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ABSTRACT 
 

Spatial association between plant densities of inland and coastal plots and selected soil variables such as pH, OC 
(organic carbon), exchangeable cations Na, K, Ca, Mg; and NO3–N (nitrate nitrogen) as well as available phosphorus 

were examined using a geostatistical technique, namely, semivariogram analysis. The selected plant species were the 
dominant halophytes of Karachi. At both sites, one square plot of 16m × 16m in size was deterministically selected and 
subdivided into 64 (2×2 m) square sub-plots (quadrats). Soil and plant density data from each sub-plot was obtained. 
Spherical model was best fitted for all soil characteristics and the parameters of the model such as nugget (Co), sill 
(C1+Co) and range (a), were used to explain the spatial structure of different soil properties and the halophytes. All 
inland and coastal soil attributes (except OC of the coastal site) as well as the plant densities showed zero nugget effect 
which specified spatial continuity to be very even between adjacent points. Ca showed highest sill variance for both 
inland and coastal soil attributes. Coastal halophyte Suaeda fruticosa showed highest sill variance  compared to other 

plant populations.  The density of all inland plant populations showed autocorrelation range close to unity. All inland 
and coastal soil properties (except OC of the coastal site) and plant densities showed strong spatial dependence.   
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INTRODUCTION 

 

Conventional sampling utilizes a technique of random selection of the samples (in our case; for plants and soils) 

in which the association between the samples is not considered. Every sample that is taken away from the field is 
independent showing no variability between that sample and the neighboring samples. Variables of the samples are 

generally averaged out which represent the mean value of the variable for the whole area under investigation or the 

field. This value for average does not satisfactorily portray the variable’s behaviour across the area of interest.  

On the other hand, geostatistical methods explain spatial association between the samples and inspect the 

changes in the values of the samples over distance and direction (Guertal and Westerman, 1992).The variables 

examined are called regionalized variables. Spatial methods employ the hidden spatial variations to produce better 

estimates of differences among treatments or field sites. As stated by Burrough (1993), and Wilding et al., (1994), 

spatial continuity as a function of space and time for different soil attributes is important to develop the logical, 

empirical, and physical models of soil and landscape processes. Geostatistics, is a commonly used approach to 

discover the spatial structure in the variability of soil characteristics (Carvalho et al., 2002; Vieira et al., 2002). 

More simply, geostatistics can be defined as the study of attributes that change in space or time (Deutsch, 2002). It 
deals with the data that is spatially autocorrelated. As stated by Olea (1999), geostatistics includes all numerical 

techniques which are focused on the categorization of spatial characteristics. Mainly it uses random models in a 

similar way as time series analysis categorizes temporal data. 

The interest in the study of spatial variation in soil characteristics has been increased with the successful 

development of geostatistical methods since 1970’s. Various scientists have worked in this field such as Steiger et 

al. (1996); White et al. (1997); Yu et al. (2001) and Romic and Romic (2003) who discussed the spatial variation of 

soil heavy metal concentrations. Webster and Oliver (2001) and Liu et al. (2004, 2008) showed interest on spatial 

distribution of micronutrients in soils. Nevertheless, a great stack of study exists on spatial variability of other soil 

properties by Yost et al. (1982); Yanai et al. (2001); Corwin et al. (2003); Gilbert and Wayne (2008) and Liu et al. 

(2008).  

Variogram construction is a commonly used geostatistical technique for the assessment of spatial variability of 

various soil characteristics, though it can also be utilized to unravel the plant species patterns. The method, in 
general, employs regionalized variables. Matheron (1963) first defined the semivariograms function γ(h) as half the 

average squared difference between points separated by a distance h. It is expressed by the following formula: 
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Where N(h) is the set of all pairwise Euclidean distances i−j=h, │N(h)│is the number of distinct pairs in N(h), 

and zi and zj are data values at spatial locations i and j, respectively.  

The semivariance function characterizes the spatial continuity / variability between points. Semivariogram is a 

plot obtained when semivariance is plotted against the lag distance (McBratney and Webster, 1986). More details 

and information about the theories and methodologies involved in the construction of semivariograms can be found 

in the work of Journel and Huijbregts (1978); Burgess and Webster (1980); Hamlett et al. (1986); Warrick and 
Myers (1987); and Isaaks and Srivastava (1989).  

The structure of a semivariogram is described by its three components, namely, the nugget, the sill and the 

range. The nugget is the non-zero value for γ when lag distance (h) = 0. It is produced by various errors such as 

measurement error or when the data is not collected from sufficiently smaller spacing to expose continuous spatial 

behavior. The sill is that value of semivariance when the variogram levels off.  Sill should be equal to the dataset 

variance. Range is the value of lag distance (h) at which the semivariogram reaches the value of the sill. These 

spatial components (nuggets, sill and range) help identifying autocorrelation and replicating samples and exposing a 

dominant pattern in the data series (Si et al., 2007). The semivariogram components also quantify the spatial 

dependence between observations (Goovaerts, 1997, 1999).  

 

MATERIALS AND METHODS 

 

SITE DESCRIPTION 

The study area comprised of inland and coastal sites. One square plot of 16m × 16m in size was selected from 

the coastal site (lat. 24° 51.317'N; long. 66° 52.684'E) and another was chosen from the inland site (lat. 24° 

56.365'N; long. 67° 7.523'E) within the University of Karachi campus. Each plot was subdivided into 64 (2×2m) 

square quadrats keeping in view that the plots were topographically uniform parts of the study area. The plots were 

permanently marked using steel nails to avoid erroneous measurements.  

 

SAMPLE COLLECTIONAND ESTIMATIONS 

Soil samples were collected from all 64 square quadrats from the depth of 30cm (from centre) using a soil auger 

from both inland and coastal fields. The collected soil samples were dried at room temperature in an airy place for a 

few days for the estimations of pH, OC (organic carbon), exchangeable Na, K, Ca and Mg, NO3–N, and available 
phosphorus (Available P). Coning and quartering were performed in the laboratory to obtain representative samples. 

The soil pH was determined by a digital pH meter (Jenway, England) in the saturation extract of the soil. Organic 

carbon (OC) was estimated by the loss-on- ignition method (at 450°C) in a muffle furnace. Exchangeable Na, K, Ca 

and Mg were determined by extracting in neutral normal ammonium acetate (N CH3COONH4) solution 

(Schollenberger and Simon, 1945). For NO3–N, nitrate extracting CuSO4 (0.5M) and Ag2SO4 (0.6%) solutions were 

utilized as suggested by Jackson (1958). However, plant available phosphorus (Available P) was determined by 

Olsen’s method using alkaline sodium bicarbonate solution as an extractant for plant available P in soil. All soil 

analyses were performed in the Department of Geography, University of Karachi. 

Plant density was determined in each of the sub plots (quadrats). The density for selected  halophytes including 

Atriplex griffithii, Cyperus conglomeratus, Haloxylon recurvum, Salsola imbricata and Suaeda fruticosa, was 

recorded. The criteria for selection of halophytic species was their occurrence and abundance at study sites. Rare 

halophytic species were excluded from the study as the excessive zero entries would have marred the data analysis. 

 

STATISTICAL AND GEOSTATISTICAL ANALYSIS 

The descriptive statistics (i.e., mean, minima, maxima, standard deviation, variance, standard error, coefficient 

of variation and skewness) of measured soil characteristics were computed using MS-Excel (Ver. 2007).. 

The semivariograms for soil variables and plant densities of inland and coastal plots were made through 

MATLAB software. The parameters for models fitted to the semivariograms (nugget, sill and range) were calculated 

so as to analyse the nature of semivariograms. 

 

RESULTS 

 

DESCRIPTIVE STATISTICS OF INLAND SOIL SAMPLES  
The pH of inland soil samples ranged from 7.12 to 7.97 (Table 1). The amount of organic carbon (OC) varied 

between 0.609 to 1.064% of the inland samples with a mean value of 0.789%. The percent coefficient of variation 

(CV%) for OC in inland samples was found to be 13.36% (Table 1). The mean values for exchangeable cations 

followed Ca > Na > Mg > K trend. The amount of NO3–N and Available P ranged from 1.218 to 8.897µg/g and 
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0.024 to 1.4µg/g (Table 1). The coefficient of variation was found to be maximum (54.56%) for available P and 

minimum for pH (2.532%) of the inland soil samples. Skewness measures the symmetry or asymmetry of the data 

set. All parameters for inland soils showed positive values for skewness except Mg and available P. Positively 

skewed soil variables indicate that data for these soil variables was skewed towards right, whereas negatively 

skewed variables showed that their data was skewed towards left side (Table 1).  

 

DESCRIPTIVE STATISTICS OF COASTAL SOIL SAMPLES  

The coastal samples showed average pH range from 6.987 to 8.946 with a mean of pH 8 (Table 2). The 

coefficient of variation (CV%) for coastal soil pH was 6.41%. Soil OC content showed the average amount of 

0.745% with a CV value 14.67%. The mean concentrations of exchangeable cations followed Ca (23.98me/100g) > 

Na (11.22) > Mg (3.75) > K (0.654) for coastal soils (Table 2). Mean values for NO3–N and available P for coastal 

soils were 3.73 and 0.392 µg/g respectively. The coefficient of variation (CV%) was found to be highest for 

available P (79.14%). All coastal soil samples were found to be positively skewed except OC (Table 2).  

For inland site, Atriplex griffithii was found significantly correlated with Mg (p < 0.05) (Table 3). On the other 

hand, Cyperus conglomeratus showed significant positive correlation with Ca (p < 0.05) (Table 4). In addition some 

soil factors showed significant correlation (p at the most 0.05) with each other (Table 3 and 4).   

 

Table 1. Descriptive statistics for inland soil variables (N=64). 

Inland samples 

Soil attributes pH OC (%) Na K Ca Mg NO3–N AP 

Min. 7.128 0.609 6.4 0.11 20.01 1.01 1.218 0.024 

Max. 7.972 1.064 18.99 1.2 49.28 8.91 8.897 1.4 

Mean 7.561 0.789 10.996 0.596 33.566 5.347 4.211 0.592 

SD 0.191 0.105 3.144 0.314 7.637 2.202 1.546 0.323 

Var. 0.037 0.012 9.885 0.099 58.318 4.851 2.39 0.105 

SE 0.024 0.013 0.393 0.039 0.955 0.275 0.193 0.04 

CV (%) 2.532 13.366 28.594 52.655 22.751 41.191 36.708 54.56 

Sk. 0.066 0.506 0.662 0.36 0.161 −0.322 0.606 −0.15 

Note: The exchangeable cations, Na, K, Ca and Mg are in me/100g of soil, whereas NO3–N and Available Phoshorus  (AP) are in 
µg/g. SD means standard deviation, Var. variance, SE standard error, CV. coefficient of variation and sk, skewness.  

 

Table 2. Descriptive statistics for coastal soil variables (N=64). 

Coastal samples 

Soil attributes pH 
OC 

(%) 
Na K Ca Mg NO3–N AP 

Min. 6.987 0.435 6.9 0.11 18.8 0.8 1.088 0.017 

Max. 8.946 0.899 18.44 1.3 29.33 8.1 6.885 1.15 

Mean 8.009 0.745 11.222 0.654 23.984 3.753 3.726 0.392 

SD 0.514 0.109 2.66 0.314 3.069 1.89 1.662 0.31 

Var. 0.264 0.011 7.077 0.099 9.419 3.572 2.764 0.096 

SE 0.064 0.014 0.333 0.039 0.384 0.236 0.208 0.039 

CV (%) 6.413 14.673 23.705 47.977 12.796 50.361 44.621 79.14 

Sk. 0.175 −0.810 0.598 0.105 0.09 0.363 0.278 0.613 

The meaning of abbreviations are given at the bottom of Table 1. 
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Table 3 Correlation matrix between three inland halophytes and associated soil variables. 

 
 

Table 4 Correlation matrix between three coastal halophytes and associated soil variables. 

 
 

SEMIVARIOGRAM ANALYSIS 

The spatial behavior of the selected variables of soils for inland and coastal sites and the densities of plants 

within these plots were assessed with the help of their semivariograms (Fig. 1 and Fig. 2). The spherical model was 

fitted for all soil properties for both sites, i.e., inland and coastal sites, as this model was found most appropriate to 

the observed data. The parameters for the best fitted model such as nugget (Co), sill (C1+Co) and range (a) are 

presented in Table 5 and Table 6. The nugget variance was found to be nil for all inland and coastal soil samples, 

however, only one coastal sample showed some nugget effect for OC content (Table 5). Soil parameters such as 
organic carbon content (OC), Na, Ca, and Mg showed higher total semivariance estimates (i.e., Sill variance) for 

Suaeda 

fruticosa

Salsola 

imbricata

Atriplex

 griffithii

Nitrate

nitrogen

Available 

PO4 pH OC Na K Ca Mg

Suaeda 

fruticosa 1 0.025 -0.11 0.044 0.157 -0.023 0.107 -0.06 -0.1 0.227 -0.02

Salsola 

imbricata 1 -0.115 0.028 0.102 -0.022 0.022 -0.13 0.02 0.033 0.035

Atriplex

 griffithii 1 0.025 -0.004 0.055 0.009 -0.09 -0.053 -0.04 .307*

Nitrate

nitrogen 1 -0.222 -.362** 0.234 -0.09 .333** .264* 0.005

Available 

PO4 1 0.112 0.039 .321** -0.05 -0.03 -0.16

pH 1 -.410** .329** -0.087 0.056 0.025

OC 1 -0.1 -0.094 0.009 -0.2

Na 1 0.035 0.089 -.262*

K 1 0.13 0.164

Ca 1 0.044

Mg 1

* p<0.05; ** p< 0.01

Inland Halophytes Inland Soil Variables

Suaeda 

fruticosa

Haloxylon 

recurvum

Cyperus

conglomeratus

Nitrate

nitrogen

Available 

PO4 pH OC Na K Ca Mg

Suaeda 

fruticosa

1 .037 -.208 -.015 -.061 -.188 -.110 .014 .032 -.133 .044

Haloxylon 

recurvum

1 .058 -.042 -.155 .221 -.182 .075 -.179 .019 -.095

Cyperus

conglomeratus

1 -.180 -.054 -.035 .060 .097 -.151 .256
* .068

Nitrate

nitrogen

1 .021 -.021 -.227 .105 -.151 -.080 .015

Available 

PO4

1 -.109 -.038 -.104 -.118 .153 -.102

pH 1 -.258
* .096 .021 -.030 -.078

OC 1 -.033 .255
* .027 .028

Na 1 -.043 -.015 -.212

K 1 -.022 .055

Ca 1 .158

Mg 1

* p<0.05; ** p< 0.01

Coastal Halophytes Coastal Soil Variables
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inland soils than coastal samples. However, the remaining parameters (pH, K and NO3–N) represented higher values 

of total semivariance for coastal soils than inland samples (Table 5).   

 

 
Fig. 1 Semivariograms of soil variables of inland (left column) and coastal plots (right column). The soil variables are shown on 
the upper left side whereas, the figure numbers are mentioned on the bottom left corner of every figure.  
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Fig. 1 Semivariograms of soil variables of inland (left column) and coastal plots (right column). The soil variables are shown on 
the upper left side whereas, the figure numbers are mentioned on the bottom left corner of every figure.  
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Fig. 2 Semivariograms of plant densities of (a) Atriplex griffithii (b) Suaeda fruticosa and (c) Salsola imbricata of inland plot, 
whereas (d) Suaeda fruticosa (e) Haloxylon recurvum and (f) Cyperus conglomeratus of coastal plot. 
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Table 5. Geostatistical parameters for spherical semivariogram model for inland 

and coastal soil properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Table 6. Geostatistical parameters for spherical semivariogram model for inland 

and coastal plant densities. 

S
ta

ti
o

n
s 

Plants 

Nugget Sill Range
* 
 

Nugget/Sill 

percent Spatial 

class  
CO C1 a Co/C1× 100 

In
la

n
d

 Atriplex griffithii 0 0.595 1.048 0 Strong  

Suaeda fruticosa 0 1.144 1.047 0 Strong  

Salsola imbricata 0 0.711 1.047 0 Strong  

C
o
a
st

a
l Suaeda fruticosa 0 1.896 1.182 0 Strong 

Haloxylon recurvum 0 0.524 1.054 0 Strong 

Cyperus conglomeratus 0 0.524 1.468 0 Strong 

 
Among selected inland soil attributes, K, Mg and NO3–N showed nearly similar autocorrelation ranges (~1m), 

whereas Na, Ca and available P possessed slightly higher ranges (1.295m, 2.311m and 1.67m, respectively) (Table 

5). The inland soil pH showed a much larger spatial autocorrelation range (7.694m). The coastal soil grid samples 

represented the highest spatial range for organic carbon content (4.749m), whereas nearly similar autocorrelation 

ranges for pH (1.534m), K (1.577m) and available P (1.512m) were examined for coastal samples (Table 5).  

The ratio of Co / C1 (nugget semivariance / total semivariance) expressed in percentage was used to identify the 

levels of spatial dependence for soil attributes. A strong spatial dependence for the variable is predicted if the ratio is 

S
ta

ti
o
n

s 
Parameters 

Nugget Sill Range
* 
 

Nugget/Sill 

percent Spatial 

class 
CO C1 a Co/C1× 100 

In
la

n
d

 

pH 0 0.034 7.694 0 Strong  

OC 0 0.010 1.781 0 Strong  

Na 0 9.896 1.295 0 Strong  

K 0 0.092 1.049 0 Strong  

Ca 0 61.761 2.311 0 Strong  

Mg 0 5.268 1.054 0 Strong  

NO3–N  0 2.210 1.066 0 Strong  

Available P  0 0.099 1.670 0 Strong  

C
o

a
st

a
l 

pH 0 0.234 1.534 0 Strong  

OC 0.0024 0.009 4.749 26.66 Moderate  

Na 0 6.479 1.638 0 Strong 

K 0 0.100 1.577 0 Strong 

Ca 0 9.089 1.101 0 Strong 

Mg 0 3.582 1.343 0 Strong 

NO3–N  0 2.719 1.051 0 Strong 

Avialable P  0 0.097 1.512 0 Strong 
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found to be less than 25%, the ratio value between 25–75% showed moderate spatial dependence, whereas more 

than 75% ratio value represented weak spatial dependence for soil variables. The percent nugget / sill ratio 

categorized all inland and coastal soil attributes (except OC of coastal site) in strongly dependent class (Table 5) 

whereas OC (organic carbon) of coastal site showed moderate spatial dependence.  

The nugget effect was found to be nil for all inland and coastal plant densities (Table 6). The sill variance was 

found to be highest for coastal Suaeda fruticosa (1.896). However, coastal species of Haloxylon recurvum and 
Cyperus conglomeratus showed similar sill variance (Table 6). The autocorrelation ranges for all inland populations 

(i.e., Atriplex griffithii, Suaeda fruticosa and Salsola imbricata were similar and nearly unity (~1). Among coastal 

populations, Cyperus conglomeratus showed high autocorrelation range of 1.468m (Table 6). The percent nugget / 

sill ratio of all inland and coastal populations represented strongly dependent spatial class (Table 6).  

 

DISCUSSION 

 

More alkaline pH (avg. 8) was observed for coastal samples compared to inland soil samples (avg. 7.56) as 

shown in the descriptive statistics in Table 1. Organic carbon content was nearly found to be similar for inland and 

coastal soils; however the mean values for NO3–N and available P were slightly higher for inland samples than for 

coastal soils (Table 2). The average amount of exchangeable cations followed a similar sequence of Ca > Na > Mg > 

K for both inland and coastal sites (Table 1 and 2). The percent coefficient of variation (CV%) showed difference 
with respect to soil parameters. It was found maximum for available P for both inland and coastal samples (54.56% 

and 79.14%, respectively) (Table 1 and 2). Minimum values for CV were noticed for pH of both inland and coastal 

samples (2.53 and 6.41%, respectively). Reza et al. (2016) and Sun et al. (2003) also documented minimum 

variation for pH compared to other soil properties. The inland population of Atriplex griffithii was positively 

correlated with Mg content in the soil whereas coastal C. conglomeratus showed significant correlation with Ca. 

However, the density of halophytes, in general, was not correlated with other soil characteristics. Some of the soil 

characteristic exhibited correlation, e.g. inland nitrate nitrogen (NO3-N) correlated significantly with soil pH, K and 

Ca. However, available P and pH represented excellent correlations with Na in inland soils. 

Semivariograms were constructed for eight soil properties such as soil pH, OC, Na, K, Ca, Mg, NO3–N and 

Available P. Spherical model was best fitted for all soil attributes and the parameters of the model such as nugget 

(Co), sill (C1+Co) and range (a), were used to explain the spatial structure of different soil properties and plant 
densities (Table 5 and Table 6). The spherical model is a most commonly used model which represents gradual 

decrease in spatial autocorrelation till a distance (range) is reached, further than that autocorrelation becomes 

zero.According to Bhatti et al., (1991), semivariogram construction is used to depict the spatial structure of 

attributes of soil and plants. All inland and coastal soil attributes (except OC of the coastal site) showed zero nugget 

effect (Table 5).  

According to Webster and Nortcliff (1984) and Webster (1985) nugget effect is the semivariance when h=0. 

The semivariograms showing zeros nugget variance specified spatial continuity to be very even between adjacent 

points (Vieira and Gonzalez, 2003). The total variance (i.e., sill variance) was found to be more for OC, Na, Ca, Mg 

and available P of inland plot compared to coastal plot’s soil attributes. However, coastal plot possessed more sill 

variance for pH, K and NO3–N as compared with inland plot’s corresponding soil attributes (Table 5). Similar 

results were obtained for inland and coastal soil parameters for variance obtained through conventional statistics 

(Table 1). Pawar (2003) stated that sill should be equal to the variance of the dataset. 
The autocorrelation ranges varied among different soil attributes for both inland and coastal soils. Generally K, 

Mg and NO3–N showed nearly similar autocorrelation ranges (~1m), whereas Na, Ca and available P showed 

slightly higher ranges. However, pH of inland soils represented highest autocorrelation range (Table 5). The smaller 

autocorrelation ranges indicated that the spatial continuity vanishes very quickly. Among the coastal site, the highest 

autocorrelation range was observed for OC (4.749m), however, pH, K and available P showed nearly similar ranges 

of around 1.5m. ` 

The ratio of nugget to sill was utilized to examine levels of spatial dependence of soil properties. The spatial 

dependence was found to be strong if the nugget / sill ratio (expressed as a percentage) was less than 25%, moderate 

if it existed between 25 to 75%, and weak for more than 75% ratio. As stated by Trangmar et al. (1985), nugget 

semivariance (Co) calculated as a percentage of sill semivariance (C1) is used for comparison of relative amount of 

the nugget effect for soil variables. Cambardella et al. (1994), also used the ratio of Co/C1 (nugget semivariance/total 
semivariance) expressed in percentage to identify the levels of spatial dependence for soil attributes. All inland and 

coastal site’s soil properties (except OC of the coastal site) showed strong dependence for soil properties based on 

percent nugget / sill ratio stated above (Table 5). Moderate dependence (26.58%) was detected in coastal organic 
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carbon content. Reza (2016) noticed strong spatial dependence for soil pH and a weak dependence for organic 

carbon content (OC). 

For plant densities the autocorrelation ranges were found to be similar for nearly all species found in inland and 

coastal sampling grids except Cyperus conglomeratus which showed slightly higher autocorrelation ranges of 

1.468m. All inland and coastal populations exhibited strongly dependent spatial class. 
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