ASSOCIATION BETWEEN THE GENETIC VARIATIONS IN *ADAM12* AND THE SUSCEPTIBILITY TO KNEE OSTEOARTHRITIS: AN UPDATED META ANALYSIS

Bushra Khan* and Saba Aman

Sohail University, Karachi, Sindh, Pakistan *Correspondence: Email: bushrakhanuok@gmail.com; Cell: +923414259856

ABSTRACT

Various studies have reported that genetic variations in *ADAM12* (a disintegrin and metalloprotease 12) gene lead to the development of the most common joint disorder Knee osteoarthritis (KOA). However, the studies' outcomes are conflicting. Therefore, the relationships between the genetic variations and KOA risk were analyzed through the current meta-analysis. Following the comprehensive literature search, odds ratios (ORs) and 95% confidence intervals (CIs) were computed for the influence of *ADAM12* polymorphisms in conferring KOA susceptibility. A total of eleven research articles, comprised of 7012 controls and 5180 cases, were found eligible for the final evaluation. The *ADAM12-rs1871054* showed a significant association with the susceptibility to KOA under the dominant (OR 1.55, 95% CI 1.19–2.02, *P* = 0.001) and additive (OR 1.71, 95% CI 1.03–2.85, *P* = 0.04) models. The *ADAM12-rs3740199* showed a positive association with the OA susceptibility under the dominant (OR 2.67, 95% CI 1.16–6.14, *P* = 0.02) and recessive (OR 0.28, 95% CI 0.14–0.59, *P* < 0.001) models in males. However, the *rs1044122* and *rs1278279* showed no associations with the OA predisposition in any of the genetic models. Hence, the current meta-analysis suggests that *ADAM12-rs1871054* and *rs3740199* have a significant association with KOA susceptibility.

Keywords Osteoarthritis. ADAM12. Polymorphism. SNP. Genotyping. Meta-analysis

INTRODUCTION

Osteoarthritis (OA) is the most prevalent degenerative joint disorder and the leading source of Years Lived with Disabilities (YLDs) across the globe (Vos *et al.*, 2015). Approximately 250 million people have been reported worldwide, suffering from OA, which represented 3.6% of the population (Vos *et al.*, 2012). OA prevalence has been increasing significantly over the past 20 years and is likely to be increased further (Holt *et al.*, 2011; Turkiewicz *et al.*, 2015). Moreover, OA occurrence has also been increased among younger people (Leskinen *et al.*, 12; Yu *et al.*, 2015). Knee OA (KOA) is the most common disorder with a gradual progression leading to disability. However, about 3.4% of the patients develop the accelerated OA in 4 years (Driban *et al.*, 2014; Driban *et al.*, 2020). The joint disorder occurs by the articular cartilage degradation as a consequence of bone-on-bone friction in the joints area that causes pain and stiffness with movement limitations. Various risk factors, including age, female sex, excessive joint use, and obesity, contribute to OA development, and approximately 30% of OA risk is genetically determined (Valdes *et al.*, 2010). Several Genome-Wide Association Studies (GWAS) have stated that various single nucleotide polymorphisms (SNPs) showed an association with the reduced thickness of articular cartilage in the patients suffering from KOA and hip OA (Casalone *et al.*, 2018; Styrkarsdottir *et al.*, 2017).

A disintegrin and metalloprotease 12 (*ADAM12*) gene is a member of the *ADAM* family, which is one of the candidates associated with OA susceptibility (Wu *et al.*, 2017). The *ADAM* family comprises more than 30 zinc-dependent proteases that are accountable for proteolytic activities, adhesion, and intracellular signaling (Giebeler and Zigrino, 2016). Similarly, the *ADAM12* gene is responsible for the development of bones, proliferation of chondrocytes, and differentiation of osteoclasts while playing a very critical role in both normal physiology and OA pathology (Okada, 2008). Therefore, the genetic investigations of the *ADAM12* were carried out in various OA-centered studies encompassing diverse ethnic groups and populations (Hao *et al.*, 2017; Poonpet *et al.*, 2016). The extracellular matrix (ECM) of cartilage is well-maintained through the proliferation of chondrocytes. Under normal physiological conditions, chondrocytes uphold the balance between the development and deterioration of cartilage ECM, ensuring articular cartilage maintenance. In the case of *ADAM12* genetic alterations, the equilibrium shifts towards the excessive degradation of cartilage through the overexpression of *ADAM12* gene-encoded matrix-metalloproteinase, which leads to cartilage loss and OA (Okada *et al.*, 2008; Roy *et al.*, 2004). In addition, the *ADAM12* gene may contribute to the arthritis predisposition through osteophytosis that is related to bone remodeling and neochondrogenesis (Kerna *et al.*, 2013). Osteophytes act as an indicator of the remodeling processes and reflect OA progression in affected joints. The *rs1044122* represents synonymous polymorphism in

the ADAM12 gene, which showed a significant association with osteophytosis, predominantly in female cases of OA (Kerna et al., 2013). Besides, the intronic variant rs1871054 may elevate the ADAM12 gene translation in bones and joints with progressive cartilage ECM degeneration (Ly et al., 2017). Though various studies have evaluated the relationship between these SNPs of the ADAM12 gene and the proneness to KOA in multiple ethnic groups, the obtained results are varying among the studied populations. The rs1044122 has not shown any association with OA susceptibility in various studies (Jung et al., 2019; Lou et al., 2014; Valdes et al., 2006; Wang et al., 2015). Similarly, the synonymous substitution rs1278279 and missense polymorphism rs3740199 in the ADAM12 gene showed no relationship to KOA predisposition in the previous studies (Hu et al., 2017; Jung et al., 2019; Kerna et al., 2013; Lou et al., 2014; Lv et al., 2017; Valdes et al., 2006; Wang et al., 2015). The association of rs1871054 was also not observed in the Caucasian population (Valdes et al., 2006). However, a meta-analysis confirmed the substantial contribution of rs1871054 to KOA exposure (Lv et al., 2017). In addition, a meta-analysis based on 6848 controls and 5048 OA cases suggested that the rs1044122 and rs1871054 might have a strong association with the vulnerability to OA (Hu et al., 2017). Hence, ADAM12 gene polymorphisms are likely to be involved in developing OA through the excessive degeneration of articular cartilage and osteophytes development. Unfortunately, no consensus has yet reached on these associations. Therefore, the meta-analysis aimed to critically review the reported data and estimate the ADAM12 polymorphisms' relationship to KOA exposure. The association analyses of the ADAM12 gene polymorphisms with OA predisposition would provide an insight into OA research.

MATERIALS AND METHODS

Database search

According to the specifications to report the meta-analyses based on observational studies in epidemiology (Stroup *et al.*, 2000), a systematic search of the studies was carried-out employing Google Scholar and PubMed till October 2020. The words "ADAM12" AND "osteoarthritis" AND "polymorphism" AND "*rs3740199*" OR "variant" OR "*rs1044122*" OR "*rs1278279*" OR "*rs1871054*" were searched to retrieve the studies.

Exclusion and inclusion criteria

The articles were included if (1) The study revealed the relationship between the *ADAM12* SNPs and OA susceptibility. (2) The literature reported the odds ratio (OR) and 95% confidence interval (CI) for any of the four *ADAM12* polymorphisms (*rs1044122, rs1278279, rs1871054,* and *rs3740199*). However, abstracts, meta-analyses, reviews, or case reports-based studies were excluded-out.

Data isolation

For a common consensus, two researchers independently extracted the data from each of the included study, including the name of the first author, publication year, participants' countries and ethnicities, employed genotyping protocols, frequency of the controls and cases, genotypic and allelic distribution, risk of KOA conferred by the variant genotype or allele under four models of inheritance.

Statistical Investigations

All statistical analyses employed the STATA 12.0 and RevMan 5.4 software. The associations between the *ADAM12* polymorphisms, and KOA exposure, were estimated through the OR with 95% CI. The pooled-OR was computed, under four models of inheritance, including the dominant (TT vs. TC + CC or GG vs. GA + AA or GG vs. GC + CC), recessive (TT + TC vs. CC or GG + GA vs. AA or GG + GC vs. CC), additive (TT vs. CC or GG vs. AA or GG vs. CC), and allelic (T vs. C or G vs. A or G vs. C) models. The statistical significance of the association was estimated through the Z-test. The heterogeneity among the incorporated studies was checked by Cochran's *Q*-test, with the *P*-value (< 0.10) considered statistically significant (Cao *et al.*, 2015). In cases of insignificant heterogeneity, the fixed-effects models were employed (Mantel and Haenszel, 1959). In the case of statistically significant heterogeneity, the random-effects model was used (DerSimonian and Laird, 1986). The *I*-squared test was employed to quantify the heterogeneity with I^2 (> 50%) revealed considerable heterogeneity (Higgins *et al.*, 2003). For visualizing the overall effect of each analysis, forest plots were drawn. Begg's funnel plots were employed to estimate the publication bias (Egger *et al.*, 1997). The control participants of each of the included studies were checked for the Hardy-Weinberg equilibrium (HWE) employing the Chi-squared test. P < 0.05 was considered statistically significant.

RESULTS

Features of the included studies

The initial database search generated 433 studies. Removal of the duplicates excluded 186 articles. After a thorough review and detailed investigation of each full-text article, 11 of them matched the inclusion criteria of the present meta-analysis, as shown in Fig. **1**. The retrieved studies comprised a total of 7012 controls and 5180 cases (Aguilar Muñiz *et al.*, 2020; Kerna *et al.*, 2009; Kerna *et al.*, 2013; Limer *et al.*, 2009; Lou *et al.*, 2014; Poonpet *et al.*, 2016; Rodriguez-Lopez *et al.*, 2009; Shin *et al.*, 2012; Valdes *et al.*, 2004; Valdes *et al.*, 2006; Wang *et al.*, 2015). The baseline features of the included studies are summarized in Table 1.

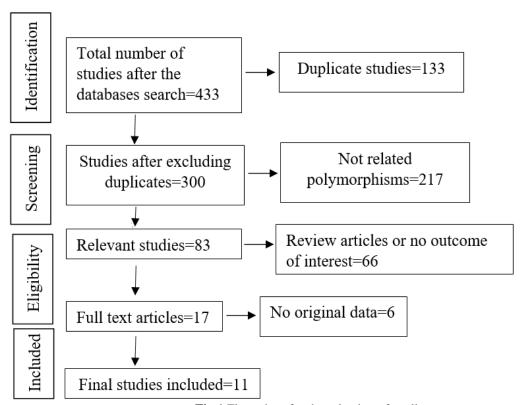


Fig.1 Flow-chart for the selection of studies.

Association between ADAM12 SNPs and the susceptibility to OA

The genotype distribution of controls in each of the included study was consistent with the HWE, as shown in Table 2. The estimated associations between the *ADAM12* SNPs (*rs1044122, rs1278279, rs1871054*, and *rs3740199*) and KOA exposure are provided in Table 3. A total of four studies consisting of 1184 controls, and 1104 cases, were included for the *ADAM12-rs1044122*. However, an insignificant association between the *ADAM12* SNP, and KOA susceptibility, was observed under each of the currently studied model of inheritance. Similarly, for the *ADAM12-rs1278279*, a total of three studies involving 975 controls and 919 cases also showed an insignificant association between the polymorphism and KOA risk under every genetic model of the present study. Besides, six studies comprised of 1282 controls and 1168 KOA patients showed a positive relationship of the *ADAM12-rs1871054* to the disease susceptibility under the dominant (OR 1.55, 95% CI 1.19–2.02, *P* = 0.001) and additive (OR 1.71, 95% CI 1.03–2.85, *P* = 0.04) models. The *rs1871054* also showed a significant association with the OA susceptibility under the allelic model (OR 1.83, 95% CI 1.03–3.26, *P* = 0.04) in males. The forest plots of *ADAM12-rs1871054* and KOA susceptibility under various models of inheritance are shown in Fig. **2**.

In the case of *ADAM12-rs3740199*, a total of ten studies comprised of 6799 controls and 4955 cases reported the KOA exposure conferred by the polymorphism. Pooling the OR from the included studies revealed no relationship between the SNP and KOA exposure in the studied genetic models. However, the data stratified analyses based on gender showed a significant association between the *rs3740199* and OA susceptibility under the

dominant (OR 2.67, 95% CI 1.16–6.14, P = 0.02) and recessive (OR 0.28, 95% CI 0.14–0.59, P < 0.001) models, in males.

					Odda Datia		Att Bate
۸	Study of Subaroun	log(Odde Datia)	60	Moinh	Odds Ratio	Vear	Odds Ratio
А	Study or Subgroup	log[Odds Ratio]			I IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
•••	Kerna 2009	0.071			, , ,	2009	
	Kerna 2013	0.7627	+ - + + +			2013	
	Lou 2014	0.5146				2014	
	Wang 2015	0.4947				2015	
	Aguilar Muniz 2020	0.4311	0.439	9.4%	1.54 [0.65, 3.64]	2020	·
	Total (95% CI)			100.0%	1.55 [1.19, 2.02]		•
	Heterogeneity: Chi#:	= 1.61, df = 4 (P = 0	.81); P=	0%			
	Test for overall effect						0.2 0.5 1 2 5 Case Control
_					Odds Ratio		Odds Ratio
к	Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
υ	Kerna 2009	-0.3934	0.343	20.2%	0.67 [0.34, 1.32]	2009	
	Kema 2013	-1.6818	0.5901	16.6%	0.19 [0.06, 0.59]		
	Lou 2014	-0.9364	0.2381	21.5%	0.39 [0.25, 0.63]		
	Wang 2015	0.9746	0.2205	21.6%	2.65 [1.72, 4.08]		
	Aguilar Muniz 2020	-0.152	0.359	20.0%	0.86 [0.43, 1.74]	2020	
	Total (95% CI)			100.0%	0.68 [0.27, 1.70]		
	Heterogeneity: Tau ² =	0.05: 058- 44.02	41 - 1 /D				
	Test for overall effect		()) = 4 (P	< 0.0000	1), 1 = 3130		0.05 0.2 i Š 20
	restion overall ellect	2 - 0.02 (r - 0.41)					Case Control
\sim					Odds Ratio		Odds Ratio
0	Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl
-	Valdes 2006	0.157	0.0852	25.9%	1.17 [0.99, 1.38]	2006	•
	Kema 2009	-0.3425		15.7%	0.71 [0.31, 1.63]		
	Kerna 2013	2.0618		6.2%	7.86 [1.30, 47.52]		
	Lou 2014	0.9951		19.1%	2.70 [1.45, 5.05]		
	Wang 2015	1.0225		19.9%	2.78 [1.56, 4.95]		
	Aguilar Muniz 2020	0.2279	0.5092	13.2%	1.26 [0.46, 3.41]	2020	_ - -
	Total (95% CI)			100.0%	1.71 [1.03, 2.86]		◆
	Heterogeneity: Tau ^a =			e = 0.002)	P = 74%		0.05 0.2 1 5 20
	Test for overall effect	Z = 2.06 (P = 0.04)					Case Control
Р					Odds Ratio		Odds Ratio
D	Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
-	Kema 2009	0.174	0.209	20.1%	1.19 [0.79, 1.79]	2009	
	Kerna 2013	1.0367	0.4359	11.5%	2.82 [1.20, 6.63]	2013	
	Lou 2014	0.5889	0.1635	21.9%	1.80 [1.31, 2.48]		
	Wang 2015	0.6098	0.081	24.7%	1.84 [1.57, 2.16]		
	Aguilar Muniz 2020	-0.274	0.167	21.8%	0.76 [0.55, 1.05]	2020	
	Total (95% CI)			100.0%	1.45 [0.98, 2.15]		-
	Heterogeneity: Tau* =			<pre>< 0.0001</pre>); I⁼ = 85%		0.2 0.5 1 2 5
	Test for overall effect	Z = 1.88 (P = 0.06)					Case Control

Fig. 2. Forest plots of *ADAM12-rs1871054* and knee osteoarthritis susceptibility. **a** dominant, **b** recessive, **c** additive, **d** allelic models. CI: Confidence interval.

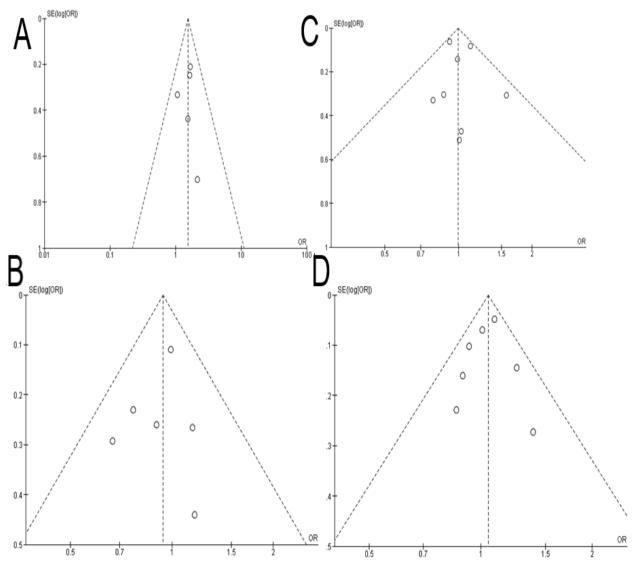


Fig. 3. Funnel plots for the OA and *ADAM12* polymorphisms. **a** dominant model of *rs1871054*, **b** recessive model of *rs3740199*, **c** additive model of *rs3740199*, **d** allelic model of *rs3740199*.

SE: Standard error; OR: Odds ratio

Heterogeneity analyses

The present meta-regression analyses exhibited a significant heterogeneity for the *rs1044122* under the dominant (TT vs. TC + CC P = 0.06) and additive (TT vs. CC P = 0.08) models. Similarly, for *rs1871054*, significant heterogeneity was observed under the recessive (TT + TC vs. CC P < 0.001), additive (TT vs. CC P = 0.001) genetic models. Moreover, the data stratified analyses showed a significant heterogeneity for *rs1871054* under the recessive and additive genotypic models (P < 0.001) in males. The current investigation also revealed the considerable heterogeneity for *rs3740199* under the dominant genetic model (GG vs. GC + CC P = 0.08). Besides, the *ADAM12-rs3740199* showed a significant heterogeneity under the dominant model (P = 0.04) in females and the additive and allelic models (P < 0.001) in males.

Sensitivity test

For evaluating the individual effect of each study, the sensitivity of this study was tested by the successive exclusion of each included study. The pooled ORs were not perceived to be considerably affected that reveal the strength and reliability of the observed outcomes.

Study	Year	Country	Ethnicity	Method	Sample size	Control/Case	SNP
Valdes et al.	2004	UK	European	PCR-SSCP	749	469/280	rs3740199
Valdes et al.	2006	UK	European	Multiplex PCR	1199	596/603	rs1044122, rs1278279, rs1871054, rs3740199
Kerna et al.	2009	Estonian	European	PCR-RFLP	189	92/97	rs1871054, rs3740199
Limer et al.	2009	UK	European	TaqMan	1832	792/1040	rs3740199
Rodriguez-Lopez et al.	2009	Multinational	European	Multiplex-PCR	3932	2370/1562	rs3740199
Shin <i>et al</i> .	2012	Korean	Asian	TaqMan	2462	1737/725	rs3740199
Kerna et al.	2013	Estonian	European	TaqMan	438	213/225	rs1044122, rs1871054
Lou et al.	2014	China	Asian	TaqMan	331	179/152	rs1044122, rs1278279, rs1871054, rs3740199
Wang <i>et al</i> .	2015	China	Asian	iMLDR	364	200/164	rs1044122, rs1278279, rs1871054, rs3740199
Poonpet et al.	2016	Thai	Asian	HRM–SNP	400	200/200	rs3740199
Aguilar Muniz et al.	2020	Mexico	Mexican Mestizo	TaqMan	296	164/132	rs1871054, rs3740199

Table 1. Baseline features of the included research articles.

Table 2. Genotype frequencies of the ADAM12 polymorphisms reported in the included studies.

Study	Year		Control			Case		HWE
rs1044122		TT	TC	CC	TT	TC	CC	
Valdes et al.	2006	NA	NA	NA	NA	NA	NA	> 0.10
Lou <i>et al</i> .	2014	56	92	31	47	81	24	0.51
Wang <i>et al</i> .	2015	62	101	37	51	88	25	0.71
V and a start	2013	GG	GA	AA	GG	GA	AA	0.29
Kerna <i>et al</i> .	2015	34	93	82	14	92	79	0.38
rs1278279		GG	GA	AA	GG	GA	AA	
Valdes et al.	2006	NA	NA	NA	NA	NA	NA	> 0.10
Lou <i>et al</i> .	2014	106	60	13	84	59	9	0.27
Wang <i>et al</i> .	2015	121	64	15	92	62	10	0.11
rs1871054		TT	TC	CC	TT	TC	CC	
Valdes et al.	2006	NA	NA	NA	NA	NA	NA	> 0.10
Kerna et al.	2009	24	49	19	24	46	27	0.51
Kerna et al.	2013	14	29	08	03	07	10	0.27
Lou <i>et al</i> .	2014	47	88	44	26	57	69	0.82
Wang et al.	2015	52	99	49	29	59	76	0.89
Aguilar Muniz <i>et al.</i>	2020	21	90	53	24	76	32	0.07
rs3740199		GG	GC	CC	GG	GC	CC	
Valdes et al.	2004	NA	NA	NA	NA	NA	NA	0.45
Valdes et al.	2006	NA	NA	NA	NA	NA	NA	> 0.10
Kerna et al.	2009	08	43	41	10	34	53	0.48
Rodriguez-Lopez et al.	2009	NA	NA	NA	NA	NA	NA	> 0.05
Limer <i>et al</i> .	2009	NA	NA	NA	NA	NA	NA	0.587
Shin <i>et al</i> .	2012	524	863	350	214	364	147	0.87
Lou <i>et al</i> .	2014	44	93	42	42	78	32	0.60
Wang <i>et al</i> .	2015	51	102	47	44	84	36	0.77
Poonpet et al.	2016	54	100	46	42	102	56	0.98
Aguilar Muniz <i>et al</i> .	2020	67	76	21	58	45	29	0.93

A: not available; HWE: Hardy-Weinberg equilibrium

OR:
Odds
ratio,
CI:
ratio, CI: Confidence
interval

Polymorphism	No. of Studies	Control/Case	OR (95% CI)	ď	Effect Model	Platenogeneity	J ^r (%)
rs1044122							
TT vs. TC + CC (dominant)	3	588/501	1.24 (0.75-2.05)	0.41	Random	0.06	8
TT+ TC vs. CC (recessive)	s	588/501	0.89 (0.67-1.18)	0.41	Fixed	0.63	0
TT vs. CC (additive)	4	1184/1104	1.06 (0.72-1.55)	0.78	Random	0.08	S:
T vs. C (allele)	3	588/501	1.05 (0.89-1.24)	0.58	Fixed	0.12	53
151278279							
GG vs. GA + AA (dominant)	2	379/316	1.15 (0.86-1.55)	0.35	Fixed	0.9	0
GG + GA vs. AA (recessive)	2	379/316		0.97	Fixed	0.52	0
GG vs. A.A (additive)	L3	975/919	1.03 (0.86-1.24)	0.71	Fixed	0.86	0
G vs. A (allele)	2	379/316	1.06 (0.89-1.26)	0.54	Fixed	0.94	0
rs1871054							
TT vs. TC + CC (dominant)	5	686/565	1.55 (1.19-2.02)	0.001	Fixed	0.81	0
TT vs. TC + CC (male)	2	76/45	1.41 (0.56- 3.52)	0.47	Fixed	0.42	0
TT+TC vs.CC (recessive) TT+TC vs.CC (male)	20	686/565 76/45	0.68 (0.27-1.7)	0.41	Random	< 0.001	819
TT vs. C/C (additive)	6	1282/1168	1.71 (1.03-2.85)	0.04	Random	0.001	Ы
TT vs. CC (female)	2	363/377	1.10 (0.88- 1.37)	0.42	Fixed	0.42	0
TT vs. C/C (male)	3	376/34/3	1.55 (0.52- 4.63)	0.43	Random	0.09	59
T vs. C (allele)	U1	686/565	1.45 (0.98-2.15)	0.06	Random	< 0.001	8
T vs. C (male)	2	76/45	1.83 (1.03- 3.26)	0.04	Fixed	0.18	,
rs37401.99							
GG vs. GC + CC (dominant)	7	3041/1750	1.09 (0.86-1.37)	0.49	Random	0.08	4
GG vs. GC + CC (female)	3	685/499	1.14 (0.57-2.26)	0.72	Random	0.04	0
GG vs. GC + CC (male)	2	76/78	2.67 (1.16-6.14)	0.02	Fixed	0.44	0
GG + GC vs. CC (recessive)	6	2572/1470	0.94 (0.8-1.1)	0.45	Fixed	0.66	0
GG + GC vs. CC (female)	2	216/219	1.00 (0.66-1.51)	1.00	Fixed	0.92	0
GG + GC vs. CC (male)	2	76/78	0.28 (0.14-0.59)	< 0.001	Fixed	0.59	0
GG vs. CC (additive)	80	5538/3635	0.99 (0.91-1.09)	0.89	Fixed	0.50	0
GG vs. CC (female)	4	1728/1616	0.97 (0.84-1.12)	0.66	Fixed	0.26	26
GG vs. CC (male)	4	1530/846	1.24 (0.79-1.94)	0.35	Random	< 0.001	75
G vs.C (allele)	7	3364/2510	1.05 (0.98-1.12)	0.18	Fixed	0.46	0
G vs. C (female)	22	216/219	1.09 (0.83- 1.44)	0.53	Fixed	0.57	}0
G va C (mala)	2	22/32	0.86 (0.14-5.24)	0.87	Random	< 0.001	5

Table 3. Analysis of the association between the ADAM12 SNPs and knee OA susceptibility.

Publication bias

The potential publication bias was analyzed employing the funnel plots, as shown in Fig. 3. These plots were found symmetrical that reveals the absence of potential publication bias among the studies.

DISCUSSION

KOA is a complicated joint disorder, contributed by multiple risk elements, including environmental factors, genetics, aging, and obesity (Khan *et al.*, 2020; Sandell, 2012). In humans, the *ADAM12* gene, the candidate for KOA susceptibility, is located at chromosome 10q26.3 and codes for ADAM12 protein that has structural and functional similarities with ADAMs (Gilpin *et al.*, 1998). There are two forms of ADAM12 protein. ADAM12-S is the small secreted form, and ADAM12-L is the long membrane-attached form. ADAM12-S peptide contains a protease, metalloprotease, disintegrin, and a cysteine-rich domain. In the long-form of ADAM12 protein, a cytoplasmic and transmembrane domain is also linked (Gilpin *et al.*, 1998). Zymogen, an inactive form of ADAM12 protein, has a prodomain preserving the metalloprotease activities in the dormant state, possibly via a cysteine switch (Loechel *et al.*, 1998). The prodomain is chemically cleaved into an active ADAM12 protein revealing the proteolytic activities in the metalloprotease domain (Loechel *et al.*, 1998; Springman *et al.*, 1990). The activated ADAM12 protein plays an essential role to cleave insulin-like growth factor binding protein 5 (IGFBP-5) inside the cartilage ECM to discharge the insulin-like growth factor 1 (IGF-1) from the IGFBP-5 complex (Okada *et al.*, 2008). The proteolytic activities of ADAM12 protein are highly susceptible to genetic variations. As a result, the lack of IGF-1, which is one of the growth factors for chondrocytes proliferation, may predispose the joint to its articular cartilage degeneration process and OA development (Poonpet *et al.*, 2016).

Since the chondrocytes maintain the equilibrium between the synthesis and degradation of cartilage ECM, the altered *ADAM12* gene in OA may enhance the cartilage degradation process by disturbing the balance (Okada *et al.*, 2008; Roy *et al.*, 2004). The probable approaches of such genetic variations to overexpress the *ADAM12* gene include the uncontrolled transcription process, translation of relative isoforms, or stabilization of the mRNAs (Pastinen *et al.*, 2006). Although the genetic variants, including synonymous and intronic polymorphisms of the *ADAM12* gene, do not change the protein composition, still the gene expression is likely to be transformed by altering the mRNA level that may change the time intervals of the overall translational process. Additionally, such genetic variations may change the translation rate or the protein maturation mechanism (Bartoszewski *et al.*, 2010; Kimchi-Sarfaty *et al.*, 2007). In this way, the genetic polymorphisms may lead to the enhanced expression of the *ADAM12* gene, which explains the increased mRNA level detected in the synovial tissues of OA patients (Kerna *et al.*, 2013).

The synonymous polymorphism rs1044122 (c.2475T > C, p. Ala825Ala) at 21st exon of the ADAM12 gene represents the variation of Ala-Ala at 825th amino acid residue in a single peptide of ADAM12. This polymorphism is mainly associated with osteophytes development, predominantly in females (Kerna et al., 2013). In previous studies, rs1044122 has shown a statistically significant association with KOA (Hu et al., 2017; Kerna et al., 2013). However, the genetic predisposition was not found in the Asian and Estonian populations (Kerna et al., 2013; Lou et al., 2014; Wang et al., 2015). In the present study, a total of four research articles comprised of 1184 controls and 1104 cases exhibited the association between the ADAM12-rs1044122 and OA susceptibility (Kerna et al., 2013; Lou et al., 2014; Valdes et al., 2006; Wang et al., 2015). However, on pooling the data, the KOA risk was not found, under any genetic model of rs1044122, similar to the Caucasian, Estonian, and Asian populations (Kerna et al., 2013; Lou et al., 2014; Valdes et al., 2006; Wang et al., 2015). The ADAM12 polymorphism rs1278279 (G > A) in the 14th exon represents the synonymous substitution without altering the amino acid sequence, Asn505Asn (Kerna et al., 2013; Lv et al., 2017). A total of three studies, based on 975 controls and 919 cases, were incorporated in the recent meta-analysis for rs1278279 (Lou et al., 2014; Valdes et al., 2006; Wang et al., 2015). However, the ADAM12 polymorphism exhibited an insignificant association with the susceptibility to KOA under each of the studied genetic models. The rs1871054 (c.1154 + 145T > C), at the 11th intron of the ADAM12 gene, may enhance the gene expression in synovial joints leading to inflammation (Lv et al., 2017). A significant association of rs1871054 was reported in the Asians but not in the Caucasian population (Lv et al., 2017). Moreover, the rs1871054 showed a positive association with osteophytes development in the advanced OA (Kerna et al., 2013). Besides, the rs1871054 showed an insignificant association with OA in the Estonian and Caucasian populations (Kerna et al., 2009; Valdes et al., 2006). In the present study, rs1871054 elevated the disease risk, in concordance with the Asian cohorts (Lou et al., 2014; Wang et al., 2015). The current meta-analysis revealed the rs1871054 to be significantly associated with the susceptibility to KOA under the dominant and additive models of inheritance. The risk was also observed by the variant allele of rs1871054 under the allelic model, in males which shows the higher disease susceptibility in males. Similarly, the variant genotype of rs1871054 has elevated the risk

about one and a half times under the dominant genetic model, consistent with the Chinese population (Lou *et al.*, 2014). The statistically significant association of *rs1871054* with KOA under the dominant inheritance model of the current research reveals that a single copy of the altered allele may increase the KOA exposure, and both the heterozygous as well as homozygous variant genotypes of *rs1871054* may confer the disease risk (Bush and Moore, 2012; Clarke *et al.*, 2011). Moreover, a positive relationship of the *rs1871054* with nearly two times increased susceptibility to KOA under the additive model of recent investigation reveals the constant KOA risk increment for each copy of their variant allele (Bush and Moore, 2012).

Reference SNP 3740199 (c.142G > C, p. Gly48Arg) in 2nd exon of ADAM12 denotes missense variation (Kerna et al., 2009; Lv et al., 2017), leading to the alteration of glycine amino acid (nonpolar) to arginine (positively charged) in the prodomain of ADAM12 that is accountable for maturation, folding, activation, regulation, and transportation of the protein (Cao et al., 2002; Loechel et al., 1998). The proteolytic activities of ADAM12 are indispensable for enhancing the bioavailability of insulin-like growth factor-1 (IGF-1) via cleaving the complex into IGF-1 and insulin-like growth factor-binding protein-5 (IGF BP-5). IGF-1, the potential growth factor, triggers chondrocytes proliferation. However, IGF-1 deficiency causes the cartilage degradation process (Okada et al., 2008). Therefore, the amino acid alteration, as a consequence of rs3740199, interrupts the proteolytic activities of the ADAM12 and causes insufficiency of IGF-1, leading to cartilage degeneration and KOA initiation (Poonpet et al., 2016). The rs3740199 showed a significant association with the enhanced predisposition to the development of KOA in females (Valdes et al., 2004). Besides, two studies reported the increased risk of KOA conferred by the rs3740199 in men (Kerna et al., 2009; Poonpet et al., 2016). In the present analyses, the rs3740199 showed an insignificant association with KOA exposure. The outcomes of the recent meta-analysis are consistent with studies that reveal no association between the ADAM12-rs3740199 and KOA susceptibility in various populations (Kerna et al., 2013; Lou et al., 2014; Shin et al., 2012; Valdes et al., 2006; Wang et al., 2015). In contrast to the previous studies, the present data stratification based on gender showed a positive relationship between the rs3740199 and OA susceptibility under the dominant and recessive models in males. Therefore, the study findings warrant further investigation.

The funnel plot indicated no remarkable publication bias in the current meta-analysis. Besides, various models of inheritance showed heterogeneity. It might be due to the inadequate studies included, the varying ethnicities, or the unintentional selection bias (Mao *et al.*, 2015).

The current meta-analysis has a few limitations that need consideration. The effect of the gene to gene and gene to environment relationships might have influenced the study outcomes, as these elements play a potential role in developing the OA pathogenesis. Similarly, factors including the female gender, age, and body mass index may also contribute to the disease development. Besides, the present research may be further engaged to identify other genes or variants involved in the *ADAM12* pathway that would provide an insight into the molecular mechanisms involved in OA development.

In conclusion, the present meta-analysis showed the significant association of the *ADAM12-rs1871054* with the OA predisposition. Besides, the *ADAM12-rs3740199* showed a positive relationship with the disease susceptibility in males. However, the *ADAM12* polymorphisms, including *rs1044122* and *rs1278279*, showed an insignificant relationship to KOA susceptibility. The study findings might be useful for determining the etiology of OA and recognizing the people at risk of developing KOA. The study outcomes will help in the development of KOA biomarkers for reviewing the genetic exposure to the OA. Hence, the study would be advantageous for developing better diagnostic and therapeutic interventions of KOA. However, further investigation is still required to validate the findings of the present study and to clarify whether the variants of the *ADAM12* gene predispose the joint to the processes of cartilage degeneration and KOA development.

REFERENCES

- Aguilar Muñiz, L.S., F.F. González Galarza, R. Arguello Astorga, A.I. Prieto Hinojosa, F. Hernández Terán and A. Méndez Hernández (2020). Analyses of the Genetic Polymorphisms rs3740199 and rs1871054 of the ADAM12 Gene and the Alleles at the rs2073508 Loci of the TGFB1 Gene and Their Contribution to Susceptibility to Primary Knee Osteoarthritis. *Genet Test Mol Biomarkers*. 24(6):375–380.
- Bartoszewski, R.A., M. Jablonsky, S. Bartoszewska, L. Stevenson, Q. Dai, J. Kappes, J.F. Collawn and Z. Bebok (2010). A synonymous single nucleotide polymorphism in DeltaF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein. *J Biol Chem.*, 285:28741–28748.
- Bush, W.S. and J.H. Moore (2012). Chapter 11: Genome-wide association studies. *PLoS Comput Biol.*, 8(12): e1002822.

- Cao, J.L., P. Yuan, A. Abuduwufuer, W. Lv, Y.H. Yang and J. Hu (2015). Association between the TERT genetic polymorphism rs2853676 and cancer risk: meta-analysis of 76,108 cases and 134,215 controls. *PLoS One.*, 10(6): e0128829.
- Cao, Y., Q. Kang, Z. Zhao and A. Zolkiewska (2002). Intracellular processing of metalloprotease disintegrin ADAM12. J Biol Chem., 277(29):26403–26411.
- Casalone, E., I. Tachmazidou, E. Zengini, K. Hatzikotoulas, S. Hackinger and D. Suveges (2018). A novel variant in GLIS3 is associated with osteoarthritis. *Ann Rheum Dis.*, 77(4):620–623.
- Clarke, G.M., C.A. Anderson, F.H. Pettersson, L.R. Cardon, A.P. Morris and K.T. Zondervan (2011). Basic statistical analysis in genetic case-control studies. *Nat Protoc.*, 6:121–133.
- DerSimonian, R. and N. Laird (1986). Meta-analysis in clinical trials. Control Clin Trials., 7(3):177-188.
- Driban, J.B., C.B. Eaton, G.H. Lo, R.J. Ward, B. Lu and T.E. McAlindon (2014). Association of knee injuries with accelerated knee osteoarthritis progression: data from the osteoarthritis initiative. *Arthritis Care Res (Hoboken)*, 66:1673–1679.
- Driban, J.B., R.R. Bannuru, C.B. Eaton, T.D. Spector, D.J. Hart and T.E. McAlindon (2020). The incidence and characteristics of accelerated knee osteoarthritis among women: The Chingford cohort. *BMC Musculoskelet Disord.*, 21(1): 60.
- Egger, M., G. D. Smith, M. Schneider and C. Minder (1997). Bias in meta-analysis detected by a simple, graphical test. *BMJ.*, 315(7109): 629–634.
- Giebeler, N. and P. Zigrino (2016). A disintegrin and metalloprotease (ADAM): historical overview of their functions. *Toxins.*, 8:122.
- Gilpin, B.J., F. Loechel, M.G. Mattei, E. Engvall, R. Albrechtsen and U.M. Wewer (1998). A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. *J Biol Chem.*, 273:157–166.
- Hao, Z., X. Li, J. Dai, B. Zhao and Q. Jiang (2017). Genetic effects of rs3740199 polymorphism in ADAM12 gene on knee osteoarthritis: a meta-analysis. *J Orthop Surg Res.*, 12(1):94.
- Higgins, J.P., S.G. Thompson, J.J. Deeks and D.G. Altman (2003). Measuring inconsistency in meta-analyses. BMJ., 327(7414):557–560.
- Holt, H.L., J.N. Katz, W.M. Reichmann, H. Gerlovin, E.A. Wright and D.J. Hunter (2011). Forecasting the burden of advanced knee osteoarthritis over a 10-year period in a cohort of 60–64 year-old US adults. *Osteoarthr Cartilage.*, 19:44–50.
- Hu, X., G. Sun and W. Wang (2017). Association of ADAM 12 polymorphisms with the risk of knee osteoarthritis: meta-analysis of 5048 cases and 6848 controls. *Rheumatol Int.*, 37:1659–1666.
- Jung, J.H., G.G. Song, J.H. Kim and S.J. Choi (2019). Association of single nucleotide polymorphisms in a disintegrin and metalloproteinase 12 gene with susceptibility to knee osteoarthritis: a meta-analysis. Arch Rheumatol., 34(1):62–70.
- Kerna, I., K. Kisand, A.E. Tamm, J. Kumm and A.O. Tamm (2013). Two single-nucleotide polymorphisms in ADAM12 gene are associated with early and late radiographic knee osteoarthritis in estonian population. *Arthritis.*, 2013:878126.
- Kerna, I., K. Kisand., A.E. Tamm, M. Lintrop, K. Veske and A.O. Tamm (2009). Missense single nucleotide polymorphism of the ADAM12 gene is associated with radiographic knee osteoarthritis in middle-aged Estonian cohort. Osteoarthr Cartil., 17(8):1093–1098.
- Khan, B., O.Y. Khan, S. Zehra, A. Azhar and S. Fatima (2020). Association between obesity and risk of knee osteoarthritis. *Pak J Pharm Sci.*, 33 (1(Suppl)):295–298.
- Kimchi-Sarfaty, C., J.M. Oh, I.W. Kim, Z.E. Sauna, A.M. Calcagno and S.V. Ambudkar (2007). A "silent" polymorphism in the MDR1 gene changes substrate specificity. *Science*, 315:525–528.
- Leskinen, J., A. Eskelinen, H. Huhtala, P. Paavolainen and V. Remes (2012). The incidence of knee arthroplasty for primary osteoarthritis grows rapidly among baby boomers: A population-based study in Finland. *Arthritis Rheum.*, 64:423–428.
- Limer, K.L., K. Tosh, S.R. Bujac, R. McConnell, S. Doherty and F. Nyberg (2009). Attempt to replicate published genetic associations in a large, well-defined osteoarthritis case–control population (the GOAL study). *Osteoarthr Cartil.*, 17(6):782–789.
- Loechel, F., B.J. Gilpin, E. Engvall, R. Albrechtsen and U.M. Wewer (1998). Human ADAM 12 (meltrin alpha) is an active metalloprotease. *J Biol Chem.*, 273:16993–16997.
- Lou, S., Z. Zhao, J. Qian, K. Zhao and R. Wang (2014). Association of single nucleotide polymorphisms in ADAM12 gene with susceptibility to knee osteoarthritis: a case-control study in a Chinese Han population. *Int J Clin Exp Pathol.*, 7:5154–5159.

- Lv, Z.T., S. Liang, X.J. Huang, P. Cheng, W.T. Zhu and A.M. Chen (2017). Association between ADAM12 singlenucleotide polymorphisms and knee osteoarthritis: a meta-analysis. *BioMed Res Int.*, 2017:5398181.
- Mantel, N. and W. Haenszel (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst., 22(4):719–748.
- Mao, X., Z. Ke, S. Liu, B. Tang, J. Wang and H. Huang (2015). IL-1β+3953C/T, -511T/C and IL-6-174C/G polymorphisms in association with tuberculosis susceptibility: a meta-analysis. *Gene*, 573(1):75–83.
- Okada, A., S. Mochizuki, T. Yatabe, T. Kimura, T. Shiomi and Y. Fujita (2008). ADAM-12 (meltrin alpha) is involved in chondrocyte proliferation via cleavage of insulin-like growth factor binding protein 5 in osteoarthritic cartilage. Arthritis Rheum., 58:778–789.
- Pastinen, T., B. Ge and T.J. Hudson (2006). Influence of human genome polymorphism on gene expression. *Hum Mol Genet.*, 15: 9–16.
- Poonpet, T., R. Tammachote, N. Tammachote, S. Kanitnate and S. Honsawek (2016). Association between ADAM12 polymorphism and knee osteoarthritis in Thai population. *Knee.*, 23(3):357–361.
- Rodriguez-Lopez, J., M. Pombo-Suarez, J. Loughlin, A. Tsezou, F.J. Blanco and I. Meulenbelt (2009). Association of a nsSNP in ADAMTS14 to some osteoarthritis phenotypes. *Osteoarthr Cartil.*, 17(3):321–327.
- Roy, R., U.M. Wewer, D. Zurakowski, S.E. Pories and M.A. Moses (2004). ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. *J Biol Chem.*, 279:51323–51330.
- Sandell, L.J. (2012). Etiology of osteoarthritis: genetics and synovial joint development. *Nat Rev Rheumatol.*, 8:77–89.
- Shin, M.H., S.J. Lee, S.J. Kee, S.K. Song, S.S. Kweon and D.J. Park (2012). Genetic association analysis of GDF5 and ADAM12 for knee osteoarthritis. *Jt Bone Spine*, 79(5):488–491.
- Springman, E.B., E.L. Angleton, H. Birkedal-Hansen and H.E. Van Wart (1990). Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a" cysteine switch" mechanism for activation. *Proc Natl Acad Sci U S A.*, 87:364–368.
- Stroup, D.F., J.A. Berlin, S.C. Morton, I. Olkin, G.D. Williamson and D. Rennie (2000). Meta-analysis of observational studies in epidemiology. J Am Med Assoc., 283(15):2008–2012.
- Styrkarsdottir, U., H. Helgason, A. Sigurdsson, G.L. Norddahl, A.B. Agustsdottir and L.N. Reynard (2017). Wholegenome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. *Nat Genet.*, 49(5):801–805.
- Turkiewicz, A., M. Gerhardsson de Verdier, G. Engstrom, P.M. Nilsson, C. Mellstrom and L.S. Lohmander (2015). Prevalence of knee pain and knee OA in southern Sweden and the proportion that seeks medical care. *Rheumatology.*, 54(5):827–835.
- Valdes, A.M., D. McWilliams, N.K. Arden, S.A. Doherty, M. Wheeler and K.R. Muir (2010). Involvement of different risk factors in clinically severe large joint osteoarthritis according to the presence of hand interphalangeal nodes. *Arthritis Rheum.*, 62:2688–2695.
- Valdes, A.M., D.J. Hart, K.A. Jones, G. Surdulescu, P. Swarbrick and D.V. Doyle (2004). Association study of candidate genes for the prevalence and progression of knee osteoarthritis. *Arthritis Rheum.*, 50(8):2497–2507.
- Valdes, A.M., M. Van Oene, D.J. Hart, G.L. Surdulescu, J. Loughlin and M. Doherty (2006). Reproducible genetic associations between candidate genes and clinical knee osteoarthritis in men and women. *Arthritis Rheum.*, 54(2):533–539.
- Vos, T., A.D. Flaxman, M. Naghavi, R. Lozano, C. Michaud and M. Ezzati (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. *Lancet.*, 380:2163–2196.
- Vos, T., R.M. Barber, B. Bell, A. Bertozzi-Villa, S. Biryukov and I. Bolliger (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet.*, 386:743– 800.
- Wang, L., L. Guo, F. Tian, R. Hao and T. Yang (2015). Analysis of single nucleotide polymorphisms within ADAM12 and risk of knee osteoarthritis in a Chinese Han population. *BioMed Res Int.*, 2015:518643.
- Wu, Z., X.W. Xu and X.W. Zhang (2017). The association of ADAM12 polymorphism with osteoarthritis susceptibility: a meta-analysis. *Ther Clin Risk Manag.*, 13:821–830.
- Yu, D., G. Peat, J. Bedson and K.P. Jordan (2015). Annual consultation incidence of osteoarthritis estimated from population-based health care data in England. *Rheumatology*, 54(11):2051–2060.

(Accepted for publication December 2020)