COMPUTER AIDED CONFORMATIONAL ANALYSIS OF DIAZEPAM (7-CHLORO-1, 3-DIHYDRO-1-METHYL –5-PHENYL-2H-4-BENZODIZAPINE-2-ONE)

Farhat Bano, Afshan Naz, Sadaf Naeem, Naheed Akhtar and M.A. Haleem

Biophysics Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan

ABSTARACT

Structure based drug design is based on a firm understanding of molecular recognition between active site group and interacting molecules and is a strategy that has become as integral part of modern drug discovery. Potential energy has been calculated to refine the structure of diazepam by using kaitagorodsky function. The most feasible position for the drug to interact with receptor would be at $\Box 1=220^{\circ}$ and $\Box 2=260^{\circ}$. Where the potential energy was found to be -0.957744 K.cal/mol.

Key-words: Potential energy, kaitaigorodsky, anticonvulsant

INTRODUCTION

Diazepam (7-chloro-1, 3-dihydro-1-methyl –5-phenyl-2H-4-benzo dizapine-2-one) is use as tranquillisers, sedatives and hypnotic (www.diazepam.com). In diazepam structure the two phenyl rings are planar and the obtuse angle between the normal to the two planes is 125° in diazepam structure. There are conformational features very similar to certain features found in another anticonvulsant drug diphenyl hydantion (Carmearan *et al.*, 1972). The present work describe the computer aided conformational analysis.

MATERIALS AND METHODS

The three dimensional quantitative structure activity relation ships (3D.QSAR) provided the valuable information about the nature of the receptor (Asim *et al.*, 2001; Benjamin *et al.*, 1994, Michael *et al.*, 1987; Greedide *et al.*, 2001). Its help to describe new drug candidates and help to improve in vitro potency (Manule *et al.*, 1992). The crystallographic data is utilized to determine the three dimensional structure of molecule. Several computer programs were used to infer the shape of molecule from potential energy contour maps.

The potential energy calculated by using Kaitaigorodsy function (Kaitaigorodsky, 1964). In order to determine the allowed conformation the contact distance between the atoms in the adjacent residues have to be examined using criteria for minimum vander Waal,s contact distances. If X_{90} , Y_{90} , Z_{90} are the coordinates of an atom before rotation, then coordinated X`,Y`, Z after rotation can be given by the following relationship.

 $\begin{array}{l} X^{\circ}=(a^{2}+b^{2}-c^{2}-d^{2})\ X_{90}+2(bc-ad)\ Y_{90}+2(bd+ac)\ Z_{90}\\ Y^{\circ}=2\ (bc+ad)\ X_{90}+(a^{2}-b^{2}+c^{2}-d^{2})\ Y_{90}+2(cd-ab)\ Z_{90}\\ Z^{\circ}=2\ (bd-ac)\ X_{90}+2(cd+ab)\ Y_{90}+(a^{2}-b^{2}-c^{2}+d^{2})\ Z_{90}\\ a=\ cos\ \Box/2\\ b=Ll\ sin\ \Box/2\\ c=\ M\ sin\ \Box/2\\ d=\ N\ sin\ \Box/2\\ \Box=\ angle\ of\ rotation\ about\ the\ bond\ of\ first\ and\ second\ chain\ and\ L,M,N\ are\ the\ direction\ of\ cosines.\\ L=\ X1\ -\ X_{2}\ /\ bond\ length\ of\ the\ i^{th}\ and\ j^{th}\ atom.\\ M=\ Y1\ -\ Y2\ /\ bond\ length\ of\ the\ i^{th}\ and\ j^{th}\ atom.\\ N=\ Z1\ -\ Z2\ /\ bond\ length\ of\ the\ i^{th}\ and\ j^{th}\ atom.\\ \end{array}$

Where X_1 , Y_1 , Z_1 and X_2 , Y_2 , Z_2 are the coordinates of 1st and 2nd atoms, which are non-bonded atoms.

Kitaigorodsky equction: $U_{ij} = 3.5 \{8600 \exp(-13Z_{ij}) - 0.04/z_{ij}^{6}\}$ Where the value of z is calculated from the formula:

 $r^{o}_{=}$ equilibrium distance r_{ij} =distance between non-bonded interaction and can be calculated by using $r_{ij}[(x2-x1)^{2}+(y2-y1)^{2}+(z2-z1)^{2}]^{1/2}$

Total potential energies were calculated by summation of all individual pairs by using kaitaigorodsky potential energy function. Contours are polluted for visual understanding.

RESULTS

The prospective view of diagram is shown in (**Fig.1**). The potential energies were calculated for lower limit (K2). The energy estimates for the following pairs. The minimum potential energies are shown by negative mark. Monoclinic coordinates of drug are given in Table 1. Bonds length and bond angle are given in Table 1, 2) respectively.

PAIR H16----H7:

The potential energy has been calculated for the pair H16.... H7 after rotating the H16 atom about the bond C14...C15 (ω 1) and H7 atom about the bond C15....C14 (ω 2). The minimum potential energy was found to be – 0.008313844 K.cal / mol at ω (**Fig. 2**); 1=240° and ω 2=320°.

PAIR H16----C7:

The potential energy has been calculated for the pair H16.... C7 after rotating the H16 atom about the bond C14...C15 ($\omega \Box$) and C7 atom about the bond C15....C14 ((ω 2).The same minimum potential energy were found to be -0.009565599 K.cal/ mol at ω 1=40° and ω 2=40° and at $\Box \omega$ 1=80° and ω 2=0° (**Fig. 3**).

Total potential energy:

Total potential energy calculated for the pairs H16...H7, H16...C7 after rotating the H16 atom about the bond C14.... C15 (ω 1) and H7 and C7 atom about the bound C15.... C14 (ω 2).The minimum potential energy was found to be -0.00957744k.cal/mol at $\Box \omega$ 1=220° and $\Box \Box \omega$ 2=260°.(**Fig. 4**).

146

- ····· - · · · · · · · · · · · · · · ·						r	
	ATOMS	Х	Y	Ζ		ATOMS	BONDS LENGTH
1	C1	0.312	0.665	0.915	1	С2С3	1.371
2	C2	0.277	0.664	0.734	2	C2C7	1.398
3	C3	0.189	0.629	0.648	3	C3C4	1.378
4	C4	0.165	0.581	0.500	4	С3Н3	1.012
5	C5	0.277	0.504	0.437	5	С4Н4	0.998
6	C6	0.316	0.475	0.526	6	С5Сб	0.951
7	C7	0.340	0.526	0.675	7	C6C7	1.394
8	N8	0.197	0.456	0.287	8	C6C14	1.480
9	C9	0.086	0.438	0.257	9	С7Н7	0.984
10	C10	0.262	0.442	0.154	10	N8C9	1.469
11	011	0.230	0.414	0.018	11	N8C10	1.366
12	C12	0.743	0.460	0.189	12	С9Н9.1	0.994
13	N13	0.413	0.387	0.310	13	С9Н9.2	0.992
14	C14	0.388	0.397	0.465	14	С10Н9.3	0.991
15	C15	0.437	0.327	0.587	15	C10O11	1.217
16	C16	0.393	0.305	0.742	16	C10C12	1.504
17	C17	0.443	0.241	0.853	17	C12N13	1.460
18	C18	0.537	0.199	0.811	18	C12H12.1	1.058
19	C19	0.580	0.220	0.656	19	C12H12.2	1.023
20	C20	0.531	0.283	0.543	20	N13C14	1.286
21	H3	0.143	0.683	0.695	21	C14C15	1.493
22	H4	0.101	0.602	0.439	22	C15C16	1.392
23	H7	0.404	0.508	0.735	23	C15C20	1.392
24	H9.1	0.050	0.434	0.367	24	C16C17	1.389
25	H9.2	0.057	0.491	0.185	25	C16H16	1.027
26	H9.3	0.076	0.374	0.195	26	C17C18	1.385
27	H12.1	0.384	0.534	0.233	27	С17Н17	1.050
28	H12.2	0.413	0.452	0.078	28	C18C19	1.384
29	H16	0.322	0.339	0.775	29	C18H18	1.028
30	H17	0.412	0.230	0.973	30	C19C20	1.383
31	H18	0.575	0.155	0.896	31	С19Н19	0.978
32	H19	0.648	0.193	0.622	32	С20Н20	0.977
33	H20	0.559	0.299	0.434	33	H9.2H9.3	1.590

00 220 240 260 280 300 320 340 36 200 320 340 36 80 100 120 140 160 180 200 220 240 280 2 80 100 120 140 160 180 **m**1 ω1 Fig.2. Potential energy contour map pair for H16-C7. Fig.3. Potential energy contour map pair fir H16-H7.

Table 1. Monoclinic coordinates of diazepam.

Table 2. Bonds length of diazepam.

Fig.4. Potential energy contour map for sum of all pairs.

Table 3. Bonds angles of diazepam.

	ATOMS	BOND ANGLES		ATOMS	BOND ANGLES
1	C3C2C7	119.850	27	C12N13C14	118.080
2	C2C3C4	119.760	28	C6C14N13	123.700
3	С2Н3	118.750	29	C6C14C15	119.570
4	C4H3	121.540	30	N13C14C15	116.720
5	C3H4	118.000	31	C14C15C16	122.620
6	C5C6C7	123.660	32	C14C15C20	118.570
7	C5	111.650	33	C16C15C20	118.870
8	C7C6C14	119.610	34	C15C16C17	120.410
9	C2C7C6	121.320	35	C15C16H16	120.830
10	С2С7Н7	120.480	36	C17C16C16	118.780
11	С6Н7	118.150	37	C16C17C18	120.340
12	C9N8C10	116.670	38	C16C17H17	119.430
13	N8 C9H9	108.660	39	C18C17H17	120.050
14	N8C9H9.2	110.520	40	C17C18C19	119.390
15	N8C9H9	110.280	41	C17C18H18	119.360
16	Н9.1С9Н9.2	111.350	42	C19C18H18	121.280
17	H9.2C9H9.3	109.610	43	C18C19C20	120.640
18	N8C10O11	121.750	44	C18C19H19	122.100
19	N8C10C1	111.928	45	C20C19H19	117.240
20	O11C10C12	122.900	46	C15C20C19	120.450
21	C10C12N13	110.510	47	C15C20H20	117.220
22	C10C12H12.1	108.750	48	C19C20H20	122.380
23	C10C12H12.2	106.920	49	С9Н9.2Н9.3	216.700
24	N13C12H12.1	112.030	50	С9Н9.3Н9.2	216.740
25	N13C12H12.2	109.46	51	Н9.2С9Н9.3	106.550
26	H12.1C12H12.2	109.190			

DISCUSSION

The allowed region i-e the region in which the drug can bind with receptor is shown in (**Fig. 4**). The area out side the zero line is allowed region. It is possible that drug in this conformation interact with receptor. The result indicate that it can only exist at one stable conformation and stable conformation exist at minimum potential energy.

The minimum potential energy is found to be -0.9577 K.cal/mol. at $\omega 1 = 220^{\circ}$ and $\omega 2=260^{\circ}$ (Fig. 4). So this conformation of diazepam will more active as anticonvulsant. It will bind its receptor readily. Drug molecules have several three-dimensional shapes (conformation) but only one or few these conformations the shape of the receptor. Among various other physical properties of molecule is its potential energy, which effect its inter action of drug molecule with receptor. These properties can be use full in designing new drug molecule with enhanced pharmacological and therapeutic properties as reported by Naheed *et al.* (2004) and Farhat *et al.* (2003).

REFERENCES

www.diazepam.com

Carmerman, A. and N. Carmerman (1972) . N.J. Am. Chem. Soc., 12: 268-274.

- Naheed, A., S. Naeem, W. Ahmed and M.A. Haleem (2004). Rigid body refinement of water mediated triple helical structure of β-D –1,3 xylan from *Palmaria palmata* (L.) Kuntze, Rhodophyta). *Pak*. *J*. *Bot.*, 36: 745-750.
- Farhat, B., N. Akhtar and M.A. Haleem (2003). Computer aided Conformational analysis of [Pt (diethyle triamine) (gunosine) (ClO₄)₂, *Pak.J.Biochem & Mol.Bio.*, 36: 24-26.
- Farhat, B., S. Naeem, N. Akhtar and M.A. Haleem (2005). Computer aided Conformational analysis Azo Dyes Diamonium orange G (C1₆H₁₀N₂S₂ (NH₄). *Tetrahedron*, 18: 66-70.
- Asim, K.D. (2001). Quantitative structure activity (QSAR) Paradigm –Hansuh, Era.to new Millanium Mini. *Rev. Med. Chem.*, I: 187-195.
- Benjamin, J., E.J. Dunna and A.J. Hoffinger (1994). Construction of a Molecular shape Analysis-Three Dimensional Quantitative structure-Analysis Relation for an analog series of pyridobenzodiaepinone Inhibitors of Muscarinic 2and 3 Receptors. J. Med. Chem., 3775 -3788.
- Michael, T.F. (1987). Molecular Modification of anticholinergics of Probes for Muscarinic Receptor -3-Coformationally Restricted Amalogues of Benactyzine, J. Med. Chem, 30: 278-285.
- Greedidge, P.A. (2001). A Comparison of Methods for pharmacophore generation with the catalyst software and their use for 3D.QSAR. *Mini Rev. in Med.Chem.*, 14: 79-87.
- Manule A.N. and A.M. Mark (1992). Uses of structural information in drug design. *Curr.Op.in Structural.Bio.*, 202-210.
- Kitaigorodsky A.I. (1961). The inter action curve of non bonded carbon and hydrogen atoms and application *Tetrahedron*, 14: 230-236.

(Accepted for publication January 2006)