RESPONSE OF MUNGBEAN (VIGNA RADIATA) TO POTASSIUM FERTILIZATION

Asghar Ali, M. Asghar Malik, Rashid Ahmad & Tariq Saeed Atif

Departments of Agronomy and Crop Physiology, University of AgricUlture, Faisalabad

The **1**, of MtOrem po",,,I=, levels oo yiëld and quali'Y of mungb",**e1** triety NM, 121-25 was dere nniu'd in a field oxP"im'm on, sandy day loam soil havlog nitrogen 0.035%, available pho,pho,">, ppm and "o""'bl, potasj, 123 ppm Po,""ium rates tested W,,, 0, 25, 50, ', 100 and 125 kg ha', ""id" this 20 kg N and 50 kg 1'O, ha 'Wee, ""d' as a basal do." in all the """m,,,,, Th, resutts ,howed that the numb" of poO, plant', ,mmb,,,,;, ",0, pod', ,"O yield I", ' and "O p"uio com,o" **Xet Kunha**' 'igoificamly by pO''''ium applic"ioo The high", seed yielO (16, 'O q ha') was ob", ¹ined with the "pph'ation"

Key words: mungbean. potassium fertilization. response

INTRODUCTION

Munghean *(l'igna radiata)* is an important grain legume crop and is Widely grown in Pakistan on a variety of soils under varying climatic conditions. It occupies an area of *(99.1* thousand hectares with an annual production of 90.6 thousand tonnes of seed with an average yield of 455 kg ha"1 in Pakistan *(A!lonylllous. 1995-96).*

This average is far below the possessed potential of our mungbean varieties. The wide gap between potential and actual yield of munghean is attributed to poor fertility status of soils, as the farmers think that there is no need to fenilize the mungbean crop due to its restorative nature. However, the advanced production technology greatly stresses Upon for soil nutrition management- which plays a vital role in Obtaining higher yields. Tomar et at. (1985) conducted experiments on green gram tvigna radiatai, on farmer fields. Soil ranging from loamy sand to sandy loam, showed high yield responses to NPK fertilizer. Higher P rates decreased the yield responses to nitrogen, Fertilizers were highly profitable for Mung; the optimum economic rate was 20 kg N + 40 kg PcO, + 20 kg KO ha I. Gupra (1988) applied 10 kg N, 40 kg P and 20 kg K in different comhinations with or without seed inoculation with rhizohium and found no significant effect on seed yield of Vigna mungo. Ahmad (1989) reported that the application of NPK level of 25-75-75 kg ha"¹ is the best suitable and economical dose of fertilizer for enhancing the seed yield of 11lungbean (Vigna radiata). Mahmood (1989) reported that basal dose of N, Pp, and K₂O (25-75-75 kg ha') was needed to harvest a good yield of 111ungbean. Hussain (1990) observed that yield parameters such as the number of pods per plant, number of seeds pod'. 1000- seed weight and protein Contents of, two different cultivars of ll1ungbean were significantly affected by N. P and K. Consequently. it was Contemplated in this study to evaluate the effect of fertilization upon yield and quality of Illungbean under Faisalabad conditions.

MATERIALS AND METHODS

The effect of potassiull application on seed yield and quality of ll1ungbean (*Viglla radiam*, 'cv. NM. 1.:21-25 was studi::d at the Postgraduate Agriculture Research Station (PARS), University of AgriCUltüre, Faisalabad. TIle crop was sown on a sandy clay loam *soil*, having 0.035% N, 7.21 ppm phosphorus and 123 pprn potassium, in the last week of July, 1990. A quadruplicated experiment was laid out in a randol1lized complete hlock design using a net plot size of 2.4 m x 5m. Potassiumleve!s' tested were 0.25.50,75. IOO and 125kg ha '. Besides a uniform dose of20-50 kg NP ha 'was Llsed in all the treatments

The crop was SOwn with a single-row hand drill Llsing a seed rate of 20 kg ha' in 30 cm apart rows. Urea, SSP and SOP were used as the sources of N,P and K. respectively. The distance between the plants within the rows was maintained at 10cm by thinning, 3 weeks after sowing. All other agronomic practices were kept normal and uniform for all the treatments. The observations inclUding number of plants rn'; number of pods per plant, number of seeds pod 1. IOOO-seed weight. seed yield ha" and seed protein Contents were recorded dllring the Course of this study. The data collected were analyzed using Fisher's analysis of variance technique and statistically Duncan's new multiple range test was applied to compare the differences among the treatmem means (Steel and Torrie.

RESULTS AND DISCUSSION

The data presented in Table *l* revealed that the number of plants m' were not affected significantly by any of the treatments. This was due to uniform plant density maintained in all the plots after germinalion by adjustmell1 of imerplal11 distance by thinning. The data regarding [he number of pods plant 'showed that K application, in general, tended to affect

Saeed, Ahmad, Ahmad & Mohsan

tillering. jointing. boot, and throughout vegetative growth, respectively. Decrease in DW due to drought was also reported by Ahrnad *et al.* (1989). Pasban-90 excelled Baram-83 in producing DW plant". Differences among the combinations of various drought treatments and wheat varieties were also significant (data not shown). Pasban-90 with regular supply of water produced the maximum DW plant" (1.43 g), while Barani-83 subjected to drought throughout vegetative development showed the minimum DW plant.' (0.77 g).

Net Assimilation Rate: Net assimilation rate (NAR) was reduced significantly by drought impesed at different vegetative development stages. However, drought throughout vegetative development decreased NAR to the maximum extent (70.91 %) compared to control. These results were in conformity to those of Brooks *et al.* (1982). There were, however, non-significant differences in NAR of the two varieties. Differences among various combinations of drought treatments and wheat varieties were also non-significant.

Relative Growth Rate: Drought at different vegetative development stages decreased relative growth rate (RGR) significantly compared to control. Drought at tillering, jointing, boot and throughout vegetative development caused a reduction of 15.88,34.30,41.52 and 63.18%, respectively, against the control. n\ese findings were in line with those of Ahmad *et at*. (1989). Pasban-90 exhibited significantly higher RGR than Barani-83, indicating its better genetic potential for producing dry matter per unit plant biomass in a specific time interval. Various combinations of drought treatments and wheat varieties, by contrast, did not significantly differ from one another in RGR.

Leaf Area Index: All drought treatments reduced leaf area index (LAI) significantly. Drought at tillering, jointing. boot and throughout vegetative development decreased LAI by 16.92, 8.08, 20.38 and 22.69%, respectively. These results were in line with the findings of Jamal (1991). Baratti-83 exhibited signilicantly higher LAI than Pasban-90 due to larger leaf area plant" in the former. Combinations of various drought treatments and varieties also differed significantly from one another.

The results pertaining to wheat yield, its components and harvest index are given in Table 2.

Fertile Tillers Per Unit Area: Drought at boot, jointing, and throughout vegetative development stages reduced number of fertile tillers per unit area. Compared to control, percent reduction was 3.16, 10.11, 14.61 and 31.80 respectively. This decrease in number of fertile tillers per unit area may be attributed to incomplete tiller development due to deficiency of available water at one or more than one of the aforementioned vegetative development stages of wheat. Barani-83 excelled

Pasban-90 by producing 5.42 % more fertile tillers per unit area, indicating its better tillering potential. However, various combinations of the two factors did not differ significantly from one another.

Number of Grains Spike"! Drought at jointing, boot and throughout vegetative development period apparently caused a significant reduction in number of grains spike compared to control but statistically appeared to be the same. By contrast, drought at tillering did not significantly affect number of grains spike". These findings conformed to those of llahi *et al.* (1986) and Hassan *et at.* (1987). Pasban-90 produced higher number of grains spike than Barani-83. However, differences among the combinations of various drought treatments and varieties were non-significant.

1000-Grain Weight: Drought imposed throughout vegetative development resulted in the minimum WOO-grain weight. However, 1000-grain weight of the crop subjected to drought at tillering was statistically not different from control. Reduction in WOO-grain weight under drought may be attributed to reduced supply of assimilates to grains which curtailed the grain filling duration. Similar' results were obtained by EI-Monanyeral *et al.* (1982) and Ilahi *et al.* (1986). Barani-83 produced significantly heavier grains than Pasban-90, indicating its better grain development potential. Combinations of various drought treatments and varieties, however, did not differ significantly from one another.

Grain Yield: Drought at tillering, jointing, boot and throughout vegetative development reduced grain yield ha' significantly. The reduction amounted to 16.04, 14.08,25.31 and 32.98%, respectively, compared to control. Reduced yields due to drought may be ascribed to decrease in fertile tillers per utilt area, number of grains spike and 1000-grain weight. Similar results were previously reported by Cheema *et al. (1973)*, Sinha *et al.* (1986) and Jafari and Abd-Mishani (1987). Pasban-90 produced significantly higher grain yield ha' than Barani-83. Differences among the combinations of various drought treatments and wheat varieties were also significant. Pasban-90 given normal irrigation produced the maximum grain yield (5.94 t ha'), while Barani-83 subjected to drought throughout vegetative development produced the minimum grain yield of 3,46 t ha'.

Harvest Index: Wheat subjected to drought throughout its vegetative development showed the lowest harvest index (HI) of 29.00% and differed signilicantly from other drought treatments. Lower HI in drought treatments compared to control was due to proportionately lower grain yield ha' with these treatments. Similar suppressive effect of drought on HI was also reported by Arnon (1972), Shalaby *et al.* (1988) and Jamal (1991). Pasban-90 exhibited significantly higher HI than

	Dry weight	Net assimilation	Relative growth	Leaf area
	plant [rate (mg cm ² day ⁻¹)	rate (mg g [day ')	index (cm)
 A. Drought D[= No drought D] = Drought at tillering D, = Drought at jointing ID₄ = Drought at boot O, = Drought throughout vegetative development per 	1,21a*	0.777a*	2.77a*	2.60a*
	1.12b	0.613b	2.33b	2.16c
	1.06b	0.394c	1.82c	2.39b
	0.90c	0.286d	1.62c	2.07d
	0.79d	O.226e	1.02d	2.01e
B. Variety				
Vi = Pasban-90	1.16a*	0,462	2.25a*	2.23b*
V; = Barani-83	<u>0.87b</u>	<u>0.457NS</u>	1.57b	2.26a

Table I. Impact of drought on dry weight plane 1, net assimilation rate, relative growth rate and leaf area index of wheat varieties Pasban-90 and Barani-83

*Any two means not sharing the same letter differ significantly from each other at P=0.05; NS = Non-significant.

 Table 2. Impact of drought on number of fertile tillers m]. number of grains spike 1. 1000-grain weight. grain yield and harvest index of wheat varieties Pasban-90 and Barani-83

Treatment	No. of fertile tillers m'	No. of grains	1000-grain weight (g)	Grain yield (t ha l)	Harvest index
 A. Drought D[= No drought O] = Drought at tillering D, = Drought at jointing D, = Drought at boot O, = Drought throughout vegetative development per 	285.17a* 243.50d 256.33c 276.17b 194.50e eriod	48.61a* 45.76a 39.53b 39.67b 37.03b	41,43a* 40.28ab 39.27b 32.38c 30.70d	5.61a* 4.71b 4.82b 4.19c 3.76c	36.00a* 33.60b 33.53b 33.22b 29.60c
B. Variety					
VI = Pasban-90 V , <u>=</u> Barani-83	244.13b* <u>258.13a</u>	46.46a* <u>37.78</u> b	35.71b* <u>39.91a</u>	4.81a* <u>4.43b</u>	34.38a* 32.79b

* Any two means not sharing the same letter differ significantly from each other at P = 0.05.

Barani-83. By contrast, various combinations of two factors did not affect HI significantly.

Conclusions: The results suggest that wheat is more sensitive to drought at boot than at tillering or jointing. Although wheat variety Pasban-90 has smaller grain size. yet it exhibits higher yield potential than Barani-83. However, it seems essential to avoid drought at each development stage under study especially at boot to harvest, to exploit maximum potential of the wheat varieties Pasban-90 and Barani-83.

REFERENCES

Ahmad, N., R. Ahmad, T. Mahmood, R.H. Qureshi and M. Aslam. 1989. Growth and water relations of wheat seedlings subjected to different external water potentials of polyethylene glycol solutions. Pak. J. Agri. Sci. 26(3): 284-289.

- Arnon, I: 1972. Wheat. In Crop Production in Dry Regions, Vol. II, pp. 56. Leonard Hill, London.
- Brooks, A., C.F. Jenner and D. Aspinall. 1982. Effect of water deficit on endosperm, starch granules and grain physiology of wheat and barley. Aust, J. PI. Physiol. 9(4): 423-436 (Soil Fert. Abst. 46(5): 4561, 1983).
- Cheema, S.S., K.K. Dhingra and G.S. Gill. 1973. Effect of missing irrigation at different stages of growth on dwarf wheat. J. Res. Pb. Agri. Univ. 19(1): 41-44 (Soil Fert. Abst. 37(5): 1381, 1974).
- EI-Monanyeral, M.O., A.M. Hegazi, N.H. Ezzat, H.M. Salem and S.M. Tahoun. 1982. Growth and yield of some wheat and barley varieties grown under different moisture' levels. Ann. Agri. Sci., Mashtohor (Al-Azhar Univ.. Cairo). 18: 353.

- Hassan, U.A., V.B. Ogunlela and T.D. Sinha. 1987. Agronomic performance of wheat (*T. aestivum*) as influenced by moisture stress at various growth stages and seeding rates. J. Agri. Crop Sci. (Nigeria), 158(3): 172-180.
- Ilahi, I., M. Khan and S. Khan. 1986. The effect of soil moisture stress on the growth and productivity of some wheat varieties. Proc. Seminar on Environmental Stress and Plant Growth. A.E. Agri. Res. Cent., Tandojam, 75-80.
- Jafari, S.J. and C. Abd-Mishani. 1987. Effect of different levels of irrigation and nitrogen fertilizer on yield and other agronomic characters of irrigated winter wheat... Iranian J. Agri. Sci. 17(3-4): 53-56.
- Jamal. M. 1991. Agrobiological studies on water stress and mtrogen uptakein whear Ph.D. Thesis, Univ. Agri., Faisalilb,ad.
- Radtord. P.\, 1967. The analysis formulae. Their use and abuse. Crop Sci. 7(3): 171-175.

:::

- Saeed, M., A. Mahmood , A. Khaliq and R. Ahmad. 1996. Response of wheat to water stress at its various reproductive development... stages. JAPS. 6(3-4): 96-99.
- Shalaby , E.M .. H.M. Rahim, M.G. Masood and M.M. Masood. 1988. Effect of watering regime on wheat morpho-physiological traits. harvest index and its components. Aust. J. Agri. Sci. 19(5): 195-207 (Field Crop Abst. 43(7): 4676, 1990).
- Sinha, S.K., P.K. Aggarwal., G.S. Chaturvedi, A.K. Singh and K. Kailas Nathan. 1986. Performance of wheat and triticale cultivars in variable soil water environment. ... \... Grain yield stability. Field Crop Res. 13(4): 289-300 (BioI., Abst., 82(7): 59706. 1986).
- Steel. KG.D. and J.H. Torrie. 1980. Analysis of variance. IV. Split plot design and analysis. In Principles and Procedures of Statistics, pp. 377-398. McGraw Hill Book. Co. Inc.. New York.

49