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Abstract— In this paper the equation of motion is derived for 

a given set of boundary conditions governing the nonlinear 

vibrations of an isotropic plate with an arbitrarily located part-

through crack at the centre of the plate, consisting of a 

continuous line. The equilibrium principle is used to derive the 

governing equation of motion in order to get a tractable 

solution to the vibration problem. Principally, the effects of 

rotary inertia and through-thickness shear stress are neglected. 

Galerkin’s method is applied to reformulate the governing 

equation of the cracked plates into time dependent modal 

coordinates. The simplifying assumptions, and their validity, 

are described as and when they are made during the derivation 

of the equations. Berger’s formulation is used to generate the 

form for the in-plane forces and make the model differential 

equation nonlinear. Results are presented in terms of 

frequency and half crack length, and found extremely good 

comparison amongst others.  

 

Index Terms—Isotropic plate, crack, equilibrium principle, 

in-plane forces, Galerkin’s method, vibrations. 

 

4  INTRODUCTION 

achines and structural components potentially require 

continuous monitoring for the detection of cracks and 

crack growth for ensuring an uninterrupted service in 

critical installations. Cracks can be present in structures due to 

various reasons such as fatigue, impact, corrosion and external 

and environmental factors like temperature, relative humidity, 

rainfall and the general properties of structures. Complex 

structures such as aircraft, ships, steel bridges, sea platforms 

etc., all use metal plates. The presence of a crack does not only 

cause a local variation in the stiffness, but can affect the 

mechanical behaviour of the entire structure to a considerable 

extent. Cracks present in vibrating components can lead to 

catastrophic failure as reported by Neogy and Ramamurti [1], 

Ramamurti and Neogy [2], Trendafilova [3,4], and 

Trendafilova et al. [5] etc. For these reasons, there is a need to 

understand the dynamics of cracked structures. The vibration 

characteristics of structures can be useful for on-line detection 

of cracks without actually dismantling the structure. In 

particular, the natural frequencies and mode shapes of cracked 

plates can provide insights into the extent of damage. Israr et 

al. [6,7] studied the dynamics of the cracked plate by 

considering a part-through crack at the centre of the plate 

under the application of repeatedly applied periodic force at 

some specified position with different possible boundary 

conditions, and proposed the solution of the problem. Israr et 

al. pointed out that crack in the plate influenced the natural 

frequency of the entire plate structure differently. 

In this study an approximate generalized form of the 

governing differential equation is derived for the damage 

detection in a rectangular plate having a part-through crack at 

the centre of the plate subjected to harmonic load with three 

sets of boundary conditions and aspect ratios.    

5  AN APPROXIMATE GENERALIZED FORM OF 

CRACK RECTANGULAR PLATE 

5.1 Overview and Developing Equation 

 

The classical form of the governing equation of rectangular 

plate is rigorously treated by Timoshenko [8], Leissa [9], and 

Szilard [10], and so, by neglecting the effect of rotary inertia 

and through-thickness shear forces, it can be written as:  

 

� ������� � � �����	�
	 � ����
��
� 
�� �	���	 � �� �	���	� �� �	��
	 ����� �	����
 � �� 

(1) 

where w is the transverse deflection, Pz is the load per unit 

area acting at the surface, � is the density, h is the thickness of 

the plate and nx, ny, and nxy are the in-plane or membrane 

forces per unit length. D is the flexural rigidity and can be 

defined as D=Eh
3
/12(1-�

2
); E is the modulus of elasticity, and 

� is the Poisson’s ratio.  

Initially, the derivation of the governing equation of the 

plate having a part-through crack consisting of a continuous 

line of length 2a, located at the centre and parallel to the x-

direction of the plate as depicted in Fig. 1 is performed by 

considering that the cracked plate is linear with the following 

basic assumptions [6]. Later, the governing equation of the 

cracked plate transforms into nonlinear form by the 

application of Berger’s formulation [11]. 

1. The plate is made of a perfectly elastic, homogeneous, 

isotropic material and has a uniform thickness h which is 

considered small in comparison with its other dimensions. 

2. All strain components are small enough to allow Hooke’s 

law to hold. 

3. The normal stress component in the direction transverse 

to the plate surface is small compared with other stress 
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components, and is neglected in the stress-strain 

relationship.  

4. Shear deformation is neglected in this case and it is 

assumed that sections taken normal to the middle surface 

before deformation remain plane and normal to the 

deflected middle surface of the plate. 

5. The effect of the rotary inertia, shear forces and in-plane 

force in the y-direction i.e. ny and nxy are neglected mainly 

to make the problem more tractable. 

For relatively thick plates (h/l>2), where h is the plate 

thickness and l is an average length in its plane, the effects of 

shear deformation and rotary inertia become significant, as 

explained by Leissa [12]. Moreover, in vibration problems, the 

effect of rotary inertia and shear deformation corresponding to 

higher modes are more pronounced than on those 

corresponding to lower modes, and also yields mathematical 

complexity. In this study, the first mode is discussed in more 

detail, therefore the assumption made that the effect of the 

rotary inertia, and shear forces are both negligible is 

applicable in the subsequent derivation. 

The equilibrium equations are obtained by resolving the 

forces in the z-direction and taking moments about the x and y-

axes. The forces acting on the plate element are shown in Fig. 

1. 

Summing the forces along the z-axis leads to, 
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(2) 

 

where Qx and Qy are the forces per unit length which are 

projected  along  z direction, � is the density, h is the thickness 

and Pz is the load per unit area acting over the surface of the 

plate. Later, this Pz is replaced by a point load ��� based on the 

application of the appropriate delta function because, in 

practice, it is straightforward to implement this type of 

loading. Therefore, 
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The moment equilibrium about the y-axis gives, 

 ��� � ��
���
 � ��� � ����� ��� �
 
 �����
� ���� � �����
 �
� ��

 ��� � ����� ��� ��� �
 
 ���
 ���� � 

(4) 

After simplification, small quantity of higher-order is 

neglected. Therefore,  

 ����� � �����
 � �� (5) 

and hence 

 �	����	 � �	����
�� � �����  (6) 

Similarly, the moment equilibrium about the x-axis can be 

written as, 
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(7) 

After simplification, small quantity of higher-order is 

neglected. Therefore,  
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and hence, 
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Now, substituting Eqs. (6) and (9) into Eq. (3), gives, 

 �	����	 � ��	������
 � �	���
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(10) 

where Mx, My and Mxy are the bending moments per unit 

length along the x and y directions. �!� is the bending moment 

per unit length due to the crack at the centre of the plate. 

Expressing the moments in terms of the curvatures leads to the 

following result, 

 � ������� � � �����	�
	 � ����
��
� 
�� �	���	 � �	�!��
	 � �� 

(11)

5.2 Addition of Membrane Forces 

 

Membrane forces occur when the displacements of the plate 

parallel to its middle surface are constrained by the supports, 

and assume small displacements throughout. Occasionally, 

membrane forces apply at the boundaries and are usually 

caused by temperature variations, pre-stressing and large 
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deflection. The magnitude of the membrane forces are a 

function of the boundary conditions. This is easily visualised 

by considering two different plates, one clamped along its 

edges to prevent any translation or rotation and the other 

simply supported along its edges allowing only rotation. For 

equal maximum displacements, the deflected surface length of 

the clamped plate is greater than that of the simply supported 

plate, resulting in higher membrane forces. 

Considering the equilibrium of the dxdy element in Fig. 2, 

and given that it is subjected to membrane forces nx, ny, nxy = 

nyx, and ��� (caused by the crack at the centre of the plate) per 

unit length, then since there are no body forces, the projection 

of the membrane forces on the x-axis leads to the following 

form, 

 
���
 � ��� � ����� ��� �
 
 �����
� ���� � �����
 �
� �� � � 

(12) 

Therefore, 

 ����� � �����
 � � (13)

Similarly, along the y-axis we find that,   

  
�� 
 ���"�� � ��� � ����
 �
 � ���
� �����
 �
� �� 
 ����

� ���� � ������ ����
 � � 

(14)

leading to, 

 ����
 � �����
 � ������ � � (15)

The equilibrium of the dxdy element in the z direction is 

considered next. It is arbitrarily assumed that the left hand and 

rear edges of the plate element are fixed and lie in the xy 

plane, as shown in Fig. 3. Other boundary conditions are 

equally possible. So, after neglecting higher order quantities, 

we obtain, 

 ��� $�% 
& � �� �	���	 � �� �	��
	
� ��� �	��
	 � ���� �	����
# (16) 

Thus, it can be deduced from Eq. (16) that the effect of the 

membrane forces on the deflection is equivalent to an assumed 

lateral force Fz(x,y). Adding this to the lateral forces in the 

governing equation i.e. Eq. (11), and noting that this force acts 

only in the x-direction, then the terms in the y and xy 

directions is neglected; leading to 
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(17) 

This is the equation of motion for the cracked vibrating plate, 

and for the case of free vibration, Pz = 0. The value of w 

should be such that it must satisfy the boundary conditions at 

the edges of the plate. 

 

5.3 Formulation of the Crack Terms (('! ( and#)!()  

 

Rice and Levy [13] model is based on Kirchoff’s bending 

theory for thin plates and shells and is used here for the 

formulation of the crack terms as indicated in Eq. (17). They 

obtained an approximate relationship between nominal tensile 

and bending stresses at the location of the crack. These 

relations are taken after some rearrangement, and then by 

making use of the basic relationships of tensile and bending 

stresses, it can be deduced that#*+, � -#.+,. A representation 

of these stresses is given in Fig. 4. 

 .�+, � �/$-01234 0114 &$5 
 6	&� � �/ .+, (18)

and, 

 *!+, � �/7 �8219- � 8229 � $7 � :&$5 
 :&� � �/*+, 
(19)

where r,s = 1,2 are intermediate variables required for 

algebraic simplification. We define .�+, and *!+, as the 

nominal tensile and bending stresses respectively, at the crack 

location and on the surface of the plate, .+, and *+, are the 

nominal tensile and bending stresses at the far sides of the 

plate, h is the thickness of the plate, a is the half length of the 

crack, and 8229 , 0114 , 8219 � 8129  are the non-dimensional 

bending, stretching and stretching-bending compliance 

coefficients at the centre of the plate element, respectively.  

These relationships show that the nominal tensile and 

bending stresses at the crack location are a function of the 

nominal tensile and bending stresses at the far side of the 

plate. It is worth noting that Okamura et al. [14] and Khadem 

and Rezaee [15,16] also restricted their analysis to the effects 

of bending compliance, and thus avoided the coupling effect 

by ignoring the stretching compliance. These three compliance 

coefficients depend upon the crack depth to plate thickness 

and vanish when crack depth is equal to zero. Rice and Levy 

[13] model is also shown that in general the compliance 

coefficient is a function of the ratio of crack depth to plate 

thickness, and can be calculated at the centre of the cracked 

plate takes the form,#8+,; � 5<5=>?8+,#[6]. The appropriate 

compliance coefficients, 8+,, can then be calculated from the 
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relation given in most of the literature such as that of Okamura 

et al. [12], Rice and Levy [11], Khadem and Rezaee [13,14], 

Israr et al. [6,7].  

The uniformly distributed tensile and bending stresses as 

indicated in Eqs. (18) and (19) are at the two sides of the crack 

location, and these tensile and bending stresses can be 

expressed in term of tensile and bending force effects. These 

force and moment is calculated from two-dimensional plane 

stress plate bending theory, with the cracked section 

represented as a continuous line spring having its compliance 

matched to that of the edge cracked strip in plane strain as 

shown in Fig. 4. Here, it is very useful to mention that the 

present derivation, and Rice and Levy [13] model, are both 

based on classical plate theory; therefore the force #��� and 

moment �!� in Eq. (17) can be replaced with the new values 

obtained in Eqs. (18) and (19) with a negative sign, because 

damage causes a reduction in the overall stiffness of the plate 

structure, a phenomenon which can also be seen in most of the 

literature, such as that of Keer and Sve [17], Stahl and Keer 

[18], Solecki [19], and Khadem and Rezaee [15,16]. 

Therefore, we can write the tensile and bending stresses as, 

(Israr et al. [6]),  

 ��� @ 
��+, � 
 �/$-8129 � 8119 &$5 
 A	&� � �/ �+, (20) 

and, 

 �!� @ 
�!+,� 
 �/7 �8219- � 8229 � $7 � A&$5 
 A&� � �/�+, (21) 

where ��+, and �!+, are the force and moment per unit length in 

the y-direction at the crack location of the plate, respectively, 

and �+, and �+, are the force and moment per unit length in 

the y-direction at the far sides of the plate, respectively. 

Substituting the values of ��� and �!� from Eqs. (20) and 

(21) into Eq. (17), and then plugging in the value of bending 

stress �+, at the far sides of the plate into Eq. (17), so the 

governing equation of the plate with a crack at the centre 

extends to the following form, 

 � ������� � � �����	�
	 � ����
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6  GALERKIN’S METHOD FOR A VIBRATING 

CRACKED PLATE 

Solutions based on linear models are considered adequate 

for many practical and engineering purposes although it is 

recognized that linearised equations usually provide no more 

than a first approximation. Linearised models of vibrating 

systems are inadequate in cases where displacements are not 

small. In addition, problems treated by nonlinear theory 

exhibit new phenomena, for example the dependence of 

frequency of vibration on amplitude that cannot be predicted 

by means of linear theories. Moreover, an example of such a 

source of nonlinearity is a crack within a plate, which can lead 

to profound changes in the vibrational response of the system.  

Galerkin’s Method is applied to reformulate the governing 

equation of the cracked plate (Eq. (22)) into time dependent 

modal coordinates by the application of given boundary 

conditions, and Berger’s formulation [11] is used to express 

formally the in-plane forces, which can then be used to 

transform the governing equation of the cracked plate into a 

nonlinear system. To accomplish this we consider the 

rectangular plate of Fig. 5, of length l1 in the x-direction and l2 

in the y-direction containing a crack which consists of a 

continuous line of length 2a located at the centre and parallel 

to the x-direction of the plate. A point load ��!  based on the 

application of the appropriate delta function is introduced at 

the arbitrary location of (xo, yo). 

The solution for the governing differential equation of the 

plate subjected to transverse loading is obtained by defining 

the characteristic functions depending upon the boundary 

conditions of the plate. The basic model for solution is the one 

in which all edges are simply supported, while for other 

boundary conditions the principle of superposition holds 

(Timoshenko [8], and Berthelot [20]).  The most general form 

of the transverse deflection of the plate is, 

 �$�% 
% �& � � � BCDECFD�

CGH
�

DGH ICD$�& (23) 

where Xm and Yn are the characteristic or modal functions of 

the cracked rectangular plate, Amn is an arbitrary amplitude and ICD$�& is the time dependent modal coordinate.        

The appropriate expressions for the characteristic or modal 

functions are the one that satisfy the boundary conditions of 

the plate. Three boundary conditions i.e. Clamped-Clamped-

Free-Free (CCFF), Clamped-Clamped-Simply Supported-

Simply Supported (CCSS), and all sides Simply Supported has 

been discussed in the proceeding sections, and these boundary 

conditions have been treated by different researchers such as 

the case in which two adjacent edges are clamped while the 

other two edges are free (CCFF) was examined by 

Thimoshenko [8], Young [21], Nagaraja and Rao [22], in the 

monograph of Leissa [9], and Berthelot [20]. The condition in 

which two adjacent edges are clamped while the other two 

edges are simply supported (CCSS) was examined by Iwato 

[23], and the one in which all sides are simply supported 

(SSSS) was studied by Szilard [10], and Yagiz and Sakman 

[24]. The lateral load ��!  at position (xo, yo) is defined by Fan 
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[25] as ��! � �9$�&J$� 
 �9&J$
 
 
9&. Substituting the 

definition of w(x,y,t) from Eq. (23) and the value of  ��!  into 

Eq. (22) and rearranging the terms, we get, 

 �K��EC��� FD � ���ECFD��	�
	 � ��FD�
� EC 
 �� �	EC��	 FD
� �/$-�123; �11; &$5 
 A	&� � �/ �L2 �	FD�
	 EC

 �/7 �8219- � 8229 � $7 � A&$5 
 A&� � �/ � ��FD�
� EC
� A ��ECFD�
	��	MBCDI$�&
� 
�� �	I$�&��	 BCDECFD � �9$�&J$� 
 �9&J$
 
 
9& 

(24) 

Berger’s relationship [11] is used to obtain forms for the 

membrane forces nx and nrs per unit length in the x and y 

direction respectively. Berger showed that this approach 

works well for combinations of simply supported and clamped 

boundary conditions. This formulation has also been adopted 

by Wah [26], and Ramachandran and Reddy [27] for 

determining the nonlinear vibrations of un-damped rectangular 

plates. The membrane forces can be written after multiply 

each term by dxdy, then impose the condition that the 

displacement components vanishes at the external boundaries 

and around the crack, and applying the definition of w(x,y,t) 

from Eq. (23), leading to, 

 �� � ��HNCDBCD	 OCD	 $�& (25)

and, �+, � ��	NCDBCD	 ICD	 $�&# (26)

where the quantity Amn is a modal peak amplitude function, 

normalised in this case to unity, 

 �HNCD � -�	PHP	 � � Q Q R��EC�� �	 FD	ST
;

SU
;

V
CGH

V
DGH� A ��FD�
 �	 EC	 W ���
 

(27) 

and, 

 

�	NCD � -�	PHP	 � � Q Q R��FD�
 �	 EC	ST
;

SU
;

V
CGH

V
DGH� A ��EC�� �	 FD	W ���
 

(28) 

Substituting the membrane forces nx and nrs from Eqs. (25) 

and (26) into Eq. (24), multiplying each part of Eq. (24) by the 

modal function Xm and Yn for one of the three boundary 

conditions mentioned above, and then integrating over the 

plate area, we find that,  

 �CDOX CD$�& � YCDOCD$�& � ZCDOCD[ $�& � �CD  (29)

where 

    �CD � ��� � � BCD
�

CGH Q Q EC	 FD	ST
;

SU
;

�

DGH ���
# (30) 

   

YCD
� � � BCD

V
CGH Q Q$EC\]FD � �EĈFD̂ � FD_`EC

ST
;

SU
;

V
DGH
 �/$AEĈFD̂ � FD_`EC7 �8219- � 8229 � $7 � A&$5 
 A&� � �/&ECFD���
# (31) 

    

ZCD
� � � BCD[V

CGH Q Q �
�HNCDECEĈFD	ST
;

SU
;

V
DGH� �/�	NCDEC	 FDFD̂$-8129 � 8119 &$5 
 A	&� � �/� ���
#

(32)

The force term in Eq. (29) can be expressed as 

 �CD � �9$�&� �CD where     �CD � EC$�;&FD$
;& (33)

Eq. (29) is in the form of the well known Duffing equation 

containing a cubic nonlinear term, and can be re-stated as 

 IXCD$�& � aCD	 ICD$�& � bCDICD[ $�& � cCD�9$�& (34)

where 

  aCD	 � YCD�CD % bCD � ZCD�CD % �CD � �CD� d �CD (35) 

and aCD is the natural frequency of the cracked rectangular 

plate. bCD is the nonlinear cubic term and can be either a 

positive (hard spring) or a negative (soft spring) depending 

upon the system parameters.  

Now if it is assumed that the system is attached to a nonlinear 

spring under the influence of weak linear viscous damping �, 

and let the load be harmonic, such that,#�9$�& � �efghCD�#, 
then the equation of the rectangular cracked plate becomes, 

 IXCD$�& � ��IiCD$�& � aCD	 ICD$�& � bCDICD[ $�&� cCD�efghCD� (36) 

This problem is not too hard to nondimensionalise, however, 

physical units of the parameter are used throughout, because 

there are no significant scale effects, or data complications 

which would otherwise require the one of formal 

nondimensionalisation. 
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7  RESULTS 

A test plate made of aluminium alloy 5083 is used for the 

comparison of the natural frequencies of cracked and un-

cracked plates. This aluminium alloy contains 5.2% 

magnesium, 0.1% manganese and 0.1% chromium. In the 

tempered condition, it is strong and retains good formability 

due to excellent ductility. It has high resistance to corrosion, 

and is used for various applications such as shipbuilding, 

aircrafts, rail cars, vehicle bodies, pressure vessels etc. It has 

low density and excellent thermal conductivity common to all 

aluminium alloys and has the material properties such as 

modulus of elasticity, E = 7.03 x 10
10

 N/m
2
, density, � = 2660 

kg/m
3
, Poisson’s ratio, � = 0.33, and a damping factor of         

� = 0.08, while the geometric properties of the test plate are: 

length along x-direction, l1 and length along y-direction, l2 

ranges between (0.5-1) m, half crack length, a ranges between 

(0-0.01) m, and thickness of the plate, h = 0.01 m. A point 

load, P = 10
 
N is chosen, and is acting upon the surface of the 

plate at some arbitrary specified point given here by xo = 0.375 

m and yo = 0.75 m. 

The natural frequencies of cracked plates for three sets of 

boundary conditions i.e. CCFF, CCSS and SSSS with different 

aspect ratios have been studied and are illustrated in Fig. 6. It 

can be seen that the presence of the crack at the centre of the 

plate significantly affects the natural frequency of the first 

mode of the plate, in all three cases of boundary conditions. 

The natural frequency is also varied if the geometry of the 

plate is changed, in particular its length and thickness, in 

addition to the effect of the half-crack length. It can also been 

seen that the decrease in the natural frequency as the increase 

of the half-crack length for the same parameters. These 

changes are very small for small half-crack lengths, as one 

would expect.  

The present theory can also be verified with existing linear 

theories as proposed by different investigators, namely, Stahl 

and Keer [18], Solecki [19], Qian et al. [28] , Krawczuk [29], 

and Krawczuk et al. [30] and [31] for the vibration analysis of 

cracked plates. Let us consider a square plate of sides           

0.1 m x 0.1 m made of steel having a material properties such 

as, young’s modulus, E = 2.04x10
11

 N/m
2
, Poisson’s ratio,           

� = 0.3, and mass density, � = 7860 kg/m
3
. The thickness is 

0.001 m and the plate is simply supported from all sides. 

Table 1 presents a comparison of the ratio of frequencies of 

cracked and un-cracked plates. It shows that the percentage 

changes between the linear models and present nonlinear 

model for the range of 2a/l1 ratio (0.1-0.2) is approximately 

(1-2)%. 

8  CONCLUSIONS 

This study involves the mathematical modeling of vibration 

in a plate into which a horizontal crack has been introduced. 

The methodology is principally analytical and has led to a 

unique solution for this problem in the form of a Duffing 

equation in modal space. The Duffing equation has not 

hitherto been shown to be capable of modeling cracked plates. 

In this work it is shown that different boundary conditions can 

be admitted for the plate and that the modal natural 

frequencies are sensitive to the crack geometry. 

It can be concluded that conventional methods used for the 

reduction in frequency response in the cracked plate element, 

might in fact lead to an increase in the amplitude of excitation 

for the first mode. In other words, we can say that a loss of 

local stability of plates with a small crack is possible under 

periodic loading. Results show that the frequency of the 

cracked plate changes for each set of aspect ratio and 

boundary condition differently. Similarly, there is a (1-2)% 

changes when compared with the results of other investigators. 

Finally, this research provides some basic theory and 

understanding of how nonlinear plate systems can be made to 

be more efficient. Engineers and scientists could be 

encouraged to use this new approach for prior understanding 

of the behaviour of damaged plates and panels. By obtaining a 

basic understanding, an ideal and robust system can ultimately 

be configured, and hence more reliable and efficient industrial 

systems can be constructed for vibration analysis.  

 

  

Figure 1 - Isotropic plate loaded by uniform pressure and 

a small crack at the centre 

 

 
Figure 2 -  In-plane forces and a crack of length 2a at the 

centre of the plate element 
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Figure 3 - Two sided constraints and plate deformation 

having a part-through crack at the centre 

 

 
Figure 4 - The bending and tensile stresses for a part-

through crack of length 2a, after Rice and Levy [13] 

 

Figure 5 - Isotropic plate having a small crack at the 

centre under the application of point load at some 

arbitrary position [6] 

 

 
a. CCFF 

 
b.    CCSS 

 
c. SSSS 

Figure 6 - First mode natural frequencies of cracked plate 

for three set of boundary conditions (CCFF, CCSS, and 

SSSS) and aspect ratios. 
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Table 1. Relative changes of the natural frequencies of the 

cracked simply supported plate for the first mode only. 
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