]()([ nm SS ττ + × ∏
∈ cEmn 3,3

)]()([ nm SS ττ + × ∏
∈ cEmn 5,3

)]()([ nm SS ττ + × ∏
∈ cEmn 5,4

 

)]()([ nm SS ττ + × ∏
∈ cEmn 4,4

)]()([ nm SS ττ + × ∏
∈ cEmn 4,3

)]()([ nm SS ττ + × ∏
∈ *

4,4
cEmn

)]()([ nm SS ττ +  

× ∏
∈ cEmn 6,4

)]()([ nm SS ττ + × ∏
∈ cEmn 6,6

)]()([ nm SS ττ + × ∏
∈ cEmn 8,5

)]()([ nm SS ττ +  

= c
SE )(3,2 )32( + × c

SE )(3,3 )33( + × c
SE )(5,3 )53( + × c

SE )(5,4 )54( + × c
SE )(4,4 )44( + × c

SE )(4,3 )43( + ×

*
)(4,4

c
SE )44( + × c

SE )(6,4 )64( + × c
SE )(6,6 )66( + × c

SE )(8,5 )85( +  

By using Table 2.10, 
)26()7)(412()8)(1236()9)(412()8)(124()6)(26()5)(124( +×+×+×+×+×+×+= ppppppp

)13)(88()12)(13()10)(412()8( +×+×+× ppp  

×++×++×++= )26881612824192()3456115203456()7202400720( 222 pppppp  

)124849923744()64038405760( 22 ++×++ pppp  
7198199191018 10915708269.310370553558.41021163861.110298184225.1 pppp ×+×+×+×=  

318419519619 1069847671.510383565961.2106457658.510503908024.8 pppp ×+×+×+×+  
1516217 10342321915.510561547944.310309875773.6 ×+×+× pp . 

 
Theorem 3.5: Let ≅R ZNOX(p) and ≅S ZNOX(p) be two MONs of dimensions p ≥ 1. Then, fifth 
multiplicative ZCI of two MONs R and S are as follows:  
(a)  48510611

5 1078027520.510161798144.41035830272.6)( pppRMZC ×+×+×= , 

(b)  512613713
5 10341011456.210140353331.210023034368.7)( pppSMZC ×+×+×=  

39411 10672151040.110070176666.1 pp ×+×+ . 
Proof (a). By principle, 



 

                                     ∏
∈

=
)(

5 )(
GVn

GMZC )]()([ nnd GG τ+  

∏
∈

=
2,2Vn

)]()([ nnd RR τ+ × ∏
∈ 3,2Vn

)]()([ nnd RR τ+ × ∏
∈ 4,2Vn

)]()([ nnd RR τ+ × ∏
∈ 4,3Vn

)]()([ nnd RR τ+  

× ∏
∈ 5,3Vn

)]()([ nnd RR τ+ × ∏
∈ 8,4Vn

)]()([ nnd RR τ+  

By using Table 2.3, 
)84)(4()53)(16()43)(122()42)(14()32)(150()22)(8( +×+×++×+×++×+= pppppp  

)6144()58812936()1608000( 222 ppppp ×+×+=  
48510611 1078027520.510161798144.41035830272.6 ppp ×+×+×= . 

 
(b). By principle, 
                                     ∏

∈

=
)(

5 )(
GVn

GMZC )]()([ nnd GG τ+  

∏
∈

=
2,2Vn

)]()([ nnd SS τ+ × ∏
∈ 3,2Vn

)]()([ nnd SS τ+ × ∏
∈ 4,2Vn

)]()([ nnd SS τ+ × ∏
∈ 4,3Vn

)]()([ nnd SS τ+  

× ∏
∈ 5,3Vn

)]()([ nnd SS τ+ × ∏
∈ 6,3Vn

)]()([ nnd SS τ+ × ∏
∈ 8,4Vn

)]()([ nnd SS τ+  

By using Table 2.8, 
)63)(8()53)(114()43)(330()42)(330()32)(130()22)(8( +×++×++×++×++×+= pppppp

)84)(4( +× p  

)27648387072()3787756037800()1604800( 2322 pppppp +×++×+=  
411512613713 10070176666.110341011456.210140353331.210023034368.7 pppp ×+×+×+×=

3910672151040.1 p×+ . 
 

Conclusions 
We computed multiplicative Zagreb connection indices such as first multiplicative ZCI, second 
multiplicative ZCI, third multiplicative ZCI, fourth multiplicative ZCI and fifth multiplicative ZCI of 
two different MONs which are zinc oxide (R) and zinc silicate (S) networks with respect to the 
increasing layers 1≥p , taking both metal nodes and linkers together. 
Now, the problem is still open for product, subdivision, prism and their compliment networks with the 
help of degree as well as connection number indices. 
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