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Abstract—In this paper we describe derivation of a
new iterative method for solving nonlinear equations.
The method is shown to have convergence order five.
Furthermore we show that the convergence order may be
accelerated by replacing derivative with its finite difference
approximation. The accelerated convergence achieved is
six. We compare our sixth order method with other
methods in the literature.

Index Terms—Fix Point Method, Convergence, Nonlin-
ear Equation

I. INTRODUCTION

CCURRENCE of nonlinear equations contributed

a critical role in applied mathematics and engi-
neering. Therefore, over the last ten or more years,
numerous mathematical methods that are intended to
obtain numerical solutions of nonlinear equations arises
in various fields of science and engineering. The prob-
lem of root finding of the nonlinear equations is most
appropriate computational problems. This problem has
widespread diversity of everyday applications in quan-
tum mechanics, physics, chemistry, natural sciences,
applied mathematics, engineering [1]. The most com-
mon root finding methods of nonlinear equations are
binary search (dichotomy) method, Newton-Raphson,
false?position method, secant methods, Mullers method,
fix point method [1]]. The binary search and false po-
sition method are the bracketing methods and Newton
Raphson method, secant method, fix point method are
open methods. In previous years several techniques are
applied to derive new iterative methods to solve non-
linear equations. The techniques used to derive these
methods includes, Taylor series, Adomian decomposi-
tion [2], Homotopy analysis method [3]], and numerical
quadrature [4]. In this paper we extend upon the work
of Noor to derive a new method with fifth order con-
vergence. The fifth order method involve three function
evaluation where derivative is evaluated at two different
points. The methods convergence can be accelerated by
using finite difference which is counter intuitive. Since

approximation of derivative with its finite difference
approximation usually results in loss of information,
while in our case accelerated convergence is obtained.
The paper is organized as follows: Section two describe
the construction of a third order method. Section three
discusses a method to accelerate convergence, in section
four numerical comparison of our method with other
techniques is presented while in section five we give
concluding remarks.

II. FIXED POINT METHOD

In this section we combine three techniques namely
fixed point iteration, finite difference, and interpolation
to develop a new method with sixth order of conver-
gence.Shah and Noor [5] had derived an iterative method
to solve nonlinear equations. For the sake of complete-
ness we reproduce their derivation. Let us consider the
problem of solving nonlinear equation:

flz) =0 )

The problem (I)) can be written as fixed point iteration
as follows:
x=F(z) (2)

The fixed point map F'(x) can be chosen such as to
develop an implicit or explicit iterative scheme with
guaranteed convergence. Shah and Noor have considered
the following F'(x),

F(x) = o(x) + A(f(2))g(x) 3)

where ¢(z) is an iteration function and with convergence
order p and g(x) is an auxiliary function. Notice that the
optimal value of A can be obtained via optimality criteria
ie.

dF(x)
dx
from above the optimal value of A\ come out to be
¢'(x)
p(f(@)P=1 f'(2)g(x) — (f(z))Pg' ()

=0.

A= —
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Using value of X in @), we obtain,

oy @)
PO =00 = o) + Fad @)
Using 41 = F(x,), we have
— o) — ¢’ (@n) [ (@n)g(@n)
Tnt1 = 9(@n) pf(xn)g(xn) + f(2n)g (n) @
f (=)

Taking ¢(z) = « — 7707y and g(x) = e~ %, the above
recurrence relation reduces to,

f(an) _ (f (zn))?f" ()

fn)  (f(20))?(2f (zn) — af(asn()s))

The above method have third order convergence but it
depends upon second derivative. Shah and Noor replaced
double derivative using Taylor approximation. Here in-
stead of using Taylor approximation we can replace
derivative with finite difference approximation i.e.

’ gl
) e ) = 1 ()
—Yn
The above method require predictor step that is value of
4, Which we can choose as follows:

f'(zn)
Replacing double derivative as described above in ()
we have the following iteration:

ey = g — @) () — f(20))
Ty (f’(xn))2(2f’(xn)—af(g:n)()6)

Tn41 = Tp —

Tlix’ll

Notice that,

The iteration (€) require three function evaluation and
it has third order of _convergence (Theorem [I)) thus its
efficiency index is 33 = 1.442. In the next theorem we
prove the order of convergence.

Theorem 1. Let I be an open interval and r € I is a
simple root of a sufficiently differentiable function f then
the iteration function defined by

L S

Yn = Tn, ) (7N
st = g — — @ ) = f'(@0))

T (F ()2 (2 (o )*Otf(zn)()g)

has convergence order three.

Proof. Let r be a simple root and since f is sufficiently
differentiable thus expanding f and f’ around r results
in

f(xn) = f'(r) (en + c2e? + csed + caep + csed, + O(ed))

f’(ajn) = f'(r) (1 + 2coen + 3038 + 4046 + 5056 + O(e (5 )
(10)
1 f (@
where ¢, = 7; f,
The above gives:

,k=1,2,3,--- and e, = x,, — 7.

UYp = 7‘+02€i - (203 - 203) ef’L - (7403 + 7cac3 7304) ei

— (8 c% — 20c2%c3 + 10 cocy + 6c§ — 405) ei + O(efl)

f/(yn) = f’(r) (1 +2c2(yn — 1) + 3c2(yn — T)Z +4ca(yn — 7”)3 + O((yn — T)4))
Flyn) = f'(r) A +2c3e2 + (—4c3 +4cacs) €3 + (8¢ +3c2® — 1dcBes + 6coca) ep + )

Using above we have,

(F@a)2(f (yn) — f(zn)) =
(f'(@n)?(2f (zn) — af (zn))

(f'(r)? (-2 c2ed + (-2 c3— 3c3) et 4 (-2 3 —6cacy — dcs) ei)
= (f'(r)2@Q+ (—a+12c2)en + (—5ac+ 243 + 18¢3) e2

+ (—Sacg + 1603 —Tacg + 72coc3 +24C4) ei

+ (—4a023 —22acac3 +726%Cg —9acqg +96cacy +54c§ +3005) efl + .-

Thus we have,

en-|-1

= (1/2c34+2c5 —1/2acs) €l + (s —9¢5 —1/40%co +9/2cac3 + 5/2ac; —3/4acs) ey + -

III. ACCELERATED CONVERGENCE

It is well known that by combining method with other
methods as predictor corrector scheme their convergence
order can be improved. Thus to accelerate the conver-
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gence of our method we combine it with another iteration
of Newton’s method as follows:

L )
L U )~ )
" " Yn — Tn (f'(20))?(2F (2n) — af(zn))
S
Tn+1 = Zn f/(zn) (11)

The order of convergence for above method is six which
can be easily verified. The efficiency index for the above
method is 65 = 1.43, which is actually reduced. To
increase the efficiency index we ought to reduce the

By using the above we have,
Flan) ~ (@) (f' (@) — A (yn)) + ' (yn) (af (z0) + F(20)))
' af(wn) = 2'(@a)

Notice that by replacing f’(z,) with its approximation
does not effect the order of convergence.

Theorem 2. Let I be an open interval and r € I is a
simple root of a sufficiently differentiable function f then
the iteration function defined by

 fa)
Yn = Tn f/(xn)
1 (f(xn))Q(f/(yn) — f/(xn))

12)

. . Zn = Yn —
number of function evaluation. To decrease the num- Yn — Tn (f'(20))? (21" (20) — af(20))
ber of function evaluation we approximate derivative (13)
at z, using linear interpolation of two points namely o fzn)(af (zn) = 2f" (xy))
/ / : n+l — An —
(Tn, f'(2n)) and (yn, f'(yn)) ie. J'(@n)(f' (@) =4 (yn)) + ' (yn) (@ f (zn) + f/(20)))
14)
/ T —Tn . T = Yn (
f@)m ——f(yn) + ——— f(an) .
Yn — Tn n— Un has convergence order six.
Proof. In lieu of Theorem [I] we have,
1 1 1 5 3 9
ot (2624 2y — = 3+(_9 34 cr— eyt 2 2 9 42 ) 4
Zn =T ( c2 3 c3 3 acz> eén c2 cq 1 a‘ca 3 ac2 2 acs 2 cac3 | en
1 3 15 19
— Zafcs + <7 c2? — 3/803) o? + (— cocy — — ¢ — C4> a
8 2 2 2 5
+ en
4,3 3,3 o2, 3 2
+30c2 +562 +§C3 +565—3662 c3 + 6cacy
15 21 5 13 63acet 1 7a3c?
2c6 — 88ca” + > c2c5 — > et — Zact—, - a?eo® % -3 aZes + ascg
3 1 3 21 aceg? 171 aea?c3 21 37 a2coc3 6
+| - =ales— —atca+ S ac®+ - + —accy + — en
65 7° 160 P47 1 4 g T 8
7
— 50 02204 + 5 c3cq + 16702303 — 43 02032 + 602203
5 . 27 ¢33 27a’c3? 5
3 7 +48¢2% +2¢4% — s + 240 ¢2% 4+ 9 cocg — 118 cacsey + a8 e _ 3 a?cs
17 aBeo? 1 1 3atcs 1 3
- — +24a2024 —96a625— Za304+5a4622 — 32 — §a502+ §a2023
3 11 123 2 o7 7
+ - 60ccg4 — 5 ace + Z a3cg03 + 3a02203 — 60acg264 — a;QCS + a20265 en
29 241 o co? 13 117 e3¢
Xc3cd o¢802 s + 189a62303 + > a20204 + 902204 — % + 602032
— 64 02265 + 4 c3es + 234 62304 — 624 02403 + 330 022632
21
3cg — 180 626 — 624 (227 — 150 cac3es + 924 0226304 + 18 cac3eq + 3 cocr+
9alcy? 3a°cs3 abey 111 33 s 7 2 33a3¢3?
Rt A A ittt I | S -z -
32 64 64 Hl0ae” = acr = afe g
5a3cs  43atce®  69acet  321a%cr® 6 1 4 3 5 3
- - - 276 - = =
16 16 4 g PElbectmgatad qpate
27 a?co? 123 acca® 3090402205 33 acacg 37 ac3es 85a2ca?ey
— — + —
+ 8 4 4 2 2 2 €8 1
2 5 531 acydey 1653a022032 67 a20205 75 a20304 161 a3022c;; "
— 45 a“cacs” + _
2 4 8 8 8
1185 a?ca® 31a8 51a 9 3
Soweres 720a02403 + o c2cd + @ €203 + - a02204 + 30:02032 + - a202203 78
8 8 32 2 2
135 co® 171 c23 9
22 L 192y — 2 L 349 chtes — 108 ¢a2es? — T8ealeq + 5 eaco +297 ca’cs +
531 cgess 343 v caczey

9
5 0465 = 882 cotcy — 81 cocy? — 54 caey + 2064 c®c3 — 1710 ¢332 +
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‘We have,

fzn) = () zn—r+cax(zn—1) 2 +e3*(zn—1)3 +eax(zn—r)Y) +---

Thus giving,

f(zn) =f'(r) (222 +1/2¢3 — 1/2ac2) en® + f/(r) (=9¢2® + s — 1/4a%co +5/2c2? —3/4aes +9/2cac3) ent

.
5
€n

15
) 30cot +3/2¢2® +3/2¢3% +3/2¢5 + - acaes — 1/8 ey
+3/2 a2co? — 19/2a023 —3/8 a?es —36ca%cs — aca + 6caca
25 a2cg3 59 acot
4 2

21 aes?
—3/16a3¢cs — 1/16adca + 3/4acs® + %

7 aBcg?

2¢6 +15/2c2c5 —b/4docs — —1/20a%cs +

en®

—50c2%ca +7/2c3¢4 + 169 ca3c3

171 2 173 2 37 a?
_ 72203 +6ca%cs — 84co® — 21/2¢0% — 7202 % 1 21/2ac0cs + 70“80203
27 ¢33 27a2%c3? 5 4
—— — —a“cs
8 8
3atcs 1 3
2 5 2.3
— —a“ca+ — a‘c
32 320 TR ®

2 249 acacs
cq —

+204¢2% +9¢acg — 117 cacses +

5
567 +48625 + 2042 —
41 a0t

—4a3c®
2° + 3

1 1
—TTac® — = adc Zate
2 1 4+2 2

2 27 acacs 7
* +

+ f'(r) 1 5

—6acy

3 11 5 5
—§a06+zo¢ cacs +3ace“cs —6lace

29 ac3eq 237 a202203

2 8

117 c23 669 c22c3?
- % + 602632 — 64 02265 + 4 c3es + 238 02304 — 615 62463 =+ %

297 cacses

13
+ 1840102303 + ? a20204 + 962204

9alcy?
32
33 a3c3? 5a3c
26 + =22 5
16 16

5 1 3 27 a?cot
— 5 a4cg3 + 14 a3024 — 54 a2025 + 16304026 — § a404 + E a3023 - %

3cg — 17408 — 423 ¢y —

21
+ 939 0226384 + 18 cac3eq + ? cocy +

ofco 111 w33

7 3
—|—10a042— Zaw— ia

117 v ea® 315acaes 33 acac 37ac3es
4 4 2 2
521 aeaey 82504022032 67a20205 75 a20304 39 a302203
2 2 8 8 2 8
1255a02403 31adcacy 51 atcacs
B 2 8 32
135 acca’ces 171 co3cy

2
9
+ 303 c23cs + 5 €465 = 876 catcq — 80 cocy? — 54 c32cy + 1869 ca°cs

71704202032
16

1077 a202303 e 8
n

—42a%co%cy —

+£'(r)

9 3
+ 5 a02204 + 3a02C32 + 5 a2022c3

687 catcs

9
+ 12 02205 — — 108 622632 — 78 02266 + 3 c3Ce

6879 ca3c3?

1 + 26702033 — 174 acacseq

Thus simplifying the above relation we get:

2

ent1 = (1/4a2023 —2ace* + 4¢3 —4ex3es — 5/402032 + acy C3) end + ...

Thus the method had sixth order convergence.

Note that with the change of interpolating point with
f'(zn) the method retain its convergence order and its
efficiency index is improved which is now 1.56. Here it
is worth mentioning that changing derivative with linear
interpolation polynomial is well-known see e.g. [6] and
references therein.

IV. NUMERICAL RESULTS

In this section we present comparison of our method
with other six order method. The method are sixth order
modification of well known techniques. The methods are
implemented on Maple 15 with 300 digits precision. We
used absolute error between consecutive iterations as a
stopping criteria with tolerance 107 i.e |2, 1 —x,| <
10759, We have also calculated computational order of
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convergence which is given below:

n

Tn41—Tn ’

Tp—Tn—1

COC =
In

Tn—Tn—1
Tn—1—"Tn—-2

For our method we choose v = 0.5. The results are
given in Table

V. CONCLUSION AND DISCUSSION

It is clear from Table [[] that our proposed method
works well in comparison with other methods. In the
worst case the method performs as good as the other
methods. In this paper we have made calculations by
fixing «, in future we would like to analyze the depen-
dence of our method to a. Furthermore we analysis the
stability of the method for the complex roots.
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TABLE 1
NUMERICAL COMPARISON OF ITERATIVE METHODS. NOTE THAT NUMBER OF ITERATION TO FIND ZERO ALONG WITH COMPUTATIONAL
ORDER OF CONVERGENCE IS REPORTED. R METHOD [7], W METHOD[8], P METHOD[9], G METHOD[10].

Equation Zo New Method | R Method | W Method | P Method | G Method

r—2—e" 3 It. 4 5 7 4 4
CoC 5.9731 2.8746 1.9719 5.9575 5.9584

2?2 —e® -3z +2 0 It. 4 5 7 4 4
CoC 5.9959 2.9877 2.0076 5.9993 5.9839

ze® — sin(z) + 3cos(z) +5 | -1 It 4 Div 9 4 4
CoC 6.5515 0.0000 2.4249 6.0225 5.9708

sin(z)e” + In(z? + 1) 2 It. 5 7 8 18 5
CoC 4.6704 2.8044 1.7698 1.7957 4.9924

(x—1)3 -1 3 It. 4 10 50 4 4
CoC 5.4610 5.4153 -7.1612 5.7183 5.5318

sin?(r) — 2% + 1 1 It. 5 11 10 4 4
CoC 6.7395 0.8440 1.9722 6.1312 6.1252

2* — 0.03z + 0.0002 15| It 7 10 18 7 7
CoC 3.2351 1.9310 0.5717 3.4535 3.2286

i 02| It 5 9 10 5 4
CoC 5.2484 2.4857 2.0209 5.2198 5.5429

et T30 35 It 6 12 8 6 6
CoC 9.1874 2.2970 1.7734 5.3355 11.0127

sin(z) — 3 2 | It 4 5 7 4 4
CoC 5.9787 2.9837 1.9722 5.9854 5.9857
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