Pak. J. Agri. Sci. Vol. 33, 1996

BIOLOGICAL AND LAND-USE EFFICIENCY OF DIFFERENT BARLEY-BASED INTERCROPPING SYSTEMS

Muhammad Shafi Nazir, M. Saeed, Shahzad Ahmad & A. Ghaffar University of Agriculture, Faisalabad

Biological etficiency and economics of different barley-based metercopping systems were studied on a sandy člay loam soil at the University of Agriculture. Faisalabad during the year 1991-92. The intercropping systems comprised barley alone barley + lentil, barley + gram, barley + Fenugreek (methra), barley + linseed and barley + wheat. Barley was sown in IOO cm spaced 4-row strips with 20 cm space between the rows of each strip. Three rows of each intercrop were sown between the barley strips. Although all the intercrops reduced grain yield of barley significantly compared to its monocropping, yet the additional yield obtained from each intercrop compensated more than the losses in barley production. The land equivalent ratio showed 28 to 45 % yield advantage of different intercropping systems over sole cropping. The highest yield advantage (45 %) was recorded in barley + lentil followed by barley + gram (38 %) against the minimum of 28 % in barley + methra and barley + wheat. Similarly, all the intercropping systems gave substantially higher net income ha 'over pure stand of barley. The maximum net income of Rs. 10367 ha' was obtained from barley + lentil is the best intercrop PPing system in all res Peets.

Key words: barley, biological efficiency, intercropping systems

INTRODUCTION

The population of Pakistan is increasing at an alarming rate but the rate of increase in food production is too slow to meet the rapidly increasing demand for food. Thus the farmers and are faced with the task of increasing agronomists food production. This necessitates to develop new crop management practices to enhance crop productivity per unit area and time. Raising productivity through a more effective use of natural (e.g. light) and added (e.g. water. fertilizer, etc.) resources, is possible through intercropping, provided component... crops' demands for resources arc well understood (Kalrab and Gangwar. 1980: Riaz et al., 1993). Recent research has shown substantial yield advantage of intercropping over monocropping or different crops (Manda] and Mahapatra, 1990 and Patrick et al., 1995).

Barley (Hordeum vulgare L.) has a distinction of being the first grain crop to he cultivated and used as food by mankind. It is very rich in protein (7.5 to 15%) and starch (50-60%). Thus barley is considered to he as valuable as the same weight of maize grain for livestock feeding. It has a wide range of adaptation to soil and climatic conditions. Even it can withstand adverse agro-environment.

At present there is a great need for increased production of rood grains. pulses and oilsccds because of their ever increasing use in the daily human diet. Area under these crops, however. cannot be increased due to their competition with wheat in rahi season. So, the hest way to increase the production or barley, lentil (Lens culinaris Medic), gram (Cicer arietinum L.), mcthra (Trigollel/a j(ienugraecum), linseed il inutn usuaussimum L.) and wheat (Triticum aestivum L.) may be through intercropping. The present study was, therefore,

designed to determine the bio-economic efficiency of different harley-based intercroppins systems under the irrigated conditions at Faisalabad.

MATERIALS AND METHODS

The investigations were carried out on a sandy elay loam soil at the University of Agriculture, Faisalabad during the year 1991-92. The intercropping systems comprised barley alone, barley + lentil, barley + gram, barley + Fenugreek (methra), barley + linseed and barley + wheat. All the intercrops were also grown alone in the same experimental area to compute the land equivalent ratio (LER). The experiment was laid out in a randomized complete block design with three replications- The net plot size measured 4.80 x 5.30 m.

Barley variety Jau-83 was planted on November 25,1991. The crop was sown with single-row hand drill. in 100 cm spaced 4-row strips on a well prepared seedbed. The distance between the rows of each strip was 20 cm. The seed rate used was 60 kg ha'. Three rows of each intercrop were sown between the barley strips on the same day. A basal dose of 50 kg Nand 100 kg Pps ha' in the form of urea and single- super phosphate. respectively was applied. The whole of Pps and half of

nitrogen were added at sowing, while the remaining half of nitrogen was top-dressed with first irrigation. In all two i'rrigations, each of 7.5 cm, were given to mature the crops. All other agronomic practices were kept normal and uniform for all the treatments.

The component crops were harvested at the end of April. 1992. Ohservations on yield and yield components of the component crops were recorded by using the standard procedures. Land equivalent ratio (LER) for each crop was computed by using the following formula of Willey (1979):

Intercrop yield

The data obtained were analysed by using the Fisher's analysis or variance and DMR test was applied at P = 0.5 to compare differences among the treatment means (Steel and Torrie, 19X4).

RESULTS AND DISCUSSION

Biological Yield: All the iniercrops reduced biomass yield ha of barley compared to that of the sole barley crop (Table 1) because of simultaneous competition among the component crops. Among the intercrops. lentil, gram and methra had signilicantly less effect on biomass yield of barley than linseed and wheat which were at par with each other. This was attributed to the continuous exhaustive competition of linseed and wheat with barley. The biomass yield of intercrops also varied signifiCantly. Wheat produced significantly higher hiornass yield ha than all other intercrops, followed by lentil and linseed, which gave equal biomass. The minimum biomass was produced by gram. Reduction in biomass yield of base crop due to competitive effect of different intercrops was also reported by Rehman (1984) and Mandal and Mahapatra (1990).

Grain Yield: Different irucrcrops decreased the grain yield ha of barley SIgnificantly compared to its pure stand (Table I). "111 reduction was signi ficantly higher in linseed and wheat metercopping than that of lentil. gram and methra. However. lentil and gram had a similar suppressive effect on grain yield or barley. These results are supported by those of Prasact *et al.* (198X). Tarecn *et at.* (1988), Abo-Shelaia (1990). Bajwa *et al.* (1992) and Riaz *et al.* (1993) who reported differential suppressive ellect of intercrops on the yield of the base crop. There were significant. differences 111 grain yield ha i of the intercrops. Wheat produced the maximum grain yield of 1051 kg ha against the lowest of 262 kg ha for gram. However. lentil and linseed did not significantly differ from each other.

Spikes m'l of Barley: Significant differences 111 number of spikes m' ' of barley were recorded among different (Table I). Barley alone produced intercropping systems signiricantly greater number or spikes m - than that grown in association with different crops. Among the intercrops, linseed and wheat significantly decreased the spikes m' of barley than other imcrcrops but were at par with each other. However. gram had the least effect on spikes m' of barley, These differencex were attributed to the variable- iniercrop competition among the component crops of different intercropping systems. Similar suppressive effect of inicrcrops on number of spikes

Biomass yield Grain yield Grain yield $\begin{bmatrix} 1 & c & c & c & c & c \\ Grain & f & f & f & f & f \\ f & f & f & f & f$	I componentGrain yieldI c dopBarleyIntercropI c dopBarleyIntercrop $(k_{\rm P}^{\rm e} \div c)$ (kg ha ')(kg ha ')(kg ha ')	yieldGrain yieldI c dopBarleyBarleyIntercropSpikes ofNo. ofI c dopBarleyI c dopIntercropI c dopBarleyI c dopIntercropI c dopIntercropI c dopSpikes ofI c dopIntercropI c dopInt	In comparisonGrain yieldGrain yieldI = c dopBarleyIntercropSpikes ofNo. of1000 grainI = c dopBarleyIntercropbarleygrainsweight of $(\frac{1}{8p}, \frac{1}{2})$ (kg ha ⁻¹)(kg ha ⁻¹)barleygrainsweight of	Grain yield $c \operatorname{cdop}_{\mu}$ Barley Intercrop Spikes of No. of $f \operatorname{cdop}_{\mu}$ (kg ha ⁺) (kg ha ⁺) barley grains (m^{-2}) spikes I
Grain yield Barley Intercrop (kg ha ⁻¹) (kg ha ⁻¹)	Grain yield Barley Intercrop Spikes of (kg ha ⁻¹) (kg ha ⁻¹) barley (m ⁻²)	Grain yield Barley Intercrop Spikes of No. of (kg ha ⁻¹) (kg ha ⁻¹) barley grains (m ⁻²) spikes 44a	Grain yield Spikes of No. of 1000 grain Barley Intercrop Spikes of version weight of grains weight of the spikes barley (g) (kg ha ⁻¹) (kg ha ⁻¹) (m ⁻²) 9710 44a 41 fa	Grain yield Spikes of No. of 1000 grain Land Barley Intercrop Spikes of No. of 1000 grain Land (kg ha ⁻¹) harley grains weight of equivalent (kg ha ⁻¹) (kg ha ⁻¹) spikes barley (g) ratio (LER) (m ⁻¹) 100 100
Intercrop (kg ha ')	yield Intercrop Spikes of (kg ha ⁻¹) barley (m ⁻²) 271a 271a	yield Intercrop Spikes of No. of (kg ha ⁻¹) barley grains (m ⁻²) spikes 271a 44a 40b	yieldSpikes ofNo. of 1000 grainIntercropSpikes ofNo. of 1000 grain(kg ha ')barleygrainsweight of(m ')spikesbarley (g)271a44a41.6a40b39.3b	yieldIntercropSpikes ofNo. of1000 grainLand(kg ha barleybarleygrainsweight ofequivalent(kg ha barley(m barleygrainsbarley(g)ratio (LER)271a44a41.6a1.00271a44a41.6a1.45
	Spikes of barley (m ⁻²) 271a 248c 263b	Spikes ofNo. ofbarleygrains(m²)spikes271a44a248c40b263b42b	Spikes ofNo. of 1000 grainharleygrainsweight of (m^{-2}) spikesbarley (g)271a44a41 6a248c40h39 3h263b42h40 3h	Spikes ofNo. of1000 grainLandbarleygrainsweight ofequivalent(m²)spikesbarley (g)ratio (LER)271a44a41.6a1.00248c40b39.3b1.45263b42b40.3b1.38

m ~ of the main crop was reported by Prasad et al. (1988).

Number of Grains per Spike of Barley: Various intercrops had significant effect on grains per spike of barley (Table I). Wheat caused significantly more reduction in the grains per spike of barley than linseed and methra which were statistically equal to each other. TIle minimum reduction in grains per spike was. however, noted in lentil and gram intercropping systems.

IOOO-Grain Weight of Barley: Intercropping decreased 1000grain weight of barley significantly (Table I). Wheat and linseed caused the maximum reduction in Iaaa-grain weight of barley due to their continuous exhaustive competition with barley. Legume intercrops had relatively less effect on 1000grain weight probably due to mild competitive effects. These results are in consonance with those of Khan (1984) who reported that 1000-grain weight of wheat was adversely affected in different intercopping systems.

Land Equivalent Ratio and Net Income: Land equivalent ratio (LER) indicates the yield advantages of intercropping over monocropping. LER values showed 28 to 45 '} {yield advantage of different intercropping systems over sole cropping of barley (Table I). The maximum yield advantage (45 %) was recorded in barley + lentil, followed by barley + gram (38 %), while the minimum (28 %) was in barley + methra and barley + wheat intercropping systems.

In terms of monetary gain, all the intercropping systems gave substantially more net income ha than that of the pure stand of barlay. The maximum net income of Rs. 10367 ha was obtained from barley + lentil against the minimum of Rs. 6641 ha from the sole crop of barley. The results suggest that barley + lentil is the hest intercropping system in all respects. Higher yield advantage and net income ha in different intercropping systems has also been reported by Nazir *et al.* (1988). Mandal and Mahapatra (1989) and Abo-Shetaia (1990).

REFERENCES

- Aho-Shctaia. 1990. Inter and intra compcuuon when irucrcropping Fababcan and barley. Ann. Agri. Sci., Cairo, Y;(1): 2(11-278.
- Ahlawat. I.P.S. and R.P. Sharrna. 1985. Water and nitrogen management in wheat-leastil intercropping system under late sown conditions . I. Agri. Sci. 105(3): 677-702.

- Bajwa, A.N., M.S. Nazir and S. Mohsan. 1992. Agronomic studies on some wheat-based intercropping systems. Pak. J. Agri. Sci. 29(4): 439-443.
- Kalrab. G.S. and B. Gangwar 1980 Economics of intercropping of different legumes with maize at different levels of N under rainfed conditions. Indian J. Agron. 25 181-185.
- Khan, M.A. 1984. Studies on intercropping. of linseed and mungbean in wheat planted in different. geometrical patterns. M.Sc. Thesis, Univ. Agri., Faisalabad.
- Mandal, B.K. and I.C. Mahapatra. 1989. Yield components of barley, lentil and linseed under irrigation, mulch and intercropping. Ind. Agriculturist, 33(2): 73-80.
- Mandal , B.K. and I.C. Mahaparra. 1990. Barley. lentil and flax yield under different intercropping systems. Agron. J. 82(6): 1066-1068.
- Nazir, M.S., H.R. Khan, G. Ali and R. Ahmad. 1988. Inter/relay cropping in wheat planted in multi-row strips at uniform plant population. Pak. J. Agri. Res. 9(3): 505-38.
- Patrick, M.C., 1,C. Gardner , B.G. Schatz, S.W. Zwinger and S.J. Guldan, 1995. Grain yield and weed biomass of a wheat-leutil intercrop. Agron. 1, 87(3): 574-579.
- Prasad , R., S. Singh, S.N. Sharma and c.P. Singh. 1988. Studies on pure and mixed stands of wheat and barley under dry land agriculture conditions. J. Agron. Crop Sci. 160(5): 335-338.
- Rehman, M.A. 1984. Investigation into the effect of lentil and wheat mixed cropping. Bangladesh J. Agri. Res. 9(1): 48-53 IField Crop Abst. 39(10): 5706, 19851.
- Riaz, A., M. Arnjad , M.S. Nazir and T. Mahmood. 1993. Agronomic studies on mash-soybean intercropping system. Pak. J. Agri. Res. 14(4): 304-308.
- Steel, R.G.D. and J.H. Torric. 1984. Principles and Procedures of Statistics. 2nd cd. McGraw Hill International Book Co., Singapore.
- Tarecn, M.A., M.S. Nazir, S. Ahmad and N. Ali. 1988. Yield and yield components of wheat as influenced by intercropping and planting geometry. Pak. J. Agri. Res. 9(3): 310-315.
- Willcy , R.M. 1979. Intercropping. its importance and research needs. I. Competition and yield advantages. Field Crop Ahst., 32(I): 1-10.