Emerging Outbreak of Elizabethkingia Anopheles: A Systematic Review

Braira Wahid^{1*}, Noshaba Rani²

¹Monash Biomedicine Discovery Institute, Monash University Melbourne Australia

²Centre of Excellence in Molecular Biology, University of the Punjab Lahore Pakistan

*Corresponding author Email: <u>brairawahid@gmail.com</u>

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi https://doi.org/10.32350/BSR.0301.04

Copyright © 2021 The Authors. Production and hosting by Department of Life Sciences, University of Management and Technology is licensed under a Creative Commons Attribution 4.0 International License

Abstract

The recent outbreak of Elizabethkingia anopheles in Midwest countries has caused a number of deaths. Notably Elizabethkingia anopheles causes neonatal meningitis, bacteraemia, sepsis, blood stream infections and respiratory infections. This infection may pose serious threats to public health because of lack of sufficient research and its endemic potential unknown.

This systematic review was meant to develop a deeper insight into the current status of *E*. *anophelis* related evidence and to highlight areas that need further research. Reviewing existing literature will help other researchers in identifying and addressing the knowledge gaps.

Various free access databases such as Google Scholar, Scopus, PubMed, and Science Direct were employed for literature survey. All articles that have been published since 2011, when the outbreak was reported for the first time have been included in this systematic review. The research related to this subject is in earlier stages and little information is currently available. Future studies must focus on the molecular basis, control, prevention, and therapeutics of *E. anophelis* infection to mitigate its increasing risk. This review is meant to provide baseline data

for future research. Scientific community must carry out research on infections caused by *E*. *anophelis* mosquito else it will result in a disastrous outbreak.

Keywords: *Elizabethkingia anophelis*, meningitis, phylogenetics, strain diversity,

1. Introduction

Genus *Elizabethkingia* is a part of family *Flavobacteriaceae* and phylum *Bacteroidetes*. It is a non-motile, ubiquitous, and aerobic bacterium mostly found in the gut of *Anopheles* mosquito and colonizes the human respiratory tract. Four different species that belong to genus *Elizabethkingia* are *E. miricola*, *E. meningoseptica*, *E. endophytica*, and *E. anophelis*.

E. meningoseptica is a nosocomial pathogen that affects patients on hemodialysis [1, 2], and are responsible for bacteremia [3], septicaemia [4], endophthalmitis [5], and meningitis [2, 6-9]. *E. miricola* has the potential to cause ventilator-associated pneumonia, sepsis, and bacteremia [10, 11]. *E. endophytica* was isolated from *Zea mays* [12]. Phylogenetic analysis revealed that E. *anophelis* is different from closely related species *E. miricola* and related group *E. meningoseptica* (Fig 1).

Fig 1: Phylogenetic tree of Elizabethkingia species [13].

E. anophelis is a gram-negative bacteria isolated from the midgut of anopheline mosquitos.

Studies involving a three years long outbreak spanning a time period from 2015 to **2018 in** Taiwan resulted in the identification of a specific *E. Anophelis* strain. Transmission mechanism patterns in 26 patients were studied using Pulsed-field gel electrophoresis (PFGE) and completegenome sequencing [14].

A study was carried out in Saudi Arabia including 27 patients who had been **hospitalized from** June 2013 to May 2019 suspected of having Chryseobacterium/Elizabethkingia spp infections. Blood culture studies showed that *Elizabethkingia spp*, indeed, was the most prevalent amongst the pathogens isolated [15]

In another study undertaken in Singapore involving 79 blood culture isolates from 2009 to 217 were probed. PCR assisted results showed 78/79 of these isolates were of *E. Anophelis* showing an overwhelming dominance of the strain under review [16].

Recently, *E. anophelis* infection was responsible for a public health crisis in Michigan, Illinois, and Wisconsin with 65 confirmed cases and 20 deaths as of June 2016 [17]. The high mortality rate associated with this infection has caused trouble in the past few years (Fig 2).

Fig 2: Confirmed cases and deaths of during recent deadly outbreak of *E. anopheles* in MidWest countries.

Strains of Elizabethkingia are usually found in fresh and marine environments. Mostly, immunocompromised individuals acquire *E. anophelis* infection during hospital stay [18, 19]. Most of people had bloodstream infections but respiratory infections were also reported in some cases during 2015-16 *E. anophelis* outbreak. *Elizabethkingia* is resistant to many antibiotics [16]. According to some clinicians *E. anophelis* bacteria are susceptible to antibiotics such as fluoroquinolones and rifampin therefore, treating patients with a combination of antibiotics may improve the outcome [20]. Common symptoms include shortness of breath, cough, chills, fever, cellulitis, headache, and joint pain. An evidence of vertical transmission has been reported recently but the proper transmission path and different modes of transmission are still vague [21-24].

This systematic review was meant to develop a deeper insight into the current status of *E*. *anophelis* related research and to highlight areas that need further research. Reviewing existing literature will help other research scientists in identifying and addressing the knowledge gaps.

2. Methodology

2.1. Literature survey and data screening

Various free access databases such as Google Scholar, Scopus, PubMed, and Science Direct were employed for the literature survey. Little research has been done on *E. anophelis*. We used different keywords such as: *E. anophelis* infections, *E. anophelis* transmission, *E. anophelis* symptoms, *E. anophelis* strain diversity, *E. anophelis* future prospects, *E. anophelis* treatment etc. Our comprehensive research yielded 17 records.

2.2. Quality assessment

Eligible publications included all research articles or original studies related to *E. anophelis* since it was initially reported in 2011 to 2016. Authors analyzed available literature independently and removed the duplicates.

2.3. Data Synthesis

A total of 13 articles were included and Microsoft Excel spreadsheet was employed to record information such as authors, methods, key findings, and conclusion.

3. Results

A global primary literature was compiled after a literature search on *Elizabethkingia anophelis* that was published since it was first reported. All the records were peer reviewed articles available in English language. Table 1 depicts the key findings, methods, study areas, and study design of all the documents that met the inclusion criteria.

	Ref.	Methodology	Key Findings	Conclusion
	1	Pathogenesis associated features and phylogenetic relationships of two African neonatal meningitis <i>E.</i> <i>anophelis</i> isolates and compared with <i>Elizabethkingia</i> isolated from other sources and regions [13].	Distinct sublineages observed in African E. anophelis genetically related. Specific resistance genes acquired as a result of horizontal transfer were also observed in African isolates.	The emerging pathogen <i>Elizabethkingia</i> is dynamically evolving over time.
	2	Complete circularized genome sequences of 4 strains collected during E. <i>anophelis</i> outbreak were studied [25].	Mapping of outbreak strains showed similarity with the genome of strain CSID_3015183678. Ordered arrangement was observed at three segments A, B, and C belonging to the position 3929927.	Complete gene sequences have been deposited at GenBank under BioProject no. PRJNA315668.
ACA	3	The molecular and clinical epidemiology of Elizabethkingia-like species isolated from bacteraemia patients admitted in 5 regional hospitals of Hong Kong was analyzed [26].	16S rRNA based gene sequencing revealed that out of total 45 episodes of bacteremia associated with Elizabethkingia-like species, <i>E.</i> <i>anophelis, E. meningoseptica,</i> <i>E. miricola,</i> and other diverse genera/species were responsible for 17, 1, 3, and 24 episodes, respectively.	<i>E. anophelis</i> is the predominant cause of Elizabethkingia bacteremia and the morbidity and mortality associated with this life-threatening condition.
	4	All four species of <i>Elizabethkingia</i> were sequenced [27].	ResultsrevealedthatElizabethkingiaendophytica andendophytica andElizabethkingiaanophelis belongstogenomospecies1, whereas,Elizabethkingia miricola issimilar to to genomospecies2.	The complete genome sequences have been deposited at GenBank under BioProject no. PRJNA301708.

Table 1: Currently available studies related to Elizabethkingia anophelis

5	Researchers sequenced	This whole-genome shotgun	This genome sequence
-	<i>Elizabethkingia anophelis</i> from	project has been deposited at	provides baseline data
	asian malaria vector Anopheles	GenBank under the accession	to analyze host-
	stephensi [28].	no. LFKT00000000.	microbe interactions in
			mosquitoes.
6	Researchers examined the	A 71%, 82% and 3% infection	The study revealed the
	number of E. anophelis in gut	rate was determined with A.	molecular manipulation
	and its physiological	gambiae, A. stephensi, and	and interaction of <i>E</i> .
	requirements using	Aedes triseriatus respectively,	anophelis with
	selectable markers, reporter	when fed with NanoLuc-tagged	mosquito hosts and
	systems (green fluorescent	cells at larval stage. Arginine	shows that E.
	protein [GFP] and NanoLuc),	was found to be an important	anophelis adapts to
	and transposons that function	amino acid for E. anophelis	various mosquito
	in E. anophelis for genetic	whose growth was promoted by	midgut environments
	manipulation and PompA based	animal erythrocytes in	differently.
	flavobacterial expression	vivo and in vitro suggesting that	
	system integrated into the E.	erythrocyte lysis in the	
	anophelis to enhance promoter	mosquito midgut provides	
	activity and that leads to	nutrients.	
	increased production of		
7	NanoLuc and GFP [29].	Descrites in directed, the surgeous	II
	sequencing of <i>E</i> .	Results indicated the presence	Heme uptake and
	and its response to ovidative	01 1 360 828 base pairs long	sidembore act as key
	stress was also assessed [30]	circular genome containing	players of stress
	suess was also assessed [50].	4 141 predicted coding	response and virulence
		sequences. Sequence analysis	of <i>E. anophelis</i> .
		also revealed that <i>E</i> .	
		anophelis possess an organized	
		system stress response and iron	
		scavenging.	
		We further showed that	
		hemoglobin facilitates the	
		growth, hydrogen peroxide	
		tolerance, cell attachment, and	
		biofilm formation of <i>E</i> .	
0		anophelis NUHP1.	
8	JM-8/(1) bacterial strain was	The bacteria appeared rod-	JM-8/(1) proved to be
	studied for taxonomia	snaped and gram-negative.	novel species named as
	studied for taxonomic	Based OII 105 IRINA gene	Elizabelnkingla
		oq 1 07 8 and 07 40% similarity	епиорпушси.
		to Flizabethkingia anophalis	
		Flizabethkingia meningasentica	
		and Elizabethkinoia miricola	
		respectively	
		rospoon vory.	

	cluated
strains of E. <i>anophelis</i> , isolated identical. Different TonB functional	
from different strains of A. dependent transporters with characteristics	
gambiae were sequenced [31]. different substrate specificities symbiotic relat	ionship
were observed in E. <i>anophelis</i> of bacterium w	ith the
genome. E. <i>anophelis</i> genome mosquito host.	
also contain several different	
genes with broad antibiotic	
resistance, genes that encode	
efflux pumps and β -lactamases.	
and genes important for	
mosquito carbohydrate	
metabolism.	
E. <i>anophelis</i> encodes various	
hemolysins that increase	
hemolytic activity leading to	
erythrocytes digestion in the	
mosquito gut. Antioxidant	
genes and OxyR regulon	
provide defense against the	
oxidative stress that is	
associated with blood	
digestion.	
10 Researchers used rapid genome Genomics revealed that bacteria The study su	ggested
sequencing to examine 3 transmitted from mother to her the	vertical
isolates of <i>E. anophelis</i> neonate. Genome of 2 strains transmission	of <i>E</i> .
obtained from 1 mother and 2 HKU37 and HKU38 were <i>anophelis</i> ass	ociated
neonates who had identical to each other but infections.	
chorioamnionitis and different from third strain	
meningitis, respectively [24]. HKU36, thus excluding a clonal	
outbreak.	
11 Whole-genome sequencing of The genome of E. The results of the	e study
seven isolates of E. anophelis anophelis strains were identical nighted	the
conjected from different to <i>E. anophelis</i> Ag1 and K20 nosocomial	of E
five Elizabethkingia spp malaria mosquita anonhalig infacti	on E .
Genomes available over NCRI vector Anopheles agabiae	011.
Researchers applied pan-	
genomic approach for	
identification of core- and pan-	
genome for	
the <i>Elizabethkingia</i> genus [32].	
12 Researchers isolated R26(T) Isolates appeared as rod-shaped The study pr	oposed
from midgut of the mosquito gram-negative cells. Optimum that strain R2	26 (T)
Anonholes complete and studied mouth of heatenic was more sented	novel
Anophenes gamorae and studied growth of bacteria was represented	

	resistance characteristics, and	°C. Bacteria showed resistance	Elizabethkingia
	taxonomic allocation [23].	against streptomycin,	anophelis.
		chloramphenicol, kanamycin,	_
		tetracycline, and ampicillin.	
		R26 (T) was 98.2% similar to	
		Elizabethkingia miricola GTC	
		862(T) and 98.6% similar	
		Elizabethkingia meningoseptica	
		ATCC 13253(T) based on 16S	
		rRNA gene sequence analysis.	
13	Authors presented case-study of	Strain was identified as E.	E. anopheles associated
	8-year old girl brought to	meningoseptica using API	meningitis was first
	Complexe Pédiatrique in	20NE system strip.	time reported in Arfica
	Bangui, Central African	Phylogenetic analysis based on	in 2011.
	Republic, in March, 2011 [33].	16SrRNA gene exhibited that	
		isolate belongs to <i>E. anopheles</i> .	
14	We present the draft genome	CLC Genomics Workbench	The draft genome
	sequences of two strains of	v.4.9 based de novo assembly	sequences of strains
	<i>E. anophelis</i> , $R26^{T}$ and $Ag1$,	generated 51 contigs, totaling	Ag1 and $R26^{T}$ are
	which were isolated from the	4.05 Mbp and DNASTAR	available in
	midgut of the malaria	NGen v 10.0 based de novo	DDBJ/EMBL/GenBan
	mosquito Anopheles gambiae	assembly of R26 ^T genomic	k under the GenBank
	[34].	reads (652 Mbp) yielded 66	accession numbers
		contigs, totaling 4.03 Mbp with	AHHG0000000 and
		an average GC content of	ANIW00000000,
		35.4%. NCBI Prokaryotic	respectively.
		Genome Automatic Annotation	
r		Pipeline revealed 3,648 protein	
		coding sequences CDS and 38	
		RNA genes in Ag1 and 3,687	
		protein coding sequences	
		(CDS).	

4. Discussion

In this review, 14 records were identified that included 11 original research articles and 2 case reports published between 2011 and 2016. Studies highlighted the vector potential of mosquitoes for transmission of *E. anophelis* to humans.

There is strong evidence that *E. anophelis* transmits from mother to fetus and this infection is currently circulating in Michigan, Illionois and Wisconsin. The prevalence of *E. anopheles* is

much higher than *E. meningoseptica* and *E. miricola* [25]. Previous studies show that *E. anophelis* associated bacteremia carries high morbidity and mortality. [26]Accumulating evidence suggests that *E. anophelis* is misidentified as *E. meningoseptica* but MALDI-TOF MS is the most appropriate choice for accurate and rapid diagnosis of *E. anophelis* infections. The complete genomic sequences of four different strains collected during a recent outbreak of 2015-16 have been deposited to GenBank under the BioProject no. PRJNA315668 [26, 28]. Previously, complete genomic sequences of two strains R26^T and Ag1 isolated from midgut of the malaria mosquito *Anopheles gambiae* are available under the GenBank accession numbers ANIW0000000 and AHHG0000000, respectively. Likewise, the genomic sequence of *E. anopheles* strain EaAs1 isolated from the Asian malaria mosquito *Anopheles stephensi* has been deposited at GenBank under the accession no. LFKT00000000 [27].

One of the study demonstrates the molecular basis of *Elizabethkingia* infections and host mosquito interactions and introduced the development of techniques for integration of foreign DNA into the chromosome and expression of gene of interest in commensal *Elizabethkingia* [29, 35]. This study provided future avenues for the development of novel biocontrol agent diseases caused by the mosquitoes. The reporter strain specifically GFP-based or NanoLuc-based allowed the understanding of bacterial infection, *in vivo* cell localization, and gene regulation [35].

Immunocompromised patients are known to be mostly infected by genus Elizabethkingia and a number of new species of this genus have been reported in the last decade. Elizabethkingia anopheles is the most prevalent species of this genus. This genus of pathogen is sensitive to minocycline, however, it is resistant to β -lactam inhibitors, aminoglycosides, β -lactams, and carbapenems.

5. Conclusion

In conclusion, *E. anopheles* related research is in initial stages. This review identified knowledge gaps with respect to therapeutics, pathogenesis, transmission, phylogenetics, and molecular biology of infection.

Conflict of Interest: None to declare.

Funding: None

References

1. Ratnamani, M. and R. Rao, Elizabethkingia meningoseptica: emerging nosocomial pathogen in bedside hemodialysis patients. Indian Journal of Critical Care Medicine, 2013. 17(5): p. 304.

2. Pereira, G.H., et al., Nosocomial infections caused by Elizabethkingia meningoseptica: an emergent pathogen. The Brazilian Journal of Infectious Diseases, 2013. 17(5): p. 606-609.

3. Ghafur, A., et al., Elizabethkingia meningoseptica bacteremia in immunocompromised hosts: the first case series from India. South Asian journal of cancer, 2013. 2(4): p. 211.

Swain, B., et al., Elizabethkingia meningoseptica: an unusual cause for septicaemia.
 JMM Case Reports, 2015. 2(1).

5. Young, S.M., G. Lingam, and P.A. Tambyah, Elizabethkingia Meningoseptica Engodenous Endophthalmitis–a case report. Antimicrobial resistance and infection control, 2014. 3(1): p. 1.

6. Shinha, T. and R. Ahuja, Bacteremia due to Elizabethkingia meningoseptica. IDCases, 2015. 2(1): p. 13-15.

7. Tak, V., et al., Elizabethkingia meningoseptica: An emerging pathogen causing meningitis in a hospitalized adult trauma patient. Indian journal of medical microbiology, 2013. 31(3): p. 293.

8. Issack, M.I. and Y. Neetoo, An outbreak of Elizabethkingia meningoseptica neonatal meningitis in Mauritius. The Journal of Infection in Developing Countries, 2011. 5(12): p. 834-839.

9. Moore, L.S., et al., Waterborne Elizabethkingia meningoseptica in adult critical care. Emerging infectious diseases, 2016. 22(1): p. 9. 10. Murray, P. and J.C. Gea-Banacloche, Sepsis caused by Elizabethkingia miricola successfully treated with tigecycline and levofloxacin. Diagnostic microbiology and infectious disease, 2008. 62(4): p. 430-432.

11. Rossati, A., et al., Elizabethkingia miricola bacteriemia in a young woman with alchoholic pancreatitis. La Presse Medicale, 2015.

12. Kämpfer, P., et al., Elizabethkingia endophytica sp. nov., isolated from Zea mays and emended description of Elizabethkingia anophelisKämpfer et al. 2011. International Journal of Systematic and Evolutionary Microbiology, 2015. 65(7): p. 2187-2193.

13. Breurec, S., et al., Genomic epidemiology and global diversity of the emerging bacterial pathogen Elizabethkingia anophelis. bioRxiv, 2016: p. 044792.

14. Lee, Y.-L., et al., A dominant strain of Elizabethkingia anophelis emerged from a hospital water system to cause a three-year outbreak in a respiratory care center. Journal of Hospital Infection, 2021. 108: p. 43-51.

15. Alyami, A.M., et al., Chryseobacterium/Elizabethkingia species infections in Saudi Arabia. Saudi medical journal, 2020. 41(3): p. 309.

16. Chew, K.L., et al., Elizabethkingia anophelis is the dominant Elizabethkingia species found in blood cultures in Singapore. Journal of clinical microbiology, 2018. 56(3).

17. Perrin, A., et al., Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nature communications, 2017. 8(1): p. 1-12.

18. Moita, L.F., et al., Integrins of Anopheles gambiae and a putative role of a new β integrin, BINT2, in phagocytosis of E. coli. Insect biochemistry and molecular biology, 2006. 36(4): p. 282-290.

19. Yasmin, M., et al. 1444. Characterization of a Novel Pathogen in Immunocompromised Patients: Elizabethkingia Anopheles. in Open Forum Infectious Diseases. 2020. Oxford University Press. 20. Lin, J.-N., et al., Comparison of clinical manifestations, antimicrobial susceptibility patterns, and mutations of fluoroquinolone target genes between Elizabethkingia meningoseptica and Elizabethkingia anophelis isolated in Taiwan. Journal of clinical medicine, 2018. 7(12): p. 538.

21. ProMED, "Elizabethkingia anophelis-USA (12): (Wisconsin, Illinois) fatal, community acquired," ProMED Digest, Vol. 46, No. 58, 21-Apr-2016.

22.llinois-CNN.com,CNN,2016.[Online].Available:www.cnn.com/2016/04/20/health/elizabethkingia-illinois-cluster/.[Accessed: 21-Apr-2016].

23. Kämpfer, P., et al., Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. International Journal of Systematic and Evolutionary Microbiology, 2011. 61(11): p. 2670-2675.

24. Lau, S.K., et al., Evidence for Elizabethkingia anophelis transmission from mother to infant, Hong Kong. Emerg Infect Dis, 2015. 21(2): p. 232-41.

25. Nicholson, A.C., et al., Complete genome sequences of four strains from the 2015-2016 Elizabethkingia anophelis outbreak. Genome announcements, 2016. 4(3).

26. Lau, S.K., et al., Elizabethkingia anophelis bacteremia is associated with clinically significant infections and high mortality. Scientific reports, 2016. 6.

27. Nicholson, A.C., et al., Draft genome sequences of strains representing each of the Elizabethkingia genomospecies previously determined by DNA-DNA hybridization. Genome announcements, 2016. 4(2): p. e00045-16.

28. Garay, J.A.R., et al., Genome sequence of Elizabethkingia anophelis strain EaAs1, isolated from the Asian malaria mosquito Anopheles stephensi. Genome announcements, 2016. 4(2): p. e00084-16.

29. Chen, S., M. Bagdasarian, and E.D. Walker, Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts. Applied and environmental microbiology, 2015. 81(6): p. 2233-2243.

30. Li, Y., et al., Complete genome sequence and transcriptomic analysis of the novel pathogen Elizabethkingia anophelis in response to oxidative stress. Genome biology and evolution, 2015. 7(6): p. 1676-1685.

31. Kukutla, P., et al., Insights from the genome annotation of Elizabethkingia anophelis from the malaria vector Anopheles gambiae. PLoS One, 2014. 9(5): p. e97715.

32. Teo, J., et al., Comparative genomic analysis of malaria mosquito vector-associated novel pathogen Elizabethkingia anophelis. Genome biology and evolution, 2014. 6(5): p. 1158-1165.

33. Frank, T., et al., First case of Elizabethkingia anophelis meningitis in the Central African Republic. The Lancet, 2013. 381(9880): p. 1876.

34. Kukutla, P., et al., Draft genome sequences of Elizabethkingia anophelis strains R26T and Ag1 from the midgut of the malaria mosquito Anopheles gambiae. Genome announcements, 2013. 1(6): p. e01030-13.

35. Boissière, A., et al., Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog, 2012. 8(5): p. e1002742.