# GENETIC ANALYSIS FOR INHERITANCE OF RESISTANCE TO COTTON LEAF CURL VIRUS (CLCV) DISEASE

### Abdul Wahab Soomro, Saleem Shahzad and Saifullah Khan

Department of Agriculture and Agribusiness Management, University of Karachi, Karachi-75270, Pakistan

## ABSTRACT

The present research was conducted to estimate the gene action for inheritance of resistant to CLCV disease. Adequacy of additive and dominance model was conducted, both scaling test designated that hypothesis was fit for genetic analysis. Significant of both additive (D) and dominance parameters ( $H_1$  and  $H_2$ ) endorsed the presence of additive and dominance genes for inheritance of resistant to CLCV. Additive (D) effect was more prominent than dominance (H1 and  $H_2$ ) suggested additive genes in legacy of resistant in both generations. Uneven values between  $H_1$  and  $H_2$  is sign of unequal dispersal of recessive and dominance genes. Values of H<sub>2</sub>/4H<sub>1</sub>, was less than (0.25), recommended allelic frequency of positive and negative effects gene was asymmetrical. F parameter,  $\sqrt{4DH_1 + F}/\sqrt{4DH_1 - F}$  and  $\frac{1}{4}\sqrt{4DH_1+\frac{1}{2}F}$  /  $\frac{1}{4}\sqrt{4DH_1-\frac{1}{2}F}$  values were also proved equal proportion with relative frequency of dominant and recessive alleles in parents, h<sup>2</sup> value directed the existence of dominance effects due to heterozygous loci. Genetic ratio  $h^2/H_2$  signalized that at least one genetic group is involved in controlling to resistance of CLCV disease in F<sub>1</sub> and F<sub>2</sub> generation. High narrow sense heritability indicated, selection in early segregating generations, because of traits of genotypes heritage to its offspring. Resistant offspring in  $F_1$  and due to segregation  $F_2$  population ratio was observed as 3:1 (resistant plants: diseased plants) among Mac-7 population, which legitimated the single dominant gene proved monogenic dominance nature of CLCV disease resistant in cotton. The Wr-Vr graph also shown Mac-7 carried maximum dominant genes and USD16-3058 contained maximum recessive genes. While, rest of the parents had different constitution of dominant and recessive genes. The high values of PCV and GCV proved that resistant of CLCV did not affected due to environment. High board sense heritability coupled with high genetic advance, suggested role of additive genes. Therefore, single plant selection could be fruitful in early segregating generation.

Keywords: Gene action, genetic analysis, cotton leaf curl virus, additive, dominance

#### **INTRODUCTION**

Pakistan is 4<sup>th</sup> largest cotton producing country in the world, whereas 3<sup>rd</sup> in consumption globally during last five years from 2014-15 to 2018-19. Counties economic development depends upon the production of cotton, because the nation mainly dependent on industry of cotton and related with textile sector. That's why the principle status has been given to the cotton crop. In Pakistan over 2.895 million hectares area is covered for cotton cultivation, however 12.72 million bales were achieved as production. As regards the provincial status of this crop, Punjab sown on 2.145 million hectares and achieved with the production of 7.90 million bales. However, Sindh Province produced 4.60 million bales with the cultivated area was 0.640 million hectares (Cotton Review, 2020).

Cotton leaf curl virus (CLCV) is most severe and destructive disease of cotton. The CLCV appeared in epidemic form during 1991 and subsequent years which causing drastic reduction in cotton production 12.82 million bales and 8.04 million bales in 1994. The CLCV disease has caused huge losses 7.1 million bales amounting of 1.2 billion dollars to the national economy of Pakistan during last decade (Mahmood, 1999). It given extent of losses to cotton production and is future disaster for cotton crop in Pakistan, after the presence of new burewala CLCuD stains which caused a collapse of resistance in most of the cultivable varieties of cotton (Mahmood et al., 2003 and Mansoor et al., 2003). CLCV again emerged in Pakistan during couple of years and every year thousands of acres destroyed due to this disease. Khan et al. (2007) reported that additive gene effect specified more too CLCV resistant in deviation with dominance gene effect. The polygenic heritage perception of CLCV disease was altered into single dominant nature of gene (with minor modifier genes) in cotton (Aslam and Gilani, 2000 and Ahuja et al., 2006). The  $F_1$  hybrids which were crossed between highly resistant and susceptible cotton cultivars that were found to be resistant/virus free in  $F_1$  generation and during segregating generation in  $F_2$ , the ratio was nearby to 3:1, it indicated the proportion of CLCV resistant and CLCV diseased plants. It suggested the appearance of single dominant nature of gene action for the legacy of resistant for CLCV (Mahmood, 20004 and Rehman et al. 2005). However, uncertainty triumphs whether the CLCV control managed by dominant or recessive genes and it might be due to monogenic or polygenic.

#### MATERIALS AND METHODS

The present research was conducted at Central Cotton Research Institute Sakrand during the year 2017-2019. Ten parents (CRIS-129, FH-142, MNH-886, NIA-Noori, Baghdadi, CIM-602, NIAB-824, CEMB-33, USD16-3058 and Mac-7) were selected. The Griffings (1956) half diallel matting design were applied, 10 parents were hybridize according to suggested methods and 45  $F_1$  hybrids/ $F_2$  population were produced. The  $F_1$  and  $F_2$  seeds were planted in the field conditions with randomized complete block design (RCBD) with three replications. The plant to plant space was kept 30cm and row to row 75 cm distance were retained. The nutrients/inputs and plant protection measures were applied as per need whenever required. The cotton leaf curl virus (CLCV) disease data was noted and analyzed with given disease rating scale by Akhtar *et al.* (2010) and Farooq *et al.* (2011). The research was conducted to assess the additive and dominance gene effect for legacy of resistance to CLCV according to Jinks and Hayman (1953). The gene action was elucidated by following the genetic components formulated by Hayman's (1954). The genetic components of variance were studied which suggested by Morley-Jones (1965) with modification of Hayman's approach. The data was analyzed to calculate the genetic components according to the methods of Hayman (1954) and Jinks (1954).

D = components of variance due to additive effect of genes

F = relative frequency of dominant and recessive alleles in the parents

 $H_1$  = components of variance due to dominance effect of genes

 $H_2$  = Dominance component indicating asymmetry of position and negative effects of genes

 $h^2$  = Dominance effects over all loci

E = environmental variation

 $F_1 = \sqrt{(H_1/D)}$  and  $F_2 = \sqrt{\frac{1}{4}(H_1/D)}$  = Average degree of dominance

 $H_2/4H_1$  = Proportion of dominant genes with positive and negative effect

 $F_2 = \sqrt{4DH_1 + F} / \sqrt{4DH_1 - F}$  and  $F_2 = \frac{1}{4} \sqrt{4DH_1 + \frac{1}{2}F} / \frac{1}{4} \sqrt{4DH_1 - \frac{1}{2}F}$  = Proportion between dominant and recessive alleles

 $h^2/H^2$  = Number of gene groups/genes which control the trait and exhibit dominance

However, the per se performance/mean values and variance were statistically analyzed by following the method of Singh and Choudhry (1977). Whereas, further genetic components were adopted as genotypic and phenotypic and coefficient of variation (Burton and Devane 1953). Heritability (Hanson *et al.*, 1956) and genetic advance (Johanson *et al.*, 1955).

## **RESULTS AND DISCUSSION**

The analysis of variance mean square values of  $F_1$  and  $F_2$  were significant for cotton leaf curl virus (CLCV) disease which indicated presence of genetic diversity in material (Table 1). The statistical results of  $F_1$  and  $F_2$  generation were also found significant for "a" and "b" components suggested that inheritance was controlled due to additive and dominance genetic effect for expression of resistance to cotton leaf curl virus. Greater value of "a" additive variance than the "b" dominance advocated role of additive gene action for the legacy of resistance to cotton leaf curl virus in  $F_1$  and  $F_2$  generation. The  $b_1$  component was non-significant in  $F_1$  generation and significance in  $F_2$  generation indicated the presence of directional dominance effect. The significant of  $b_2$  item in both the generations ( $F_1$  and  $F_2$ ) revealed asymmetrical distribution of genes among the parents. However, significance of  $b_3$  items expressed presence of specific gene action other than attributable to  $b_1$  and  $b_2$  for resistance to cotton leaf curl virus in  $F_1$  and  $F_2$  generation. Mather and Jinks (1982) reported that  $b_3$  significance indicate the dominance effect for particular cross.

#### Adequacy of Additive-Dominance Model

Before interpreting data for genetic analysis, it is necessary to test the validly for assumption (Hayman, 1954). The supposition of Haman's additive and dominance models are; (1) diploid segregation; (2) parents should be homozygous, due to continuous inbreeding, it assumed that parents will be homozygous; (3) no reciprocal differences. While, rest of suppositions of additive and dominance genetic model (Mather and Jinks, 1982) are (4) no multiple allelism; (5) absence of non-allelic interaction (epistasis); (6) independent gene distribution between the parents. The additive and dominance model's accuracy were tested with study of scaling test by conducting  $t^2$  test

and regression analysis. Conferring with Mather and Jinks (1982) statement, the data of genetic interpretation will only be validated, if regression coefficient value "b" must be deviated from zero (0) but not from unity (1). Nevertheless, the "b" value was exceeded from 0.5 in  $F_1$  and  $F_2$  generation for cotton leaf curl virus indicated the absence of epistasis. The second test was the t<sup>2</sup> test. The results of additive-dominance model are presented in Table 2, indicated that t<sup>2</sup> test was non-significant in both generations, while "b" was also deviated from zero but not from unity. Both scaling test designated that the hypothesis of the genetic analysis is fit for the trait cotton leaf curl virus in both the generations  $F_1$  and  $F_2$ .

| Source                | D.F | Cotton Leaf Curl Virus (CLCuV) |                |  |
|-----------------------|-----|--------------------------------|----------------|--|
|                       |     | F <sub>1</sub>                 | F <sub>2</sub> |  |
| Replication           | 2   | 73.72                          | 125.86         |  |
| Genotypes             | 54  | 1050.35**                      | 1544.77**      |  |
| a                     | 9   | 5195.70**                      | 8311.85**      |  |
| b                     | 45  | 221.36**                       | 191.35**       |  |
| <b>b</b> <sub>1</sub> | 1   | 77.91 <sup>ns</sup>            | 1117.93*       |  |
| <b>b</b> <sub>2</sub> | 9   | 509.20**                       | 463.43**       |  |
| <b>b</b> <sub>3</sub> | 35  | 151.44*                        | 94.91**        |  |
| Error                 | 108 | 83.91                          | 37.81          |  |

Table 1. Analysis of mean of squares for cotton leaf curl virus in F1 generation and F2 population.

| Table 2. Additive-Dominance | e model for cottor | leaf curl virus | in F <sub>1</sub> and F <sub>2</sub> | generation |
|-----------------------------|--------------------|-----------------|--------------------------------------|------------|
|-----------------------------|--------------------|-----------------|--------------------------------------|------------|

| Generation     | t <sup>2</sup> test | <b>Regression Analys</b> | is (t value of b)          | Domonka                          |  |
|----------------|---------------------|--------------------------|----------------------------|----------------------------------|--|
|                |                     | b/SE                     | b0, b1                     | Kemarks                          |  |
| F <sub>1</sub> | 0.79 <sup>NS</sup>  | 0.79 <u>+</u> 0.12       | b0 =6.46**<br>b1 = 1.67**  | Data is fit for genetic analysis |  |
| F <sub>2</sub> | 0.19 <sup>NS</sup>  | 0.92 <u>+</u> 0.09       | b0 =10.70**<br>b1 = 0.82** | Data is fit for genetic analysis |  |

| Table 3. | Components of | variance and | genetic | parameters | for cotton | leaf curl | virus in | $F_1$ and $F_2$ generation. |
|----------|---------------|--------------|---------|------------|------------|-----------|----------|-----------------------------|
|          |               |              | 0       |            |            |           |          | 1. 20                       |

| Components/Parameters                                                                                                                             | Cotton Leaf Curl Virus (CLCuV) |                           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|--|--|
| components/r araneters                                                                                                                            | F <sub>1</sub> Generation      | F <sub>2</sub> Generation |  |  |
| D                                                                                                                                                 | 369.47** <u>+</u> 31.91        | 467.53** <u>+</u> 21.55   |  |  |
| H <sub>1</sub>                                                                                                                                    | 167.77** <u>+</u> 67.93        | 233.24** <u>+</u> 45.88   |  |  |
| H <sub>2</sub>                                                                                                                                    | 71.96 <u>+</u> 57.73           | 115.19** <u>+</u> 38.99   |  |  |
| $h^2$                                                                                                                                             | 93.22** <u>+</u> 18.14         | 133.96** <u>+</u> 26.10   |  |  |
| Е                                                                                                                                                 | 83.91** <u>+</u> 9.62          | 37.81** <u>+</u> 6.50     |  |  |
| F                                                                                                                                                 | 0.0                            | 0.0                       |  |  |
| $F_1 = \sqrt{(H_1/D)}$ $F_2 = \sqrt{\frac{1}{4}(H_1/D)}$                                                                                          | 0.67                           | 0.35                      |  |  |
| $H_2/4H_1$                                                                                                                                        | 0.11                           | 0.12                      |  |  |
| $F_{1} = \sqrt{4DH_{1} + F} / \sqrt{4DH_{1} - F}$ $F_{2} = \frac{1}{4} \sqrt{4DH_{1} + \frac{1}{2}F} / \frac{1}{4} \sqrt{4DH_{1} - \frac{1}{2}F}$ | 1.0                            | 1.0                       |  |  |
| $h^2/H_2$                                                                                                                                         | 1.29                           | 1.16                      |  |  |
| Heritability % (h <sup>ns</sup> )                                                                                                                 | 70                             | 81                        |  |  |

|                         | F <sub>1</sub> Generation |                                  | F <sub>2</sub> Generation |                                  |  |
|-------------------------|---------------------------|----------------------------------|---------------------------|----------------------------------|--|
| Cross Combinations      | Disease %                 | Disease reaction on rating scale | Disease %                 | Disease reaction on rating scale |  |
| CRIS-129 x MNH-886      | 40.7                      | Tolerant                         | 47.9                      | Tolerant                         |  |
| CRIS-129 x FH-142       | 31.7                      | Tolerant                         | 43.8                      | Tolerant                         |  |
| CRIS-129 x NIA-Noori    | 37.7                      | Tolerant                         | 58.6                      | Susceptible                      |  |
| CRIS-129 x Baghdadi     | 23.9                      | Tolerant                         | 41.4                      | Tolerant                         |  |
| CRIS-129 x CIM-602      | 61.8                      | Tolerant                         | 54.6                      | Tolerant                         |  |
| CRIS-129 x NIAB-824     | 38.8                      | Tolerant                         | 52.4                      | Tolerant                         |  |
| CRIS-129 x CEMB-33      | 28.5                      | Tolerant                         | 52.7                      | Tolerant                         |  |
| CRIS-129 x MAC-7        | 0                         | Resistant                        | 4.1                       | Highly Tolerant                  |  |
| CRIS-129 x USD16-3058   | 49.6                      | Tolerant                         | 75.4                      | Susceptible                      |  |
| MNH-886 x FH-142        | 38.2                      | Tolerant                         | 37.7                      | Tolerant                         |  |
| MNH-886 x NIA- Noori    | 25.0                      | Tolerant                         | 50.1                      | Tolerant                         |  |
| MNH-886 x Baghdadi      | 20.3                      | Highly Tolerant                  | 46.0                      | Tolerant                         |  |
| MNH-886 x CIM-602       | 34.1                      | Tolerant                         | 63.8                      | Susceptible                      |  |
| MNH-886 x NIAB-824      | 31.5                      | Tolerant                         | 65.6                      | Susceptible                      |  |
| MNH-886 x CEMB-33       | 23.2                      | Tolerant                         | 50.9                      | Tolerant                         |  |
| MNH-886 x MAC-7         | 0                         | Resistant                        | 3.8                       | Highly Tolerant                  |  |
| MNH-886 x USD16-3058    | 43.7                      | Tolerant                         | 66.3                      | Susceptible                      |  |
| FH-142 x NIA- Noori     | 31.1                      | Tolerant                         | 64.6                      | Susceptible                      |  |
| FH-142 x Baghdadi       | 24.3                      | Highly Tolerant                  | 44.1                      | Tolerant                         |  |
| FH-142 x CIM-602        | 49.4                      | Tolerant                         | 51.8                      | Tolerant                         |  |
| FH-142 x NIAB-824       | 23.3                      | Tolerant                         | 47.8                      | Tolerant                         |  |
| FH-142 x CEMB-33        | 16.9                      | Highly Tolerant                  | 43.5                      | Tolerant                         |  |
| FH-142 x MAC-7          | 0                         | Resistant                        | 2.4                       | Highly Tolerant                  |  |
| FH-142 x USD16-3058     | 40.6                      | Tolerant                         | 66.5                      | Susceptible                      |  |
| NIA- Noori x Baghdadi   | 33.9                      | Tolerant                         | 48.2                      | Tolerant                         |  |
| NIA- Noori x CIM-602    | 50.3                      | Tolerant                         | 63.5                      | Susceptible                      |  |
| NIA- Noori x NIAB-824   | 33.2                      | Tolerant                         | 48.1                      | Tolerant                         |  |
| NIA- Noori x CEMB-33    | 36.4                      | Tolerant                         | 64.5                      | Susceptible                      |  |
| NIA- Noori x MAC-7      | 0                         | Resistant                        | 3.9                       | Highly Tolerant                  |  |
| NIA- Noori x USD16-3058 | 61.6                      | Tolerant                         | 69.3                      | Susceptible                      |  |
| Baghdadi x CIM-602      | 29.6                      | Tolerant                         | 59.1                      | Tolerant                         |  |
| Baghdadi x NIAB-824     | 19.7                      | Highly Tolerant                  | 41.1                      | Tolerant                         |  |

Table 4. Cotton Leaf Curl Virus (CLCV) disease incidence % of cross combinations in F<sub>1</sub> and F<sub>2</sub> generation.

| Baghdadi x CEMB-33    | 20.4 | Tolerant        | 48.3 | Tolerant        |
|-----------------------|------|-----------------|------|-----------------|
| Baghdadi x MAC-7      | 0    | Resistant       | 2.9  | Highly Tolerant |
| Baghdadi x USD16-3058 | 47.0 | Tolerant        | 62.4 | Susceptible     |
| CIM-602 x NIAB-824    | 40.3 | Tolerant        | 55.1 | Tolerant        |
| CIM-602 x CEMB-33     | 44.7 | Tolerant        | 63.4 | Susceptible     |
| CIM-602 x MAC-7       | 0    | Resistant       | 5.4  | Highly Tolerant |
| CIM-602 x USD16-3058  | 56.1 | Tolerant        | 73.8 | Susceptible     |
| NIAB-824 x CEMB-33    | 45.0 | Tolerant        | 48.7 | Tolerant        |
| NIAB-824 x MAC-7      | 0    | Resistant       | 3.3  | Highly Tolerant |
| NIAB-824 x USD16-3058 | 52.6 | Tolerant        | 66.0 | Susceptible     |
| CEBM-33 x MAC-7       | 0    | Resistant       | 3.2  | Highly Tolerant |
| CEBM-33 x USD16-3058  | 45.9 | Tolerant        | 72.8 | Susceptible     |
| MAC-7 x USD16-3058    | 0    | Highly Tolerant | 9.4  | Highly Tolerant |







Fig. 2. Genetic parameter of CLCV.



Fig. 3. Vr Wr graph of CLCV in  $F_1$  generation.



Fig. 4. Vr Wr graph of CLCV in F<sub>2</sub> generation.

# **Estimation Parameters of genetic components of variance**

The genetic component of variance in  $F_1$  and  $F_2$  generation for cotton leaf curl virus depicted in Table 3. The additive (D) and dominance (H<sub>1</sub>) were significant, but non-significant of dominance (H<sub>2</sub>) was found in  $F_1$ 

generation. While in  $F_2$  generation, the additive (D) and dominance parameters (H<sub>1</sub> and H<sub>2</sub>) were also significant for cotton leaf curl virus disease (Table 3), which endorse the presence of additive and dominance genes for inheritance of resistant to cotton leaf curl virus. The additive (D) effect was higher than the dominance (H<sub>1</sub> and H<sub>2</sub>) for CLCV, hence it is suggested that additive genes effect are involved for inheritance of resistant to cotton leaf curl virus in in both F<sub>1</sub> and F<sub>2</sub> generations. The ratio of average degree of dominance in F<sub>1</sub> generation $\sqrt{(H_1/D)}$  and F<sub>2</sub> generation

 $\sqrt{\frac{1}{4}}(H_1/D)$  is less than unity, also validated nature of genes was partial dominance. The uneven values between H<sub>1</sub>

and  $H_2$  in both generations is sign of unequal dispersal of recessive and dominance alleles in the parents. It was also confirmed through values of  $H_2/4H_1$ , which was less than the maximum value (0.25), recommended that the allelic frequency of positive and negative effects gene was asymmetrical. The F parameter was non-significant and obtained zero value that is the indication of equivalent proportion of dominance and recessive alleles in the parents with relative frequency. The values of Proportion between dominant and recessive alleles in F<sub>1</sub> generation

$$\sqrt{4DH_1 + F}/\sqrt{4DH_1 - F}$$
 and  $F_2$  generation  $\frac{1}{4}\sqrt{4DH_1 + \frac{1}{2}F}/\frac{1}{4}\sqrt{4DH_1 - \frac{1}{2}F}$  was obtained one (1.0), that

specified recessive and dominance genes in the parent are in equal proportion. Significant of  $h^2$  value directed the existence of dominance effects owing to heterozygous loci. The genetic component  $h^2/H_2$  processed to know the number of group of genes that control trait and exhibit dominance. The study suggested that the value of genetic ratio  $h^2/H_2$  signalized that at least one genetic group is involved in the controlling to resistance to cotton leaf curl virus (CLCV) disease in both  $F_1$  and  $F_2$  generations. The narrow sense heritability ( $h^{ns}$ ) table 3 shown that in both the generations high narrow sense heritability (h<sup>ns</sup>) was recorded for CLCV. It is direction that good potential for selection of single plants. The high heritability is the indication that the selection is done in early segregating generation because of traits of genotypes heritage to its offspring. The field screening of varieties shown only Mac-7 as resistant parent during 2 years, while remaining parents were affected with CLCV disease (Fig 1). The findings reflected that the Mac-7 resistant parent shown entirely resistant offspring in  $F_1$  generation for CLCV disease, which legitimated the single dominant gene was responsible for inheritance of resistant to CLCV. While, in F<sub>2</sub> generation due to segregation the F<sub>2</sub> population ratio was observed as 3:1 (resistant plants: diseased plants) among Mac-7 population. Hence, it is proved monogenic dominance nature of CLCV disease resistant in cotton (Table 4). Siddig (1968), Aslam et al. (2000), Mahmood (2004), Rehman et al. (2005) and Khan (2013) reported single dominant gene or closely linked genes for CLCV resistance in cotton. Aslam and Gilani (200) and Hussain et al. (2012) suggested that generally dominant genes are responsible for resistant to CLCV as alleles responsible for susceptible to CLCV.

#### **Estimation of Genetic Variability Parameters**

The genetic parameters of  $F_1$  and  $F_2$ generation are presented in Fig 2, which exhibited that phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) values were obtained very high for cotton leaf curl virus. The distance among values of genotypic and phenotypic coefficient of variation did not change statistically, it proposed that resistance of cotton leaf curl virus (CLCV) disease is rarely affected with the environment. Hence, selection would be effective on the basis of phenotypic appearance. High heritability broad sense ( $h^{bs}$ ) and very high genetic advance over mean percent was observed for cotton leaf curl virus. The valuation of heritability ( $h^{bs}$ ) does not alone useful for predict subsequent effect for selection, because, it contain both additive and non-additive genes. So, heritability ( $h^{bs}$ ) along with high genetic advance over mean percent was perceived, it is suggested that inheritance of resistance to cotton leaf curl virus is usually controlled with additive genes. So that single plant selection would be fruitful or improvement through mass and progeny selection as well.

The Wr-Vr graphical analysis of cotton leaf curl virus in  $F_1$  generation are depicted in Fig. 3. The regression coefficient significantly less than unity (1.0) indicated that the genetic system could be assumed to be an additive without the impediment of non-allelic interaction. The regression line intersected the Wr axis beyond the origin indicated genes are partial dominance as confirmed with degree of dominance  $\sqrt{(H_1/D)}$ . The graphical analysis further shown that genotype Mac-7 carried more dominant genes, as it was next towards the origin line. While, genotype USD16-3058 contained more recessive genes, as being utmost far from the origin. However, Rest of the parents had different constitution of dominant and recessive genes. However, in  $F_2$  generation similar trend was observed Fig.4, the regression coefficient was significant and less than one, as the genetic system is expected to be additive, without the obstruction of non-allelic interaction. Alike regression line crossed the Wr axis beyond the

origin representing partial dominance as confirmed with degree of dominance  $\sqrt{\frac{1}{4}(H_1/D)}$ . In F<sub>2</sub> generation, parent

Mac-7 was found as closet to origin line and possess maximum dominance genes. While, parent USD16-3058 was the farthest from origin that carried maximum recessive genes. Rest of the genotypes had variable genes different constitution for CLCV.

# REFERENCES

- Ahuja, S.L., D. Monga and L.S. Dhayal (2006). Genetic resistance to cotton leaf curl disease in G. hirsutum L. Int. J. Agric. Biol., 2(1):121-124.
- Akhtar, K.P., S. Haider, M.K.R. Khan, M. Ahmad, N. Sarwar, M.A. Murtaza and M. Aslam (2010). Evaluation of gossypium species for resistance to leaf curl Burewala virus. *Annals of Applied Biology*, 157: 135-147.
- Aslam, M. and A.A. Gilani (2000). Resistance of different cotton varieties to cotton leaf curl virus under field conditions. J. Res. Sci., 11:42-45.
- Aslam, M., C. Jiang, R. Wright and A.H. Paterson (2000). Identification of molecular markers linked to leaf curl virus disease resistance in cotton. J. Sci. IR Iran, 11(4): 227-280.
- Burton, G.W and E.M. Devane (1953). Estimating heritability in tall fescue (Festucaarundinacea) from replicated clonal material. *Agron. J.*, 45:478-481.
- Cotton Review (2020). Monthly statistically bulletin. Pakistan Central Cotton Committee, 53(12):1-12.
- Farooq, A., J. Farooq, A. Mahmood, A. Batool, A. Rehman, A. Shakeel, M. Riaz, M.T.H Shahid and S. Mehboob (2011). An overview of cotton leaf curl virus disease (CLCuD) a serious threat to cotton productivity. *Australian Journal of Crop Sciences*, 5(12):1823-1831.
- Griffing, B. (1956). A generalized treatment of diallel cross in quantitative inheritance. Heredity, 10:31-51.
- Hanson, C.H., H.F. Robinson and R.K. Comstock (1956). Biometrical studies of yield in segregating populations of Korean lespedza. *Agron. J.*, 48(6):268-272.
- Hayman, B.I. (1954). The analysis of variance of diallel crosses. *Genetics*, 39:789-809.
- Hussain, M., F.M. Azhar, A.A. Khan and Z. Ali (2012). Expression of genes controlling the inheritance to cotton leaf curl virus disease (CLCuD) in G. *hirsutum* L. a quantitative analysis. *Pak. J. Bot.*, 44(1): 247-254.
- Jinks, J.L. and B.I. Hayman (1953). The analysis of diallel crosses. Maize Cooperation Newsletter, 27:48-54.
- Jinks, J.L. (1954). The analysis of continuous variation in diallel cross of *Nicotiana rustica* varieties. *Genetics*, 39: 767-788.
- Johanson, W.H., H.F. Robinson and R.E. Comstock (1955). Estimates of genetic and environmental variability in soybean. *Agron. J.*, 47:314-318.
- Khan, A.I., M. Hussain, S. Rauf and M.T. Khan (2007). Inheritance of resistance to cotton leaf curl virus in cotton (*Gossypium hirsutum* L.). *Plant Protect. Sci.*, 43:5-9.
- Khan, N.U. (2013). Diallel analysis in cotton leaf curl virus (CLCuV) disease, earliness, yield and fiber quality traits under CLCuV infestation in upland cotton. *Aust. J. Crop Sci.*, 7(12):1955-1966.
- Mahmood, N.T (1999). Cotton leaf curl virus disease and its status in Pakistan. Proc. ICAC-CCRI-Reg. Consult. Insecticide Resist Manag. Cotton. June 28-July 1. P. 234.
- Mahmood, T., M. Arshad, M.I. Gill, H.T. Mahmood and M.T. Hussain (2003). Burewala strain of cotton leaf curl virus: A threat to CLCuV cotton resistant varieties. *Asian J. Pl. Sci.*, 2:968-970.
- Mahmood, Z. (2004). Inheritance of cotton leaf curl virus resistance in cotton (G. hirsutum L.). J. Res. Sci., 15(3):297-299.
- Mansoor, S., I. Amin, S. Imran, M. Hussain, Y. Zafar, K.A. Malik and R.W. Briddon (2003). The breakdown of resistance in cotton to cotton leaf curl virus disease in Pakistan. *New Dis. Rep.*, 7.
- Mather, K. and J.L. Jinks (1982). *Biometrical Genetics* (3<sup>rd</sup> Edition) CHpman and Hall, London, p-231.
- Morley-Jones, R. (1965). The analysis of variance of the half diallel table. *Heredity*, 20:117-121.
- Rehman, M., D. Hussain, T.A, Malik and Y. Zafar (2005). Genetic resistance to cotton leaf curl virus in G. *hirsutum. Plant Pathol.*, 54:764-772.
- Siddig, M.A. (1968). Genetics of resistance to cotton leaf curl virus in Sakel cotton. G. barbadense L. J. Agric. Sci. Camb., 70: 99-102.
- Singh, B.D and R.C. Choudhry (1977). *Biometrical methods in quantitative genetic analysis*. Kalyani Publishers, New Delhi pp. 57-58.

(Accepted for publication May 2021)