

A publication of the School of Science, University of Management and Technology Lahore, Pakistan.

Multi-Criteria Decision-Making for Airport Operation Performance Using Triangular Fuzzy Numbers

Adeel Ahmad¹, Sana Akram^{1,2}, Muhammad Farhan Tabassum^{2*}, Alia Kausar¹, Nousheen Ilyas¹

¹Department of Mathematics, Lahore Garrison University, Lahore, Pakistan

²Department of Mathematics, University of Management and Technology, Lahore, Pakistan

*<u>farhanuet12@gail.com</u>

Abstract

This paper advocates Multi-Criteria Decision-Making (MCDM) which evaluates the operation performance of airports using Fuzzy Simple Additive Weighting (FSAW) method. Assigned weights by decisionmakers were in a linguistic form. These linguistic forms were converted into triangular fuzzy numbers. We chose three airports designated as A_1 , A_2 and A_3 and examined by four decision makers D_1 , D_2 , D_3 and D_4 under a fuzzy environment for performance against the chosen criteria. FSAW method gives similar decision results which shows that this method is effective, relevant and reliable for this kind of MCDM.

Keywords: airport operation performance, fuzzy simple additive weighting, multi-criteria decision-making, simple additive weighting method

Introduction

Making decisions has always been a critical activity in everyone's life. Today, purchasing a product such as a personal car requires a wise decision from an individual so that he/she may not regret his/her decision afterwards. The purchasing criteria directly and significantly affect decision-making [1].

Various approaches have been developed and adopted to help individuals and organizations to make the best decision. This work is intended to propose quantitative evaluation methods based on Multi-Criteria Decision-Making (MCDM) by considering the quality of the attributes of cars which lead to appropriate purchases [2, 3].

MCDM is the study of strategies and techniques through which concerns about the criteria can be included in administrative planning

process, officially. Indeed, more than one MCDM technique is defined in international society [4].

MCDM is divided into two types of problems [5, 6]. The first is the classic MCDM problem in which classification and weight criteria are evaluated. The second is Fuzzy Multi-Criteria Decision-Making (FMCDM) problem, which measures classification and weight criteria and is mentally, neutrally and commonly expressed by linguistic form and fuzzy numbers [7].

For example, in buying a vehicle, price, comfort, security, and fuel economy may be part of the principles based on the decision-making criteria and it is unusual that the least expensive vehicle is the most comfortable one. In portfolio management, we are interested in getting a lot of return but, at the same time, we face the risk of losing cash. In the management industry, the cost of customer satisfaction and the administration are the basic conflicting criteria [1, 4].

2. Linguistic Variable and Fuzzy Triangular Number

Therefore, Zadeh introduced the first fuzzy set theory [8]. There is a class of articles regarding the assessment of a fuzzy set subscription. One of these articles is described by a membership function in which everyone is rated in membership between 0 and 1 [8]. Linguistic forms have been found instinctively and simply by using them in communicating the qualitative and subjective imprecision of a decision-maker's appraisal, these linguistic forms are transformed into Triangular Fuzzy Numbers (TFN) [9].

3. Fuzzy Simple Additive Weighting

Simple Additive Weighting (SAW) method is a simple and most frequently utilized MCDM, detail is found in [10]. Fuzzy SAW depends on the weighted average. Various steps of Fuzzy SAW methods are presented as follows [11].

Step-1: Select criteria that will be utilized in decision-making (P_j ; j = 1, 2...m) and then choose the team of experts for decision-making (D_k ; k = 1, 2 ... n).

Step-2: Decision-makers assign suitable rating to all criterion in linguistic form.

School of Science

Volume 3 Issue 3, 2019

Step-3: For all criterion, decide the fuzzy decision matrix in the form of TFN.

$$DM_{IJ} = \begin{bmatrix} X_{11} & \cdots & X_{1n} \\ \vdots & \ddots & \vdots \\ X_{m1} & \cdots & X_{mn} \end{bmatrix}$$

Step-4: Determine the average fuzzy scores (A_{jk}) ,

$$(A_{jk}) = (f_{j1}^k + f_{j2}^k + \dots + f_{jn}^k) / n;$$
 $j = 1, 2...m;$ $k = 1, 2...n$

defuzzified values (e), $e = \frac{(a + b + c)}{3}$, and normalized weight (W_j) of each criterion [12].

$$W_j = \frac{\text{defuzzified values}}{\text{sum of total defuzzified values}}$$
$$W_j = \frac{e_j}{\sum_{j=1}^n e_j} ; \quad j = 1, 2 \dots n.$$

Step-5: Decision-makers assign suitable rating in the form of linguistic terms for every maintenance strategy (A_i ; i = 1, 2...) of all the criteria.

Step-6: Fuzzy average and defuzzified scores are calculated for every criterion [12].

Step-7: Decision matrix is determined for all maintenance strategies and all criteria $[X_{ij}]$.

Step-8: Normalized matrix is calculated for all strategies and criteria $[R_{ij}]$.

$$r_{ij} = \frac{x_{ij}}{\max(x_{1j}, x_{2j}, x_{3j})}$$
 $i = 1, 2.3 ...$

Step-9: By Simple Additive Weighting (SAW) method calculate the Total Scores (TS) for every maintenance strategy. $TS = [R_{ij}][W_j]$

Step-10: Finally, the greatest value of A_i is the best maintenance strategy and obtained ranking as a solution.

An illustrated example solved by Fuzzy SAW method to evaluate airport operation performance with group decision-making [13].

4. Airport Operation Performance

A practical example is demonstrated by applying Fuzzy SAW method to

calculate airport operation performance with MCDM. Three airports AP₁, AP₂ and AP₃ are evaluated by four decision-makers DM_1 , DM_2 , DM_3 and DM_4 under a fuzzy setting for operation performance [14, 15, 16, 17, 18] against 15 criteria, P_1 , P_2 , . . ., P_{15} . These criteria are as follows:

 P_1 = Noise pollution control

 P_2 = Navigation equipment

 P_3 = Aircraft loading and take-off time

 P_4 = Courtesy of crew

 P_5 = Flight safety control

 P_6 = Signal and direction

 P_7 = Aerodrome control

 P_8 = Airport scale

 P_9 = Security measures

 P_{10} = Out-bound or traffic connecting city

 P_{11} = Profit to capital

 P_{12} = Cleanness and comfort of airport terminal

 P_{13} = Check-out and check-in time

 P_{14} = Parking lots

 P_{15} = Trolleys approach travellers

5. Implementation of Fuzzy SAW

Step 1: Select criteria that will be utilized by decision-makers, {VP, P, MP, F, MG, G, VG}, then set them into fuzzy numbers.

Code	Fuzzy Number
VP	(0.00, 0.00, 0.20)
Р	(0.00, 0.20, 0.40)
MP	(0.20, 0.40, 0.50)
F	(0.40, 0.50, 0.60)
MG	(0.50, 0.60, 0.80)
G	(0.60, 0.80, 1.00)
VG	(0.80, 1.00, 1.00)
	Code VP P MP F MG G VG

Table 1. Criteria Settings for Decision-makers

Select criteria for weight that will be utilized by decision-makers,	{VL,
L, M, H, VH}, then set them into fuzzy numbers.	

~			
	S.No	Code	Fuzzy Number
	1	VL	(0.00, 0.00, 0.30)
	2	L	(0.00, 0.30, 0.50)
	3	М	(0.30, 0.50, 0.70)
	4	Н	(0.50, 0.70, 1.00)
	5	VH	(0.70, 1.00, 1.00)

 Table 2. Criteria for Weight

Step 2: Linguistic weights for 15 criteria.

 Table 3. Linguistic Weights

0	DM ₁	DM ₂	DM ₃	DM ₄
<i>P</i> ₁	М	VH	М	Н
P_2	Н	Н	Μ	VH
P_3	М	М	Н	М
P_4	L	Μ	VH	М
P_5	VH	VH	VH	VH
P_6	VH	Н	VH	VH
P_7	Н	VH	Μ	Н
P_8	М	Н	VH	М
<i>P</i> ₉	М	М	Н	М
P_{10}	L	Μ	Н	VH
<i>P</i> ₁₁	VH	Н	VH	М
<i>P</i> ₁₂	Н	Н	Μ	L
<i>P</i> ₁₃	Н	М	Н	Н
P_{14}	М	Н	Μ	Н
P_{15}	Н	VH	Н	VH

Step 3: Fuzzy decision matrix DM_{ij} found for every criterion in the form of fuzzy triangular number.

	DM ₁	DM ₂	DM ₃	DM ₄
P_1	(0.3,0.5,0.7)	(0.7,1.0,1.0)	(0.3,0.5,0.7)	(0.5,0.7,1.0)
P_2	(0.5,0.7,1.0)	(0.5,0.7,1.0)	(0.3,0.5,0.7)	(0.7,1.0,1.0)
P_3	(0.3,0.5,0.7)	(0.3,0.5,0.7)	(0.5,0.7,1.0)	(0.3,0.5,0.7)
P_4	(0.0,0.3,0.5)	(0.3,0.5,0.7)	(0.7,1.0,1.0)	(0.3,0.5,0.7)
P_5	(0.7,1.0,1.0)	(0.7,1.0,1.0)	(0.7,1.0,1.0)	(0.7,1.0,1.0)
P_6	(0.7,1.0,1.0)	(0.5,0.7,1.0)	(0.7,1.0,1.0)	(0.7,1.0,1.0)
P_7	(0.5,0.7,1.0)	(0.7,1.0,1.0)	(0.3,0.5,0.7)	(0.5,0.7,1.0)
P_8	(0.3,0.5,0.7)	(0.5,0.7,1.0)	(0.7,1.0,1.0)	(0.3,0.5,0.7)
P_9	(0.3,0.5,0.7)	(0.3,0.5,0.7)	(0.5,0.7,1.0)	(0.3,0.5,0.7)
P_{10}	(0.0,0.3,0.5)	(0.3,0.5,0.7)	(0.5,0.7,1.0)	(0.7,1.0,1.0)
P_{11}	(0.7,1.0,1.0)	(0.5,0.7,1.0)	(0.7,1.0,1.0)	(0.3,0.5,0.7)
P_{12}	(0.5,0.7,1.0)	(0.5,0.7,1.0)	(0.3,0.5,0.7)	(0.0,0.3,0.5)
P_{13}	(0,5,0.7,1.0)	(0.3,0.5,0.7)	(0.5,0.7,1.0)	(0.5,0.7,1.0)
P_{14}	(0.3,0.5,0.7)	(0.5,0.7,1.0)	(0.3,0.5,0.7)	(0.5,0.7,1.0)
P_{15}	(0.5,0.7,1.0)	(0.7,1.0,1.0)	(0.5,0.7,1.0)	(0.7,1.0,1.0)

Table 4. Fuzzy Decision Matrix

Step 4: Calculate fuzzy average scores (A_{jk}) , defuzzified values (e) and normalized weight (W_i) of every criterion.

Table 5. Fuzzy Average Scores, Defuzzified Values and Normalized

 Weights

	Average Fuzzy	Defuzzified	Normalized	
	Score (A _{jk})	Value (e)	weight (W_j)	
<i>P</i> ₁	(0.45,0.68,0.85)	0.660	0.065	

P_2	(0.50,0.73,0.93)	0.720	0.071
P_3	(0.35,0.55,0.76)	0.553	0.055
P_4	(0.33,0.58,0.73)	0.547	0.054
P_5	(0.70,1.00,1.00)	0.900	0.089
P_6	(0.65,0.93,1.00)	0.860	0.085
P_7	(0.50,0.50,0.93)	0.643	0.063
P_8	(0.45,0.68,0.85)	0.660	0.065
<i>P</i> ₉	(0.35,0.55,0.78)	0.560	0.055
<i>P</i> ₁₀	(0.38,0.63,0.80)	0.603	0.059
<i>P</i> ₁₁	(0.55,0.80,0.93)	0.760	0.075
<i>P</i> ₁₂	(0.33,0.55,0.80)	0.560	0.055
<i>P</i> ₁₃	(0.45,0.65,0.93)	0.677	0.067
<i>P</i> ₁₄	(0.40,0.60,0.85)	0.617	0.061
<i>P</i> ₁₅	(0.60,0.85,1.00)	0.817	0.081

Step 5: Suitable rating assigned by decision-makers in the form of linguistic terms for all approaches (A_i ; i = 1, 2...) under all the conditions.

	Criteria	Strategies	Decision-makers						
_			DM_1	DM_2	DM_3	DM_4			
	P_1	A_1	VG	MG	G	G			
		A_2	MG	VG	G	MG			
		A_3	F	MG	F	MG			
	P_2	A_1	MG	MG	VG	G			
		A_2	G	G	G	VG			
		A_3	G	G	VG	G			
	P_3	A_1	MG	F	F	F			
		A_2	G	VG	G	MG			
		A_3	G	VG	VG	G			
	P_4	A_1	VG	VG	G	VG			

Table 6. Suitable Rating Assigned by Decision-makers

	A_2	MG	F	MG	MG
	A_3	MG	MG	MG	G
P_5	A_1	G	G	MG	F
0	A_2	G	MG	G	F
	$\overline{A_3}$	MG	F	VG	G
P_6	A_1	VG	VG	G	VG
0	A_2	G	MG	VG	G
	A_{2}	G	G	F	MG
P_{7}	A_1	G	F	G	MG
,	A_2	G	G	MG	VG
	A_2	G	VG	MG	VG
P。	A_1	G	MG	VG	MG
0	A_2	G	VG	F	VG
	A_{2}	MG	G	G	VG
Pa	A_1	VG	VG	G	G
,	A_2	VG	MG	G	G
	$\overline{A_3}$	VG	VG	G	VG
P_{10}	A_1	F	G	G	G
10	A_2	G	G	MG	G
	$\overline{A_3}$	MG	G	VG	G
P_{11}	A_1	MG	MG	VG	MG
	A_2	MG	VG	MG	G
	$\overline{A_3}$	G	VG	MG	G
P_{12}	A_1	MG	G	VG	G
	A_2	G	VG	G	VG
	A_3	MG	G	G	VG
P ₁₃	A_1	G	F	MG	MG
	A_2	MG	F	MG	F
ת	A_3	VG VC	G	G	VG MC
P_{14}	A_1	VG VG	VG MG	MG MG	MG G
	н ₂ Д	MG	F	MG	G
P_{1r}	A1	G	G	VG	F
- 12	A_2	Ğ	MG	F	VG
	$\tilde{A_3}$	F	F	F	F

School of Science

Step 6: Calculate fuzzy average scores (A_{jk}) and defuzzified scores of all airports based on every criterion.

Criteria	Strategies	Average Fuzzy Defuzzified			
		Score (A_{jk})	Score		
<i>P</i> ₁	A_1	(0.625, 0.800, 0.950)	0.792		
	A_2	(0.600, 0.750, 0.900)	0.750		
	A_3	(0.450, 0.550, 0.700)	0.567		
P_2	A_1	(0.600, 0.750, 0.900)	0.767		
	A_2	(0.650, 0.850, 1.000)	0.833		
	A_3	(0.650, 0.850, 1.000)	0.833		
P_3	A_1	(0.425, 0.525, 0.650)	0.533		
	A_2	(0.625, 0.800, 0.950)	0.792		
	A_3	(0.700, 0.900, 1.000)	0.867		
P_4	A_1	(0.750, 0.950, 1.000)	0.900		
	A_2	(0.475, 0.575, 0.750)	0.600		
	A_3	(0.525, 0.650, 0.850)	0.675		
P_5	A_1	(0.400, 0.500, 0.600)	0.500		
	A_2	(0.525, 0.675, 0.850)	0.683		
	A_3	(0.575, 0.725, 0.850)	0.717		
P_6	A_1	(0.750, 0.950, 1.000)	0.900		
	A_2	(0.625, 0.800, 0.950)	0.792		
	A_3	(0.525, 0.675, 0.850)	0.683		
P_7	A_1	(0.525, 0.675, 0.850)	0.683		
	A_2	(0.600, 0.750, 0.900)	0.750		
	A_3	(0.675, 0.850, 0.950)	0.825		

 Table 7. Fuzzy Average Scores

-11

P_8	A_1	(0.600, 0.750, 0.900)	0.750
	A_2	(0.650, 0.825, 0.900)	0.792
	A_3	(0.625, 0.800, 0.950)	0.792
<i>P</i> ₉	A_1	(0.700, 0.900, 1.000)	0.867
	A_2	(0.625, 0.800, 0.950)	0.792
	A_3	(0.750, 0.950, 1.000)	0.900
P_{10}	A_1	(0.550, 0.725, 0.900)	0.792
	A_2	(0.575, 0.750, 0.950)	0.758
	A_3	(0.625, 0.800, 0.950)	0.792
P_{11}	A_1	(0.575, 0.700, 0.850)	0.708
	A_2	(0.600, 0.750, 0.900)	0.750
	A_3	(0.625, 0.800, 0.950)	0.792
<i>P</i> ₁₂	A_1	(0.625, 0.800, 0.950)	0.792
	A_2	(0.700, 0.900, 1.000)	0.867
	A_3	(0.625, 0.800, 0.950)	0.792
<i>P</i> ₁₃	A_1	(0.500, 0.625, 0.800)	0.642
	A_2	(0.450, 0.550, 0.700)	0.567
	A_3	(0.700, 0.900, 1.000)	0.867
P_{14}	A_1	(0.650, 0.800, 0.900)	0.783
	A_2	(0.600, 0.750, 0.900)	0.750
	A_3	(0.500, 0.625, 0.800)	0.758
P_{15}	A_1	(0.600, 0.775, 0.900)	0.758
	A_2	(0.575, 0.725, 0850)	0.717
	A_3	(0.400, 0.500, 0.600)	0.500

Step 7: Determine decision matrix $[X_{ij}]$.

School of Science

Volume 3 Issue 3, 2019

Table 8. Decision Matrix

	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇	P ₈	P9	P ₁₀	P ₁₁	P ₁₂	P ₁₃	P ₁₄	P ₁₅
A_1	.792	.767	0.533	.900	.500	.900	.683	.750	.867	.792	.708	.792	.642	.783	.758
A_2	.750	.833	0.792	.600	.683	.792	.750	.792	.792	.758	.750	.867	.567	.750	.717
A_3	.567	.833	0.867	.675	.717	.683	.825	.792	.900	.792	.792	.792	.867	.758	.500

Step 8: Calculate normalized matrix $[R_{ij}]$.

 Table 9. Normalized Matrix

 1.000
 0.921
 0.615
 1.000
 0.697
 1.000
 0.828
 0.947
 0.963
 0.915
 0.894
 0.913
 0.740
 1.000
 1.000

 0.947
 1.000
 0.913
 0.667
 0.953
 0.880
 0.909
 1.000
 0.847
 0.957
 0.947
 1.000
 0.654
 0.958
 0.946

 0.716
 1.000
 0.750
 1.000
 0.759
 1.000
 1.000
 1.000
 0.913
 1.000
 0.820
 0.660

Step 9: By Simple Additive Weighting (SAW) method calculate the Total Scores (TS) for every maintenance strategy.

$TS = [R_{ij}] [W_j]$

1.000	0.921	0.615	1.000	0.697	1.000	0.828	0.947	0.963	0.915	0.894	0.913	0.740	1.000	1.000
0.947	1.000	0.913	0.667	0.953	0.880	0.909	1.000	0.847	0.957	0.947	1.000	0.654	0.958	0.946
.716	1.000	1.000	0.750	1.000	0.759	1.000	1.000	1.000	1.000	1.000	0.913	1.000	0.820	0.660

TS for A_1 based on all criteria is

(1X0.065)+(0.921X0.071)+(0.615X0.055)+(1X0.045)+(0.697X0.089)+(1X0.085)+

(0.828X0.063)+(0.947X0.065)+(0.963X0.055)+(0.915X0.059)+(0.894X0.075)+(0.913X0.055)+(0.740X0.067)+(1X0.061)+(1X0.081)=0.8948

```
A_1 = 0.8948
```

Similarly,

$$A_2 = 0.9086$$

 $A_3 = 0.9043$

Step 10: Finally, the greatest value of A_i is obtained and the ranking as a solution.

Strategy	Final Score	Ranks		
A ₁	0.8948	3		
A_2	0.9086	1		
A_3	0.9043	2		

6. Result

Finally, using FSAW method the ranking of airports is $A_2 > A_3 > A_1$. The result shows that (A_2) is the best and predictively, (A_1) is the poorest.

7. Conclusion

This paper recommends MCDM which evaluates the operation performance of airports by using Fuzzy Simple Additive Weighting (FSAW) method. Assigned weights by decision-makers were in linguistic form. These linguistic forms were converted into TFN. Three airports AP_1 , AP_2 and AP_3 were evaluated by four decision makers DM_1 , DM_2 , DM_3 and DM_4 under a fuzzy environment for performance against fifteen criteria. State-of-art methods produce similar decision results [14, 15, 16, 17, 18] which shows that FSAW method is effective, relevant and reliable for this kind of Multi-Criteria Decision-Making (MCDM).

School of Science

References

- [1] Zulqarnain M, Saeed M, Tabassum MF. Comparison between fuzzy soft matrix (FSM) and interval valued fuzzy soft matrix (IVFSM) in decision making. *Sci Int.* 2016;28(5): 4277–4283.
- [2] Norwawi NM, Ku-Mahamud KR, Denis S. Recognition decision making model using temporal data mining technique. J Inf Commun Technol. 2005; 4:37–56.
- [3] Pandian MV, Nagarajan R, Sazali Y. Decision making using modified s-curve membership functions in fuzzy linear programming problem. *J Inf Commun Technol*. 2002;1(1): 1–6.
- [4] Saeed M, Sana A, Rubi N. Comparative study of airport evaluation problem by using fuzzy soft expert set and AHP technique. *Sci Int.* 2016;28(3): 2439-2443.
- [5] Hwang CL, Yoon K. Multiple attribute decision making: methods and application. New York: Springer; 1981.
- [6] Feng CM, Wang RT. Performance evaluation for airlines including the consideration of financial ratios. J Air Transp Manage. 2000;6: 133–142.
- [7] Saeed M, Anam Z, Kanwal T, Saba I, Memoona F, Tabassum MF. Generalization of TOPSIS from soft set to Fuzzy soft sets in decision making problem. *Sci Inquiry Rev.* 2017; 1(1): 11–18. DOI: https://doi.org/10.29145/sir/11/010102
- [8] Zadeh LA. Fuzzy sets. Inf control. 1965;8: 338–353.
- [9] Zadeh LA. The concept of a linguistic variable and its application approximate reasoning, part 1, 2, and part 3. *Inf Sci.* 1975;8(3): 199–249.
- [10] Widayanti D, Oka S, Arya S. Analysis and implementation fuzzy multi-attribute decision making SAW method for selection of achieving students in faculty level. *Int J Comput Sci.* 2013;10(2): 674–680.
- [11] Manish KS. Exploring fuzzy saw method for maintenance strategy selection problem of material handling equipment. *Int J Curr Eng Technol.* 2013; 3(2):145–154.

- [12] Van LW, Kerre EE. Defuzzification: criteria and classification. Fuzzy Sets Syst. 1999; 108(2):159–178. Doi:10.1016/S0165-0114(97)00337-0
- [13] Yu-Jie W. Generalizing TOPSIS for fuzzy multiple-criteria group decision-making. *Comput Math Appl.* 2007;53:1762–1772.
- [14] Feng CM, Wang RT. Performance evaluation for airlines including the consideration of financial ratios. *J Air Transp Manage*. 2000;6: 133–142.
- [15] Chang YH, Yeh CH. A survey analysis of service quality for domestic airlines. *Eur J Oper Res.* 2002; 139: 166–177.
- [16] Tsaur SH, Chang TY, Yen CH. The evaluation of airline service quality by fuzzy MCDM. *Tourism Manage*. 2002;23: 107–115.
- [17] Elliot K, Roach DW. Service quality in the airline industry: are carriers getting an unbiased evaluation from consumers? J Prof Serv Mark. 1993;9: 71–82.
- [18] Moutinho L, Curry B. Modeling site location decisions in tourism. *J Travel Tourism Market*. 1994;3: 35–36.

